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Abstract: In this work we demonstrate efficient quality control of a variety of gasoline  

and ethanol (gasohol) blends using a multimode interference (MMI) fiber sensor. The 

operational principle relies on the fact that the addition of ethanol to the gasohol blend 

reduces the refractive index (RI) of the gasoline. Since MMI sensors are capable of detecting 

small RI changes, the ethanol content of the gasohol blend is easily determined by tracking 

the MMI peak wavelength response. Gasohol blends with ethanol contents ranging from 0% 

to 50% has been clearly identified using this device, which provides a linear response with 

a maximum sensitivity of 0.270 nm/% EtOH. The sensor can also distinguish when water 

incorporated in the blend has exceeded the maximum volume tolerated by the gasohol blend, 

which is responsible for phase separation of the ethanol and gasoline and could cause serious 

engine failures. Since the MMI sensor is straightforward to fabricate and does not require 

any special coating it is a cost effective solution for real time and in-situ monitoring of the 

quality of gasohol blends. 
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1. Introduction 

In the last two decades there has been a growing interest in the development of renewable fuels that 

might replace or reduce the use of gasoline. This has been motivated by the fact that petroleum is not a 

renewable source, and the neverending increase in production costs, as well as pollution problems related 

to gasoline use in the majority of automotive vehicles. Among the different approaches to develop 

renewable fuels, ethanol has attracted significant interest because it can be used either as a replacement 

or an additive for gasoline. The mixture of gasoline and ethanol is known as gasohol. The main advantage 

when using gasohol is that the higher oxygen content of ethanol allows for greater fuel economy and 

reduction of contaminant emissions [1–3]. As a result, gasohol with different gasoline and ethanol 

mixtures are currently used in different countries. Nevertheless, there are some issues that need to be 

taken into account when using gasohol in small engines. Due to the hygroscopic and miscibility 

properties of ethanol, water can be absorbed from atmosphere and it dilutes the ethanol. The main issue 

here is that if we have a higher fraction of water than what can be contained by the gasohol mixture, 

phase separation of the gasohol mixture will occur. This produces abnormal combustion and leads to 

engine knocking that can potentially damage the engines. On the other hand, ethanol is known to increase 

the corrosion of the engine and fuel system materials due to soluble contaminants such as chloride ions. 

However, it has been shown that the addition of water can help to prevent corrosion as well, but the 

fraction of water has to be carefully controlled to avoid phase separation. We should also mention that 

in some countries, Brazil for example, the use of gasohol blends with higher percentages of ethanol is 

legal. Nevertheless, since ethanol has lower price (about 60% less) than gasoline, a common malpractice 

is to increase ethanol concentration in the mixture that is sold to car owners. Therefore, the gasohol blend 

and their water content should be monitored not only when the blend is distributed, but also in real time 

when gasohol is being used. 

There are a few techniques to detect alterations in gasoline either due to adulteration or ethanol 

incorporation, such as the incorporation of chemiresistors for ethanol detection in hydrocarbons [4], 

piezoresonance elements [5], and the use of sensor arrays based on mass and capacitance  

transducers [6]. However, for security reasons, it is highly desirable that such sensors avoid electrical 

signals due to the contact with flammable or explosive substances. There are other options based  

in selective colorimetric indicator films called Wetting In Color Kit (WICK) [7], but chemical 

interference presents a significant inconvenient as a sensing element. Optical fiber sensors (OFS) are 

ideal for this task because they do not require electrical signals to operate. In addition, OFS are compact, 

immune to electromagnetic interference, exhibit high sensitivity, with good portability and low cost.  

The majority of the OFS involved with fuel detection has been focused on hydrocarbon leak  

detection [8–11]. There are few reports dealing with the detection of the percentage of ethanol and other 

contaminants in gasoline [12–14]. A particular technique relies on the extraction of analyte molecules 

into a hydrophobic silicone cladding that covers an optical fiber and the measurement is performed via 

absorption changes of the evanescent field [12]. The main drawback is that the response time is large 

and the fiber requires additional preparation. Other reports take advantage of the ability of long period 

gratings (LPG) to measure the refractive index (RI) of liquids as a way to detect mixtures of ethanol and 

gasoline [13,14]. The only drawback in this case, is the need to inscribe the LPG which requires complex 

equipment and could impact the final cost of the sensor. A device that has attracted a great deal of interest 
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on the development of fiber sensors is the one based on multimode interference (MMI) effects. The key 

advantages of MMI fiber sensors are that they are quite simple to fabricate and relatively inexpensive. 

Therefore, fiber sensors based on MMI structures have been developed to measure different variables 

such as temperature, curvature, vibration, liquid level, as well as MMI refractometers [15–21]. 

In this paper we demonstrate efficient quality control of a variety of gasohol blends using MMI fiber 

sensors. As we previously explained a particular gasohol blend is defined by the volume concentration 

of ethanol incorporated into the blend. Considering that ethanol has a smaller refractive index than 

gasoline, we expect that gasohol blends with higher ethanol content will exhibit a smaller RI than 

gasoline. Since MMI sensors are capable of detecting small RI changes, accurate control of gasohol 

blends is realized in a simple way. Additionally the sensor is capable of detecting when water 

incorporated in the blend has exceeded the maximum volume tolerated by the gasohol blend, which is 

responsible for phase separation of the ethanol and gasoline. We should highlight that since the sensor 

does not require any particular coating and its fabrication is rather simple and inexpensive. 

2. Principle of Operation 

A MMI structure is fabricated by splicing a multimode fiber (MMF) section between two single mode 

fibers (SMF). Light launched into one of the SMF will reach the MMF and, as the light propagates 

through the MMF, we observe the formation of periodic images of the input field along the MMF at 

specific locations [16]. Therefore, if the MMF is cleaved to a particular length, which coincides with the 

position where an image is formed, light with a specific wavelength will be coupled to the SMF output 

and transmitted through the MMI device. Any other wavelength value that deviates from the design 

wavelength will form its image before or after the MMF-SMF interface, and the light coupled to the 

output SMF will be attenuated as shown in Figure 1a. The relation that defines the transmitted MMI 

peak wavelength is well known and is given by [19]: 

....,2,1,0,
2

=







= pwith

L

Dn
p MMFMMFλ  (1)

where DMMF and nMMF are the effective diameter and effective refractive index (RI) of the fundamental 

mode of the MMF respectively, λ is the free-space wavelength, and L is the length of the MMF. As 

shown in Equation (1), the peak wavelength can be shifted when the effective RI and diameter are 

modified, which can be achieved via the evanescent field of the propagating modes. In order to allow 

the modes to interact with the surrounding media we use a MMF known as No-Core fiber, which is a 

MMF without cladding (i.e., air is the cladding). Therefore, when the MMI device is immersed in a 

liquid, such as gasoline, ethanol, or gasohol in our case, the index contrast between core and liquid 

cladding will be reduced which increases the effective diameter and RI of the fundamental mode. The 

net result is that the MMI peak wavelength will be shifted to longer wavelengths as the RI of the liquid 

is increased. Since there is a significant RI difference between gasoline and ethanol, such effect can be 

used to evaluate the quality of gasohol mixtures. 
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Figure 1. (a) Spectral response of an MMI device (Inset: schematic of a MMI device) and 

(b) MMI peak wavelength response as a function of the RI of the external media. 

In order for the MMI sensor to discriminate the gasohol mixtures the spectral separation between the 

transmitted MMI peaks when the No-Core fiber is surrounded by ethanol and gasoline has to be clearly 

identified. Using a finite element method software (COMSOL Multiphysics) we can obtain the effective 

diameter and RI of the fundamental mode, when the MMI is immersed in both liquids, and these values 

are then used in Equation (1) to obtain the transmitted MMI peak wavelength for a fixed MMF length. 

The No-Core MMF parameters used in the simulations are a core RI of n = 1.444 and a diameter  

of 125 µm. We consider the RI at 1550 nm of ethanol and gasoline as n = 1.3622 and n = 1.4223 

respectively [14]. The length of the No-Core fiber was taken as 58.98 mm, which corresponds to  

a MMI peak wavelength of 1530 nm with air as the cladding. We also included other RI values to obtain 

a better curve. As shown in Figure 1b in the case of ethanol the transmitted peak is located at  

1560.75 nm whilst for gasoline is located at 1582.08 nm. The peak-to-peak difference of 21 nm should 

be enough to identify different gasohol mixtures whose MMI peak wavelength will fall within this range. 

Nevertheless, as will be shown later, we can slightly increase the sensitivity by reducing the diameter of 

the No-Core fiber. 

3. Experimental Design 

The No-Core fiber used in our experiments was acquired from the company Prime Optical Fiber 

Corporation (Miao-Li County, Taiwan). The MMI sensor was fabricated by first splicing the SMF to 

one end of the No-Core MMF. Using a microscope and a micrometer stage we align the splicing point 

with the edge of the cleaver knife, and the fiber is then moved away a distance of 59.58 mm. The  

No-Core MMF length is slightly larger as estimated from Equation (1) for peak wavelength transmission 

at 1530 nm and air as the surrounding medium, which could be related to slight variations of the RI and 

diameter of the NO-Core MMF. The No-Core MMF is finally cleaved and spliced to another SMF, and 

at this stage the sensor is ready for testing. We should highlight that the surface of the No-Core fiber 

should be free of any polymer that could interfere with the measurements. Therefore, after fabrication, 

the MMI device was cleaned using a sulfuric acid solution (1M) to remove any residual polymer. The 

experimental setup for testing the MMI gasohol sensors is quite simple and is shown in Figure 2.  
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A superluminescent diode (SLED) with a wavelength range from 1465 to 1650 nm was used as the 

broadband optical source, which is connected to the input SMF using FC/PC connectors. The transmitted 

spectrum through the MMI sensor is then measured using an optical spectrum analyzer (OSA).  

Figure 2. Experimental setup for gasohol measurements. 

 

The MMI structure was fixed into a channel engraved in a Delrin plate with integrated liquid inlet 

and outlet channels. As shown in Figure 3a glass cover was glued on top of the Delrin plate in order to 

seal the channel. The channel without and with gasohol are shown in Figure 3a,b respectively, with red 

dye added to the gasohol blend to facilitate visualization inside the channel. 

Figure 3. MMI sensor fixed into the Delrin channel with glass cover (a) without gasohol  

and (b) with gasohol. Red dye is added to the gasohol solution to highlight the gasohol in  

the channel. 

 

During the measurements we monitored the temperature (~23 °C) and humidity (~26%), and small 

variations of less than 4% were observed during the experiments. Such small variation does not 

significantly alter the response of the sensor. It is important to mention that in Mexico we have two 

different kinds of gasoline with 87 and 92 octane, named G87 and G92 respectively, and both are free 

of ethanol. Therefore, in order to obtain different gasohol blends, we prepared different mixtures of  

G87 diluted with anhydrous ethanol (AE) as shown in Table 1. The mixtures were selected according to 

the different gasohol blends that are commonly used in several countries [1–3]. We should also highlight 

that AE was used to guarantee that the gasohol blends do not contain or will absorb water. Although the 

results reported here were performed using the G87 type, similar results should be obtained with the  

G92 type. We believe that similar results should be obtained for other types of gasoline used worldwide. 
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Table 1. Gasohol blends prepared using anhydrous ethanol and G87 gasoline. The blends 

are labeled following standard convention. 

Solution  G87 (mL) Anhydrous Ethanol (mL) G87/AE (%) 

G87 10 0 100/0 
E10 9 1 90/10 
E20 8 2 80/20 
E30 7 3 70/30 
E40 6 4 60/40 
E50 5 5 50/50 

4. Experimental Results 

We first measured the spectral response of the MMI sensor when is covered with AE and G87 

gasoline. As shown in Figure 4a, we have a separation of 15.2 nm between the transmitted peak 

wavelengths which is smaller than the expected values obtained from Figure 1b. Such a difference is 

related to the fact that the RI of ethanol and gasoline used in the simulations are not necessarily the same 

for AE and G87 gasoline. Nevertheless, the peak wavelength separation between AE and G87 gasoline 

should be enough to monitor the different gasohol blends.  

Figure 4. (a) Spectral response of the MMI sensor for anhydrous ethanol and G87 gasoline; 

(b) Gasohol blends from Table 1 (MMF diameter of 125 µm). 

 

Gasohol measurements were performed by first mixing the gasohol blends for a period of 2 min. After 

mixing, the gasohol was inserted into the channel and the spectral response of the MMI sensor was 

acquired with the OSA. Before a new measurement the MMI sensor is rinsed with pure ethanol and, 

after filling the channel with a new gasohol blend, the spectral response is measured again. The spectral 

response of the MMI sensor for each one of the gasohol blends, as listed in Table 1, is shown in  

Figure 4b. We can observe that the spectral response of the MMI sensor is shifted to longer wavelengths 

as the amount of AE is reduced from the gasohol blend. Such response is correlated with the fact that 

the G87 gasoline has a higher RI than the AE.  
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As shown in Figure 4b, the sensor can clearly identify the different gasohol blends. However, a simple 

way to slightly enhance the sensitivity of the MMI sensor is by reducing the diameter of  

No-Core fiber, which effectively increases the interaction between the evanescent field and the gasohol. 

Using a buffered oxide etching (BOE) solution, which is a mixture of ammonium fluoride and 

hydrofluoric acid (6:1 volume ratio), the external diameter of the No-Core fiber (originally 125 µm) was 

reduced to approximately 90 µm by applying an etching time of 130 min. In order to achieve a  

specific peak wavelength after the etching, the length of the No-Core fiber is calculated using  

Equation (1) with the target diameter of 90 µm. In this particular case the length of the No-Core fiber 

was 31.35 mm for a peak wavelength close to 1530 nm. We should highlight that, before etching, the 

transmitted spectra does not show any noticeable peak related to the image. As the fiber is being etched, 

we can observe a well-defined peak appearing from the long wavelength edge of the transmitted spectra.  

As the etching continues, the whole spectrum is shifted to shorter wavelengths until we reach the desired 

peak wavelength value. As shown in Figure 5a the peak wavelength is very close to the design peak 

wavelength of 1530 nm. Also shown in Figure 5a is the spectral response of the modified MMI sensor 

when is covered with AE and G87 gasoline. Here we observe an increment in the peak wavelength 

difference between AE and G87 gasoline of 19.8 nm. We measured the gasohol blends using this sensor 

and, as shown in Figure 5b, a sensitivity of 0.270 nm/%AE is obtained as compared to a sensitivity of 

0.208 nm/%AE from the original MMI sensor without etching. We should also highlight that the 

response of both sensors are highly linear.  

Figure 5. (a) Spectral response of the MMI sensor for AE and G87 gasoline (No-Core MMF 

diameter of 90 µm); (b) Absolute peak wavelength shift of both MMI sensors as a function 

of the gasohol blends.  

A more critical issue when monitoring gasohol blends is related to the capability of ethanol to absorb 

water. As we previously described, there is a maximum amount of water that the blend can hold before 

phase separation issues occur. This limit is at 4% of water volume with respect to the ethanol volume 

that will be mixed with gasoline. This effect can be easily observed in Figure 6a–d. The gasohol blend 

in this case is E10 that corresponds to 90% of gasoline and 10% of AE. The bottles shown in each figure, 

going from left to right, have a water volume of 1%, 5%, and 10% with respect to the AE volume.  
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Figure 6a shows the gasohol blend when the water/AE mixture is gently added to the G87 gasoline.  

We can notice that the bottle with 1% of water volume is well mixed with the gasoline, whilst the one 

with 10% of water volume immediately exhibited a phase separation process. The bottle with 5% water 

volume does not experience a drastic phase separation process, but the liquids are not homogeneously 

mixed, instead a slightly cloudy colloidal suspension is obtained. Figure 6b–d, correspond to snapshots 

taken every three second after the bottles have been shaken for one minute. We can easily observe that 

the E10 blend with 1% water volume remains practically unaltered. However, the E10 blends with water 

volumes of 5% and 10% become cloudy due to the inability of the ternary constituents to be mixed. We 

can also notice that the blend with 10% water volume goes into phase separation very rapidly, while the 

5% water volume takes a longer time on the order of 2 min.  

Figure 6. E10 gasohol samples with different water percentage of 1%, 5%, and 10% (left to 

right) with (a) After adding AE/water to G87; (b) After shaking the samples; (c) Three 

seconds after shaking; (d) Six seconds after shaking; and (e) Absolute peak wavelength 

response of the MMI sensor as function of gasohol blends with different water volumes. 

We evaluated the ability of the etched MMI sensor (90 µm diameter) to detect water content in the 

different gasohol blends shown in Table 1. For each gasohol blend we prepared a set of samples with 

different water content from 0% to 6% and increments of 1% (labeled M0 to M6), with respect to the 

total AE volume. The gasohol blend-water mixture was vigorously shaken before every measurement, then 

it was introduced into the channel, and the transmitted spectrum is immediately acquired. As shown in 

Figure 6e, all gasohol blends with water content from 0% to 4% exhibit a similar response as before.  

We only notice a slight change in the sensitivity which can be related to the different water content. 

Nevertheless, when the water content increases to 5% we observe a significant deviation of more than 

10 nm from the linear response for the E10 gasohol blend. We can also notice that the as the water 

content increases to 6%, a similar effect is observed for the E20 and E30 gasohol blends. This behavior 

is related with the formation of small droplets of gasoline and AE with water due to the phase separation, 

which effectively reduces the RI for the gasohol blend. This also reduces the effective RI and diameter 

of the fundamental mode in the MMI device, and the peak wavelength is also reduced. At higher water 
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volume the effect is seen by all the gasohol blends. In fact, since complete phase separation occurs in a 

matter of seconds for high water volumes, in a real application the sensor can be placed close to the 

bottom of the gasohol container. In this scenario the RI seen by the MMI sensor under complete phase 

separation will be that of the AE with water, which should be very close to that of the AE, and a larger 

peak wavelength deviation from linearity should be observed. We performed such experiment by fixing 

the MMI sensor at the bottom of a container where we could add the gasohol blends. The container is 

large enough in order to have the MMI completely covered with the mixture of AE with water when 

phase separation occurs. As shown in Figure 7, for an E10 gasohol blend and 1% water content the MMI 

peak wavelength is the same right after shaking the sample and after one minute. In fact, we measured 

the spectrum after a couple of minutes and the MMI peak wavelength did not change. 

Figure 7. Spectral response of the MMI sensor for E10 gasohol with different water 

concentrations (1% and 5%) acquired right after shaking (0 s) and when the gasohol has been 

settled during 60 s.  

 

However, when the water content is raised to 5%, the MMI peak wavelength right after shaking the 

sample is shifted by 5.4 nm to shorter wavelengths. After one minute, when phase separation is observed, 

the MMI peak wavelength shifts another 5.2 nm. This provides a peak wavelength difference of 10.6 nm 

as compared to the gasohol sample that does not experience phase separation. In this way we can clearly 

determine if the gasohol blend has exceeded or not the water limit of 4%. We should note that these 

experiments were performed using the No-Core fiber with a diameter of 125 µm. Therefore, a higher 

wavelength difference should be obtained by using a reduced core No-Core fiber. The results demonstrate 

the feasibility of employing the MMI sensor as a reliable system for gasohol quality control that is not only 

a simple but also a cost effective system. 

5. Conclusions 

A novel gasohol fuel detection system based on MMI fiber sensors was demonstrated. The MMI 

sensor relies on the fact that the RI of the gasohol blend is reduced as the ethanol content is increased. 

Since MMI sensors are capable of detecting small RI changes, accurate control of gasohol blends is 
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achieved by tracking the peak spectral response of the MMI sensor. Gasohol blends with ethanol contents 

from 0% to 50% are clearly identified with a maximum sensitivity of 0.270 nm/%AE. The sensor is also 

capable of detecting when the water content of the gasohol blend exceeds the maximum volume that 

induces phase separation effects. When this occurs the liquids are not homogeneously mixed and a 

slightly cloudy colloidal suspension is obtained. Since the effective RI of the suspension is lower than 

the homogeneous mixture, we obtain a shorter peak wavelength response that the deviates from the linear 

response of the MMI sensor. Since the MMI sensor is straightforward to fabricate and does not require 

any special coating it is a cost effective solution for monitoring the quality of gasohol blends. 
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