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Abstract: A new position estimation method by using the signals from two automatic 

identification system (AIS) stations is proposed in this paper. The time of arrival (TOA) 

method is enhanced with the displacement correction, so that the vessel’s position can be 

determined even for the situation where it can receive the signals from only two AIS base 

stations. Its implementation scheme based on the mathematical model is presented. 

Furthermore, performance analysis is carried out to illustrate the relation between the 

positioning errors and the displacement vector provided by auxiliary sensors. Finally, the 

positioning method is verified and its performance is evaluated by simulation. The results 

show that the positioning accuracy is acceptable. 

Keywords: positioning method; displacement correction; time of arrival; automatic 

identification system (AIS) 

 

1. Introduction 

Robust position, navigation and timing (PNT) information is an essential foundation of  

e-navigation, developed by the International Maritime Organization (IMO), and intended to enhance 

marine navigation. Though the global navigation satellite system (GNSS) is the primary navigation 

system in maritime applications, an alternative position system to complement the existing GNSS may 
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improve the robustness of the whole positioning and navigation process [1]. In fact, various position 

estimation methods and their applications in marine navigation have been widely investigated in the 

literature, such as e-Loran systems [2–5], inertial navigation systems [6,7], terrain referenced 

navigation systems [8], vessel traffic service and coastal surveillance systems [9,10], etc. But the 

automatic identification system (AIS), which is essentially a communication system [11], is seldom 

used for robust PNT. It provides position information obtained from GNSS. Obviously, it could 

promote a robust PNT for marine navigation if AIS could provide PNT information by itself, since 

vessels are mandated to carry AIS equipment according to the IMO requirements for its member 

countries [12]. To develop positioning service for AIS with widespread distribution is helpful to make 

use of the existing resources for enhancing robustness in marine navigation [13]. 

The main difficulty in obtaining the position information from AIS itself is that the number of 

received signals from AIS base stations may be fewer than necessary to solve the vessel’s position, 

since AIS is originally designed as a communication system, not a PNT system. In other words, the 

geometrical distribution of AIS base stations may be poor for positioning. Actually, the placement of 

base stations provides sufficient signal coverage overlap for ensuring AIS reliability and stability. This 

implies that the vessel can generally receive signals from two base stations. In these cases, the 

traditional time of arrival (TOA) method is hard to use.  

This paper presents a method based on displacement vector correction to estimate a vessel position 

by measuring signals from two AIS base stations. A vessel’s position and its clock bias are estimated 

by the continuous range measurements in adjacent moments. The relationship of position information 

between the adjacent moments can be derived by the displacement vector. A displacement vector is 

calculated according to the heading and velocity provided by auxiliary sensors. Consequently, the 

position information is obtained by solving a system of four equations with three unknowns. Utilizing 

the existing devices already equipped in vessels as the auxiliary sensors, such as compasses, log 

indicators, will not increase the cost of the vessel navigation system. Thus the proposed method can 

maximize the reuse of resources to meeting IMO requirements for robust PNT information.  

The rest of the paper is organized as follows: Section 2 discusses the TOA positioning method in 

AIS. The novel positioning method using displacement correction is presented in Section 3, including 

its mathematical model, implementation scheme and performance evaluation. In order to validate the 

proposed method, several simulations are provided in Section 4. Finally, some conclusions are put 

forth in Section 5. 

2. TOA Positioning Method in AIS 

Generally speaking, position estimation can be determined using the TOA technique [14,15]. Figure 1 

shows the geometrical principle of the TOA method. The vessel lies on circles with radii R1 and R2 

centered on the base stations (B1 and B2), whose position can be obtained precisely. By measuring the 

signals from at least two base stations, the position of the vessel can be determined by the intersection 

point of the circles. Though there exist two solutions M and M′, M′ can be easily excluded according 

to the approximate position of the vessel. 
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Figure 1. Geometrical principle of the TOA metohd. 

 

The latitude and longitude coordinates of the vessel are denoted by (φ,λ). For convenience, the 

changes in latitude and longitude are denoted by the vertical and horizontal increments (Δφ,Δω). Then the 

updated latitude and longitude coordinates of the vessel (φ′,λ′) and (Δφ,Δω) satisfy the following equations: 

sec

ϕ ϕ ϕ
λ λ ω ϕ

′ = + Δ 
′ = + Δ 

 (1) 

The position equation can be modeled as the function of the range L = L(φ,ω), that is generally nonlinear: 

( )( )1cos sin sin cos cos cosi i i iL ϕ ϕ ϕ ϕ λ λ−= + −  (2) 

where a subscript i denotes the ith AIS base station. The linear position equation using Taylor-series 

keeping only terms below second order is given by: 

ˆ ˆ
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ϕ ω
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where iL  and îL  are the measured and estimated ranges from the ith base station to the vessel, 

respectively. (δφ,δω) are the corrections to the estimated position vector in the vertical and horizontal 

directions. The terms of partial derivative in Equation (3) can be calculated by the following formulas:  
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where γi is the estimated azimuth angle directed from the estimation of the vessel’s position to the ith 

base station. γi can be calculated as follows:  
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The above conclusions can be obtained in the situation that time can be synchronized between the 

vessel and AIS base stations. However this is a difficult task to achieve in reality. For AIS, Equation (3) 

can be rewritten as: 
ˆ ˆ

ˆ +i i
i i

L L
L L c tδϕ δω δ

ϕ ω
∂ ∂= + +
∂ ∂

 (6) 
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where δt is the clock bias between the vessel and AIS base stations and c is the velocity of light in the 

free space. Thus the clock bias augments the two-dimensional position vector forming a three-dimensional 

state vector. To estimate the vessel position, more than three independent TOA measurements from 

different AIS base stations are required at the same time. However, the vessel can only receive signals 

from two base stations under most conditions in the existing AIS setup. Therefore, the vessel position 

estimation cannot be obtained using the traditional TOA positioning method. 

3. Position Estimation Based on Displacement Correction 

3.1. A Mathematical Model 

At time k and time k + 1, the vessel locates at (φk, ωk) and (φk+1, ωk+1), respectively, which are to be 

determined. According to Equation (6), the linearized position equation at time k is: 

ˆ ˆ
ˆ +

k k
k k k ki i
i i k k

L L
L L c tδϕ δω δ

ϕ ω
∂ ∂= + +
∂ ∂

 (7) 

Here a superscript k is used to denote time k. If measurements from two different AIS base stations 

are obtained, Equation (7) can be written in matrix form as: 

ˆ ˆ

ˆ ˆ

k k
kA A

k kk
kA

k k k
B B B

k k

L L
c

L

L L L tc

δϕ
ϕ ωδ δω

δ δ
ϕ ω

 ∂ ∂     ∂ ∂   =    ∂ ∂      ∂ ∂ 

 (8) 

where ˆk k k
i i iL L Lδ = − . The subscript A and B correspond to the two AIS base station in Figure 1, 

respectively. Similarly, the position matrix at time k + 1 is given by: 
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 (9) 

where (δφk+1, δωk+1) refer to the correction values between the true and estimated position of the vessel 

at time k + 1. There are five unknowns in four equations, thus it is insufficient to solve the position. 

The estimate of relative displacement vector ΔXk = (Δφk, Δωk) relative to the location at time k can 

be calculated as follows: 

cos

sin

k k k

k k k

v T

v T

ϕ α
ω α

Δ = Δ 


Δ = Δ 
 (10) 

where v and α are vessel’s true velocity and heading, respectively; ΔT is a time interval between the 

adjacent moments. The real-time vessel’s velocity and heading information can be obtained by 

auxiliary sensors. Thus, the positioning relationship between time k and time k + 1 is established using 

the displacement vector according to Equation (11): 
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According to the vessel’s displacement vector between time k and k + 1, calculated by the auxiliary 

information, the correction values in two adjacent moments are equal, that is: 
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Then the position matrix at time k + 1 can be rewritten as: 
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Thus, the position at time k + 1 is the function of the position at time k, eliminating two unknown 

variables from five unknown variables. The positioning matrix is the combination of positioning 

matrices in the adjacent moments, that is: 
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Four position equations at two adjacent moments can be obtained according to measurements. 

Moreover, there are three unknown variables to solve four equations in Equation (14). The correction 

values of the vertical and horizontal components and the clock bias can be calculated according to the 

above position matrix by a least squares estimation approach. Then the vessel’s latitude and longitude 

at time k can be obtained according to Equation (1). 

Remark 1: The combination of dead reckoning and range measurements is an existing approach  

which has been used in many fields such as GPS-INS [16,17], robotics [18,19], vehicular ad-hoc  

networks [20–22] and pedestrian localization in indoor environments [23,24]. Dead reckoning 

determines a present position from a known past position. However pure dead reckoning methods are 

prone to accumulated errors over time. Positioning methods based on range measurement have better 

accuracy, but are sometimes hard to implement or use due to the time synchronization issue. Many 

algorithms are used to combine dead reckoning and range measurements to improve the accuracy, such 

as a Kalman filter, a particle filter or a Markov method [25,26]. It should be noted that both dead 

reckoning and range measurements can estimate the position by themselves, as shown in the previous 
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work. The combination of two methods can improve the accuracy. However, position estimation is 

impossible when a vessel receives signals from only two AIS base stations. The proposed position 

estimation method is investigated for this situation.  

3.2. Implementation Scheme 

The implementation scheme of the proposed position estimation method based on displacement 

correction is illustrated in Figure 2.  

Figure 2. Implementation scheme of position estimation based on displacement correction. 

 

Firstly, signals from AIS base stations are received by the vessel’s receiver via an antenna. Then a 

radio frequency (RF) front-end intercepts the incoming RF signal with 160 MHz and converts it to an 

appropriate intermediate frequency (IF) for digitization, e.g., 455 KHz. The digital IF signals are 

processed in the AIS position signal processor. It is organized into functionally identical channels, each 

dynamically assigned to a different AIS base station. The signals are acquired, tracked and messages 

are demodulated.  

Secondly, according to the AIS signal tracking results, TOA measurements are produced to get the 

propagation time between the vessel and different AIS base stations. Then TOA measurement is used 

to calculate the range iL , which is called pseudorange, since bias exists in the vessel’s clock. At the 

same time, the exact position information of each AIS base station is extracted from the  

demodulated messages. 

Thirdly, the range k̂
iL  between the vessel and the different AIS base station at time k can be 

estimated, since the initial position estimation of the vessel and the exact coordinates of the AIS base 

stations are known. The initial position estimation of the vessel can use the vessel’s position 

information at the last moment stored by the receiver or provided from external devices. Position 

information of AIS base stations can be obtained by the demodulated messages. The measured and 
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estimated ranges are used to calculate the measurement prediction errors k
iLδ  at time k in the position 

matrix as Equation (8).  

Then, the displacement vector (δφk+1, δωk+1) of the vessel is obtained from auxiliary sensors at time  

k + 1 according to Equation (10). The vessel position ( )1 1ˆ ˆ,k kϕ ω+ + at time k + 1 can be estimated 

according to Equation (11). Thus the ranges 1k̂
iL +  between the vessel and the base stations at time k + 1 

can be calculated. These estimated ranges and the TOA measurements at time k + 1 are used to 

construct the corresponding position equations as Equation (13). Finally, the vessel’s position and 

clock bias can be solved by the combination of position equations at two adjacent moments according 

to Equation (14).  

3.3. Performance Analysis 

Positioning accuracy is one of the important technical parameters to evaluate position estimation 

method [27,28]. The positioning error is influenced by the errors of the displacement vector, including 

the heading error and the voyage error, as depicted in Figure 3.  

Figure 3. Positioning error influenced by heading and voyage error. 

eα
LS

ρ

 

As shown in Figure 3, αe is the heading error of the auxiliary sensor and SL is voyage determined by 

the vessel’s velocity vK and the time interval △T. The positioning error caused by the heading error is 

given by: 

180 57.3
e L e kS v T

OA
α π α Δ= =   (15) 

The vessel voyage error is decided by the correction rate v△L of the auxiliary sensor and SL. The 

positioning error caused by voyage error is: 

L L L kAB v S v v TΔ Δ= = Δ  (16) 

Thus the positioning error ρ caused by the heading error and voyage error can be calculated by 

Equation (17): 

2 2 2 2( ) ( )
57 .3

e L
L L

S
OA AB v S

αρ Δ= + = +  (17) 

Remark 2: The vessel’s position error calculated by Equation (17) is always larger than the actual error 

when the voyage is long, since the above conclusion is based on the condition that random errors are 

superimposed on each other, but in an actual situation, random errors may cancel each other out, so the 

actual positioning error may be less than the theoretically calculated error according to Equation (17). 
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As the positioning error exists, the actual vessel position is in a circle with center at O and the radius of 

ρ shown in Figure 3. That is to say an error boundary of the vessel position is indicated by a 

63.2%~68.3% probability circle.  

As already mentioned, α and v denote the vessel’s true heading and velocity, respectively. The 

above analysis shows that the position errors are dependent on the measurement errors of the true 

heading and voyage. Considering the influence of wind and flow, errors exist in the heading and the 

velocity provided by the auxiliary sensors. Thus the error of vessel position caused by the wind and 

flow may come down to the heading error and the voyage error caused by auxiliary sensors. Our error 

analysis method is also applicable in this scenario. 

4. Simulation Analysis 

4.1. Signal Coverage Area of AIS Base Stations 

An AIS base station network has already been established by Chinese government, including a 

national AIS management center located in Tianjin, management centers for the three sea regions 

(North, South and East Sea), nineteen district management centers and nearly one hundred AIS base 

stations. The coastal areas in China are all within coverage areas. Let us take the North Sea region as 

an example. The positioning system using AIS is destined to be a regional radio navigation system 

limited to the very high frequency (VHF) range. Typical coverage is 25 nautical miles offshore. Figure 4 

is the signal coverage area of the AIS base station in the North Sea region. The overlay signal coverage 

area of three AIS base stations is represented by the green “*”, while the overlay area of only two AIS 

base stations is represented by the red “.”. It can be seen that it is common for vessels to receive 

signals from two base stations in the actual AIS. Therefore, the position estimation proposed in the 

paper is very practical. 

Figure 4. Signal coverage area of AIS base station in the North Sea region. 
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4.2. Performance Simulation 

This section presents simulations to demonstrate the proposed method and evaluate its performance. 

AIS base stations named Laotieshan and Huangbaizui are marked with yellow boxes in Figure 5. Table 1 

gives information about these two AIS base stations, including the maritime mobile communications 

service identity (MMSI), the latitude and longitude coordinate. In the simulation scenario, the vessel’s 

trajectory is a parallelogram racetrack. The initial position of the vessel is at (38°34.414'N, 

121°38.187'E) with the velocity of 20 knots (10.2888 m/s) and heading of 90 degrees. After straight 

line motion for 500 s, the vessel will turn 45 degrees left with a centripetal acceleration of 0.2 m/s2. 

The vessel’s trajectory is indicated by the red solid line in Figure 5. 

Figure 5. Distribution of AIS base stations and the vessel’s trajectory. 

 

Table 1. Information of the AIS base stations and mobile locations. 

Name MMSI Latitude Longitude 

Laotieshan 4131101 38°43.6420'N 121°08.1330'E 
Huangbaizui 4131104 38°54.2850'N 121°42.9500'E 

Firstly, the proposed method is verified by assuming that the velocity and heading provided by 

auxiliary sensors are accurate. The impact of auxiliary sensor errors will be discussed later in Section 4.3. 

The deviations between the true and estimated vessel’s position during the vessel’s movement are 

compared in Figure 6, including the longitude, latitude and positioning error.  

Figure 6. Error curves of vessel dynamic accuracy. (a) Latitude error. (b) Longitude error. 

(c) Positioning error. 
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Figure 6. Cont. 

 
(c) 

It can be seen from the simulation results that the standard deviation of the latitude error is 0.0541 cm, 

the standard deviation of the longitude error is 0.0574 cm and the standard deviation of the positioning 

error is 0.0698 cm. The estimated errors are all at the centimeter-level. The above simulation results 

confirm the validity and feasibility of the proposed method. 

4.3. Auxiliary Sensor Error Simulation 

Based on the above discussion, the proposed method provides centimeter-level positioning accuracy 

with the assumption that the velocity and heading are accurate. However, this assumption is hard to 

realize in engineering practice. The accurate displacement vector may not be obtained due to errors of 

the auxiliary sensor. The effects of the auxiliary sensor errors on the positioning accuracy are 

investigated in this section. The errors of auxiliary sensor including the heading and the voyage errors 

are discussed in relation to their impact on positioning accuracy. 

The vessel’s heading is provided by the compass. Here we use an Anschutz Gyro Compass 

Standard 22 in the simulation, whose static measuring error is within ±0.1° secφ and dynamic 

measuring error is within ±0.4° secφ [29]. Thus heading errors can be calculated when the vessels are 

on the equator, at latitude of 45° or at the poles by referring to Table 2. 

Table 2. Heading accuracy. 

Position Equator 45° Pole

Static error (°) 0.1000 0.1414 ∞ 
Dynamic error (°) 0.4000 0.5659 ∞ 

Figure 7. Positioning error influenced by heading error. 
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Positioning errors influenced by the heading error can be calculated by Equation (15). Positioning 

errors change with the latitude of the vessel and the voyage as depicted in Figure 7. It’s shown that 

positioning errors increase with the increasing latitude and voyage. A vessel’s voyage is determined by 

its velocity and duration of time. We take a FURUNO DS-80 as a log indicator in the simulation. The 

accuracy of the velocity is the greater one of 1.0 percent of the velocity and 0.1 knots [30]. In other 

words, when the vessel’s velocity is greater than 10 knots, the accuracy of the log indicator is  

1.0 percent of the velocity. Table 3 gives the velocity accuracy and error correction rate of the  

log indicator for a maximum velocity of 5, 10 and 26 knots, respectively. The error correction rate is 

equal to the accuracy divided by its corresponding velocity. 

Table 3. Velocity accuracy and error correction rate. 

Velocity (knots) 5 10 26 

Accuracy (knots) 0.1 0.1 0.26 
Error correction rate 2.0% 1.0% 1.0%

When the time interval is set at 1, 5, 10 and 60 s, the voyages are shown in Table 4. 

Table 4. Voyage with different time intervals. 

Time Intervals (s) 
Velocity (knots) 

5 10 26 

1 2.572222 m 5.144444 m 13.3755544 m 

5 12.86111 m 25.72222 m 66.877772 m 

10 25.72222 m 51.44444 m 133.755544 m 

30 77.16666 m 154.33332 m 401.266632 m 

60 154.33332 m 308.66664 m 802.533264 m 

Positioning errors ρ can be calculated by Equation (17), according to the heading error in Table 2, 

the log correction rate in Table 3 and the voyage in Table 4. The positioning error ρ varying with the 

velocity and time interval in the case of given heading error is shown below. 

Figure 8. Positioning error influenced by displacement vector. (a) Heading error is 0.4°. 

(b) Heading error of 0.5659°.  
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The velocity varies from 5 to 26 knots and the time interval is set from 1 s to 60 s. The positioning 

error when the vessel is on the equator is shown in Figure 8a. Figure 8b shows the positioning error 

when the vessel locates at latitude 45°. It can be seen from the simulation results that the positioning 

error ρ is on the order of magnitude of 10 m using common vessel devices such as the Anschutz Gyro 

Compass Standard 22 and FURUNO DS-80 as auxiliary sensors.  

5. Conclusions 

As one of the widely used land-based communication systems, AIS can also provide range-mode 

positioning service to promote the robustness of the traditional navigation systems equipped on vessels. 

However, for the situations when the received signals using the usual TOA positioning method are not 

enough, the auxiliary sensors on the vessel provide additional motion information that can help to 

estimate the vessel’s position. A new position estimation method based on displacement correction in 

AIS is proposed to determine the vessel’s position when the signals can be received from only two AIS 

base stations. The mathematical analysis and simulation results show that the positioning accuracy of 

the new method is dependent on the accuracy of the sensors. Based on our implementation scheme, our 

future work will focus on the realization in a mobile AIS device. This will lay the foundation for the 

demonstration project using the new ranging-mode of AIS established in the coastal areas of China. 
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