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Abstract: Poly(vinylchloride) (PVC) is the most common polymer matrix used in the 

fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors 

have been reported to show membrane instability. In an attempt to overcome this 

limitation, here we developed two alternative methods for the preparation of highly stable 

and robust ion-selective sensors. These platforms are based on the selective 

electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur 

atoms contained in the polymer covalently interact with the gold electrode, also permitting 

controlled selective attachment on a miniaturized electrode in an array format. This 

platform sensor was improved with the crosslinking of the membrane compounds with 

poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of 

the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor 

response compared with that of the PVC matrix and also better reproducibility and 

stability, thus making these platforms highly suitable candidates for the manufacture of 

robust implantable sensors. 
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1. Introduction 

Glass electrodes are the most popular electrodes used for the determination of pH because of their 

high selectivity, trustworthiness and pH dynamic range. These sensors are fabricated with an electrode 

in contact with an inner solution held by a selective glass membrane. Although pH-sensitive glass 

electrodes are widely used in many applications, they have certain drawbacks, such as high electric 

resistance, and instability in hydrofluoric acid, fluoride and silane solutions. However, the most critical 

limitations of glass-based pH sensor are their fragility and the difficulty to achieve miniaturization, two 

factors that restrict their applicability, especially as implantable sensors.  

The last two decades have witnessed a breakthrough in the field that overcomes this limitation, 

namely the development of solid sensors for pH detection [1]. Solid ion-selective electrode (ISE) 

membranes have become a routine tool for the electroanalysis of diverse kinds of samples since they 

significantly improve the analytical parameters and are more resistant and easy to miniaturize. 

Potentiometry is the electrochemical technique most commonly used in the readout of solid ISE 

sensors. This technique is especially attractive because of its high sensitivity, low levels of detection 

and low cost [2]. The selectivity of the sensors to certain ions is achieved by means of a selective 

polymeric membrane immobilized on the sensor surface, which holds a chemical receptor called 

ionophore, additives that improve the selectivity of the membrane and reduce its electrical resistance, 

and a plasticizer that attaches the ionophore and additives on the sensor surface. The ion-selective 

membrane should be chemically stable and inert and should show low electrical resistance, 

biocompatibility and non-toxicity [3]. Poly(vinyl chloride) (PVC) is the most commonly used polymer 

matrix in solid ISE sensors. However, this polymer shows poor adhesion to the surface of the 

transducer [4], mainly because the parameter governing the immobilization of the PVC membranes is 

the adsorption through weak Van de Waals interactions. It is crucial to achieve strong membrane 

attachment to the surface of the sensor, as a weak link can lead to serious problems regarding the 

stability and reproducibility of the response [5]. Fragmentation or leaching of membrane compounds 

may cause shortened sensor lifetime and loss of functionality. Leaching studies on ISE sensors based on 

covalently linked benzo-18-crown-6 with multi-wall carbon nanotubes were performed by Parra et al. [6]. 

However, even greater are the drawbacks with regard to toxicity [7,8], in particular when these compounds 

are not hemocompatible, as is the case of PVC [9]. Moreover, blood fouling on the PVC membrane 

leads to rejection and passivation of the sensor [10]. In terms of electrical signal transfer, thick PVC 

layers hinder the transport of electrochemical signals and ion diffusion through the membrane. The 

thermal stability of PVC membranes is also too low for the purposes of several applications [11]. 

In order to overcome the problems concerning PVC membranes, here we developed two ISE sensor 

platforms for sensing pH. Both devices were designed to be used with endoscopic systems. Since the 

final application of the sensor addresses in vivo detection inside the body, we devoted special attention 

to membrane stability and leaching to obtain a harmless platform. Moreover, the strong acidic and 
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corrosive conditions found in the stomach tissue require a stable sensor that could bear  

these conditions. The two sensor configurations were based on the electropolymerization of  

poly(3,4-ethylenedioxythiophene) (PEDOT) on the electrode surface with the ionophore and additives 

entrapped in the matrix. Electropolymerization was achieved by applying a voltage in the electrode 

that we wished to be functionalized, while the other electrodes inside the same solution were not 

affected. This technique allows the selective fabrication of the ISE on a specific and miniaturized 

sensor in an array format [12], whereas the manual deposition of the traditional PVC membranes does 

not permit the correct functionalization of nano/microsystems. PEDOT, which contains sulfur groups, 

binds strongly with the gold surface through dative binding [13], thereby conferring a highly stable 

conformation, which in turn impedes leaching and degradation of the membrane. Moreover, PEDOT is 

considered a conductive polymer that improves electrical signal transfer [14]. In order to covalently 

attach a certain concentration of all sensor compounds, a crosslinker, poly(ethylene glycol) diglycidyl 

ether (PEG), was mixed with PEDOT in the second configuration developed. The PEG layer also 

offers the advantages of flexibility and biocompatibility [15]. A prototype of the potentiometric  

12-electrodes array containing the pH sensor developed here was fabricated in an appropriate size and 

shape for insertion into the body through a gastroendoscope. The device proposed is non-invasive, 

harmless, inexpensive, and portable, and it shows a rapid response. The array aims to monitor  

ischemia—an event related to a change in pH—in vivo in the stomach during surgical procedures 

performed with a laparoscopic teleoperated robot [16] (Figure 1). 

Figure 1. Picture of the developed sensor array inserted in a gastroendoscope. The inlet 

picture shows the size of the array. 

 

2. Experimental Section 

2.1. Materials 

Tridodecylamine, potassium tetrakis(4-chlorophenyl)borate, 2-nitrophenyl octyl ether, high 

molecular weight poly(vinyl chloride), tris(hydroxymethyl)aminemethane (TRIS), tetrahydrofuran, 

poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), and poly(ethylene glycol) diglycidyl ether 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
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2.2. Equipment 

All the electrochemical techniques were performed with a CHI684C multipotentiostat from CH 

Instruments, Inc. (Austin, TX, USA). The thickness of the membranes fabricated for these experiments 

were measured with a Dektak 6M profilometer from Veeco (Plainview, NY, USA). The time-of-flight 

secondary ion mass spectrometry (TOF-SIMS) analyses were performed using a TOF-SIMS IV  

(ION-TOF, Munster, Germany) operating at 5 × 10
−9

 mbar. Samples were bombarded with a pulsed 

bismuth liquid metal ion source (Bi
3+

) at an energy of 25 keV. The gun was operated with a 20-ns 

pulse width, 0.3 pA pulsed ion current for a dosage lower than 5 × 10
11

 ions/cm
2
, well below the 

threshold level of 1 × 10
13

 ions/cm
2
 generally accepted for static SIMS conditions. Secondary ions 

were detected with a reflector time-of-flight analyzer, a multichannel plate, and a time-to-digital 

converter. Measurements were performed with a typical acquisition time of 10 s, at a TDC time 

resolution of 200 ps and 100 us cycle time. Charge neutralization was achieved with a low energy  

(20 eV) electron flood gun. Secondary ions were extracted with a voltage of 2 kV and were  

post-accelerated to a kinetic energy of 10 keV just before hitting the detector. Mass spectral acquisition 

was performed with the ION-TOF Ion Spec software (version 4.1). Each spectrum is normalized to 

total intensity.  

2.3. Methods 

2.3.1. Electrode Cleaning 

The electrode arrays were cleaned electrochemically in 0.5 M H2SO4 by scanning the potential 

between the oxidation and reduction of gold, −0.05 V and +1.2 V versus Ag/AgCl reference electrode, 

until there was no further change in the voltammogram. In each cycle a monolayer of chemisorbed 

oxygen is formed and reduced, thus oxidizing all the organic material on the surface.  

2.3.2. ISE Performed with PVC Membranes 

A protocol from Sigma-Aldrich was followed for the fabrication of the commercial PVC ISE 

membrane. This protocol involved mixing four compounds in the following proportion: 1.00% wt 

tridodecylamine, 0.60% wt 4-chlorophenyl borate, 66.00% wt 2-nitrophentyl-octyl-ether and 32.40% wt 

poly(vinyl chloride); all dissolved in tetrahydrofuran (THF). Two µL of this membrane mixture was 

deposited on the gold electrode surface and was left to dry for 24 h. 

2.3.3. ISE Performed with PEDOT Membranes 

PEDOT (1.6 mM) and LiClO4 (0.1 M) in acetonitrile were mixed with 1% wt tridodecylamine,  

0.60% wt potassium tetrakis(4-chlorophenyl)borate, and 66.0% wt 2-nitrophenyl octyl ether. This 

mixture was electropolymerized on the electrode surface by means of cyclic voltamperometry (CV), 

using Ag/AgCl as reference and platinum counter electrodes. The CV was run from −0.4 V to 1.2 V 

continuously until stable CVs were recorded. The unattached polymer was washed out with double 

deionized water and the electrode was left to dry. 
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2.3.4. ISE Performed with PEDOT-PEG Membranes 

For the preparation of these membranes, we followed the same protocol as that used for the PEDOT 

membranes, but 10% PEG (2 µL) was added after electropolymerization. The membrane was then left 

to crosslink overnight. 

2.3.5. Potentiometric pH Detection 

Once the working electrode had been functionalized with the corresponding ion-selective 

membrane, it was used to sense the potentiometry pH changes in a solution. The electrochemical cell 

consisted of the modified gold working electrode and an Ag/AgCl reference electrode. We then added 

50 mM TRIS to the electrochemical cell at pH 10 and injected volumes of a range of HCl concentrations 

in order to gradually change the pH.  

3. Results and Discussion 

With the aim of addressing the stability limitations of PVC-based ISEs, we developed two 

alternative ISE sensor configurations and compared them with PVC membranes. One system was 

based on the electropolymerization of PEDOT on the electrode surface. This polymer self-assembles 

on a monolayer format on the sensor, entrapping the rest of the membrane components that are in the 

solution during the polymerization, and the sulfur group in the polymer strongly attaches the complex 

through dative binding with the gold. Also, to achieve covalent attachment of the rest of the membrane 

components to each other and to the PEDOT polymer on the surface, we mixed a PEG polymer with 

the previous system. This polymer contains highly reactive epoxy cycles that interact with many kinds 

of functional groups, thus crosslinking all the compounds in the matrix. This interaction provides 

strong and stable attachment of all the membrane molecules with the sensor surface. Moreover, the use 

of PEG polymers as anti-fouling material is widely reported for improving the biocompatibility of 

surfaces [17]. The use of these polymers in this sensor platform conferred a major advantage for its 

application in vivo. 

Figure 2 shows a simplified image of the three ion-selective membranes described above. The three 

sensor configurations were fabricated on the same kind of electrodes and measured in the same way. 

These membranes were tested and compared with potentiometric measurements of pH. 

Similar pH response curves were observed for the three systems, but with some relevant 

differences. The PEDOT membrane required little time to be stabilized at a low concentration of acid. 

The PVC sensor had a thicker membrane (20 µm), and it was not distributed uniformly on the 

electrode surface, compared with the homogeneous 7-nm monolayer of PEDOT membranes. The 

greater thickness of the flexible PVC membrane increased the instability of the sensor response. 

However, any perturbation of the system was translated and registered in the PVC sensor as a noisy 

and fluctuating response, as can be appreciated in Figure 3a. On the other hand, PEDOT membranes 

showed a stable response after applying the same perturbations (the injection of the acid) into the 

system (Figure 3b,c). Furthermore, the distinct diffusion of the ions into the thicker PVC membrane, 

compared with the PEDOT sensors, can be appreciated in this figure. The PVC sensor required a 



Sensors 2014, 14 11849 

 

 

minimum of 200 s to reach a baseline response, while the PEDOT sensor took approximately 40 s. 

However, the PEDOT-PEG membrane showed better performance, achieving this response in about 10 s.  

Figure 2. Schematic drawing of the ion-selective membranes tested and compared. 

 

Figure 3. Kinetic response of the three ion-selective membranes tested; (a) PVC; (b) PEG; 

and (c) PEDOT after HCl injections. 
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In terms of electrical signal transfer, the thicker PVC layer also hindered electrochemical signal 

transport. The bulk resistance of the membranes was measured with impedance spectroscopy. The 

resistance values were obtained by fitting the impedance response in an Rsolution + Rmembrane/Cmembrane 

circuit. The PVC membrane showed a resistance two orders of magnitude higher than that of the 

PEDOT membranes (1.3e
6
 Ω vs. 1.4e

4
 Ω, respectively). 

The potentiometric response caused by the changes in the pH solution was measured from pH 1 to 

10, and the linear response of the membranes was plotted and compared to the Nernst equation: 

E = Eo + 2.303(RT/zF) log aH+ 

where E is the half-cell reduction potential, Eo is the standard half-cell reduction potential, R is the 

universal gas constant, T is the absolute temperature, z is the number of electrons transferred in the cell 

reaction, F is the Faraday constant, and aH+ is proton activity. Thus, by plotting E versus pH the slope 

of the fitted curve is related to 2.303RT/zF, which in a monovalent reaction is equal to 59.5 mV. The 

linear fitting and the slope of each system is compared in Figure 4. 

Figure 4. Potentiometric linear response versus pH of the three systems: (A) PVC;  

(B) PEDOT; and (C) PEG. 

 

Few differences are observed on the slope of the linear response for the PVC commercial 

membrane and the PEDOT membrane, both exhibiting a near-Nernstian response (−53.88 and  

−52.62 mV/decade, respectively). In contrast, sub-Nernstian behavior (−42.23 mV/decade) was 

observed for sensors prepared with PEDOT-PEG membranes. The decrease in the response slope in 

hydrophilic and charge density surfaces, as in the case of this PEG-modified surface, has been reported 

on alkylsilane-modified potentiometric pH sensors [18,19]. As reported charged and conductive 

polymers have more difficulties to achieve a great selectivity in ISE membrane. However, this work is 

focused in the development of an ISE sensor that has to be inserted inside the body. So the essential 

issue was to assure a stability and harmlessness platform, being sensitive and selective enough for this 

specific application. 

We also tested the reproducibility of the systems. For this purpose, repetitions of each sensor 

platform was measured and compared in the same conditions. Better reproducibility of the response 

was recorded for the systems based on PEDOT and PEG (RSD = 0.019 and RSD = 0.009, 

respectively), compared with that based on PVC (RSD = 0.068), which was 7.5 times more 

irreproducible than the PEG configuration (Figure 5). The thick PVC membrane layer was distributed 

non-uniformly on the sensor surface. It also showed leakage of part of the membrane compounds, thus 
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increasing the irreproducibility response of this kind of sensor. It has been reported that the formation 

of a thin aqueous layer between the gold metal sensor and the PVC ion-selective membranes caused by 

the instability and the weak interaction of this membrane on the sensor are responsible for potential 

drift of the sensor response and thus irreproducibility of response values [20]. 

Figure 5. Repetitions (n = 3) of the potentiometric pH response for each sensor configuration. 

 

We tested and compared the stability of the three ISE membranes on the gold electrode surface. In 

order to accelerate the bleeding of the ionophores and additives from the matrix and the fragmentation 

of the membrane, the three membranes were prepared on the same kind of gold electrodes and 

immersed in double deionized water under vigorous stirring conditions for 24 h. The electrodes were 

then dried with nitrogen, and the sensor surfaces were characterized by TOF-SIMS. This technique is 

based on bombardment of the sensor surface with an ion beam, in order to remove atoms, molecular 

fragments and ions from a depth of 10 nm of the membrane attached on the surface. These fragments 

are ejected into a mass spectrometer, where they are separated on the basis of their mass/charge ratio. The 

structure and composition of these fragments are directly related to the molecular structure of the surface.  

The chemical structure of all the components of the ISE membranes is shown in Figure 2. The 

ionophore and the two additives were common in the three membranes and were immobilized in the 

same percentage. The molecule fragments specific to the additives and the ionophore were the 
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following: CN, CNO, NO2, C2H3O, NO2H2, and C2HNO2. Thus, the qualitative study of the percentage 

of these ions in each membrane with TOF-SIMS, after the strong conditions applied in all the sensors, 

sheds light on the instability and leaching of the membrane compound in each sensor. The fragments 

produced after the electron beam shot on the three sensor membranes are shown in Figure 6.  

We detected a similar relative intensity of the ions related with the ionophore and the additives in 

the PEDOT and PEDOT-PEG sensors. In contrast, these ions had low or negligible intensity in the 

PVC sensor. This observation reveals that after 24 h of strong stirring in double deionized water the 

PVC sensor showed more leaching of its compounds and that with the covalent binding of all their 

compounds the two PEDOT-based sensors achieved higher stability of membrane components. 

Figure 6. TOF-SIMS relative intensity spectra of the different isotopes on the PVC, 

PEDOT and PEDOT-PEG sensors. 

 

4. Conclusions/Outlook 

This study represents another step forward in efforts that started two decades ago to develop  

ion-selective sensors not based on glass. Here we have described new strategies for designing two 

novel ion-selective platforms that improve traditional membranes based on PVC, the most widely used 

matrix for this kind of sensor. Based on the electropolymerization of PEDOT and the crosslinking of 

PEG, these platforms offer a high stable conformation by means of the covalent bind of the polymer 

with the electrode, thereby avoiding the leaching and degradation of the membrane, as verified by 

TOF-SIMS results. Faster stabilization of the sensor response after injection of the analyte and better 

reproducibility was also demonstrated. Moreover, the electropolymerization technique has the 

advantage that it allows selective fabrication of the ISEs on a specific sensor in an array format, and 

the PEG layer confers flexibility and biocompatibility. 

The results presented here demonstrate that these two PEDOT-based ISE sensors overcome the 

instability and irreproducibility problems reported for commercial PVC ISE membranes. Thus the 
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features of the PEDOT-based ISE sensors makes them good candidates for endoscopic sensing in the 

stomach, as well as for other implantable device applications. 
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