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Abstract: Sparse coding is an emerging method that has been successfully applied to both
robust object tracking and recognition in the vision literature. In this paper, we propose
to explore a sparse coding-based approach toward joint object tracking-and-recognition and
explore its potential in the analysis of forward-looking infrared (FLIR) video to support
nighttime machine vision systems. A key technical contribution of this work is to unify
existing sparse coding-based approaches toward tracking and recognition under the same
framework, so that they can benefit from each other in a closed-loop. On the one hand,
tracking the same object through temporal frames allows us to achieve improved recognition
performance through dynamical updating of template/dictionary and combining multiple
recognition results; on the other hand, the recognition of individual objects facilitates
the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of
occlusion within a crowded environment. We report experimental results on both the
CASIAPedestrian Database and our own collected FLIR video database to demonstrate the
effectiveness of the proposed joint tracking-and-recognition approach.

Keywords: robust tracking; pedestrian recognition; sparse coding; template updating;
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1. Introduction

The capability of recognizing a person at a distance in nighttime environments, which we call remote
and night biometrics, has gained increasingly more attention in recent years. Fast advances in sensor
technology (e.g., infrared cameras) and biometric systems (e.g., video-based recognition) have facilitated
the task of remote and night biometrics. Object tracking and recognition are two basic building blocks
in almost all video-based biometrics systems, including forward-looking infrared (FLIR)-based ones.
The literature of object detection/tracking, face recognition and visual surveillance is huge; for recent
advances, please refer to [1–3] and their references; pedestrian detection and tracking from FLIR video
has also been studied in [4–7]. However, the relationship between detection/tracking and recognition
has not been well studied in the literature. To the best of our knowledge, joint tracking and recognition
has been considered under the context of particle filtering [8] only and specifically in the scenario of
face biometrics [9].

In this paper, we propose to tackle joint object tracking and recognition under a unified sparse
coding-based framework. Sparse coding originated from the research on compressed sensing theory [10]
and has been recently leveraged into the problems of robust object tracking [11–13] and robust face
recognition [14,15]. For both tracking and recognition problems, the target patch/template of interest
is sparsely represented in the space spanned by the dictionary (a collection of matching templates);
and the final result is given by the candidate with the smallest projection error. Such a similarity
motivates us to cast the two problems under the same framework and solve them simultaneously, i.e.,
unlike previous works assuming a dictionary of templates (e.g., face portions) already cropped from the
original image/video, ours obtains this dictionary by dynamically tracking the target of interest (e.g., a
walking pedestrian).

We argue that tracking and recognition can benefit from each other for the following reasons.
On the one hand, robust tracking of an object under a particle filter framework [16] often
involves the updating of the matching templates on-the-fly. Such a dynamical strategy of template
updating helps overcome the difficulties with occlusion and the cluttered background, which
are also common adversary factors to the task of robust recognition. Moreover, persistently
tracking allows the system to temporally combine the recognition results across multiple frames
for improved accuracy (since we know it is the same object that has been tracked) [17,18].
On the other hand, high-level vision tasks, such as recognition, often facilitates those at lower
levels, including tracking, especially in the situation of multiple targets being involved [19].
More specifically, we suggest that the recognition result can be exploited by the template updating
strategy to better fight against occlusion and a cluttered background. Such tracking-by-recognition
offers some new insight to the challenging problem of multi-target tracking, which was often tackled
by an energy optimization approach [20].

When applied to remote and night biometrics systems, the proposed approach has several
advantages over other competing ones (e.g., gait-based [21] or silhouette-based [22]). First, previous
approaches mostly count on image/video segmentation to extract relevant gait or silhouette information
before recognition; consequently, segmentation errors have a significant impact on the accuracy of
recognition [23]. By contrast, the proposed one directly works with image patches and does not involve
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any cropping or segmentation at all (note that in many previous works, such as [14], it is assumed that
cropped image patches are already available). Second, it is widely known that occlusions and background
clutters are often primary obstacles to various vision tasks, including tracking and recognition. Sparse
coding has shown great potential in fighting against those adversary factors, thanks to the power of
collaborative representation [15] (please refer to the Experimental Results section). Third, the unification
of tracking and recognition allows us to jointly optimize these intrinsically connected components, which
is highly desirable in the scenario of handling complicated cases, such as multi-target tracking in a
crowd [24]. In other words, tracking and recognition can be viewed as two sides of the same coin: One
helps the other and vice versa.

2. Background on Sparse Coding

In this section, we review the current state-of-the-art in sparse coding and its applications into object
tracking/recognition [25]. The basic idea behind sparse coding is to approximate a signal of interest
x ∈ Rn by linear combination of a small number of atoms (elements in a dictionary Am×n); namely,
xm×1 = Dm×nan×1, where a is the vector of sparse coefficients. Ideally, the sparsity constraint is
enforced about the total number of nonzero coefficients in a, which gives rise to the following constrained
optimization problem:

min
a
||a||0 subject to ||x−Aa|| ≤ ε (1)

However, the above problem is known to be NP-hard [26], and it is often suggested that the original
l0-norm be replaced by its l1 counterpart. That is, one considers the following computationally tractable
formulation:

min
a
||a||1 + λ||x−Aa|| (2)

where λ is the Lagrangian multiplier converting the constrained optimization into an unconstrained
one [27]. Various algorithms have been developed in recent years to solve this class of l1-minimization
problems (for a recent review, please refer to [28] and its references). Meanwhile, it is amazing to
witness that many engineering problems across different disciplines can be reformulated into a variant
of l1-minimization problem. Within the scope of this paper, we opt to review two of them; namely, object
tracking and object recognition.

2.1. Sparse Coding for Object Tracking

The fundamental assumption for appearance-based object tracking is that the global appearance of an
object, despite varying illumination and viewpoint conditions, is still characterized by a low-dimensional
space. Under the context of appearance-based object tracking, dictionary A is decomposed of target
templates (image patches in Rm), as well as a collection of trivial templates (to model occlusion and
noise in the real-world observation data), as shown in Figure 1. If one writes A as:

xm×1 = [T I − I][b e+ e−]t = Am×(n+2m)a(n+2m)×1 (3)

where T = [t1, ..., tn] denotes n target templates (note that m >> n) and e+, e− ∈ Rm correspond to
positive/negative trivial coefficient vectors, respectively.
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Figure 1. Decomposition of a dictionary into target and trivial templates in sparse
coding-based object tracking.

For a good target candidate, there are only a small number of nonzero coefficients in positive and
negative trivial coefficients accounting for the noise and partial occlusion. Such an observation has led to
the formulation of object tracking into a l1-minimization problem, as proposed in [11,29–31]. The final
tracking result is obtained by finding the smallest residual after projecting onto the subspace spanned
by target templates, i.e., ||x − Tb||2. Under a particle filtering framework [16], such minimum-error
tracking admits a maximum a posterioriprobability interpretation. Further improvement on robustness
tracking can be brought by the idea of template updating. More specifically, the l2-norm of template ti

intuitively indicates its significance to tracking; therefore, it is a plausible to eliminate the template of
the least weight and replace it by the newly-obtained successful tracking result.

2.2. Sparse Coding for Object Recognition

Based on a similar observation to tracking, one can assume that the appearance of each individual
subject lies in a unique low-dimensional subspace, and the structure of this subspace can be exploited to
distinguish the subject of interest from others [14]. Therefore, if we consider a collection of k subjects,
each containing n templates ti,j ∈ Rm (again, m is the size of the template of the image patch), the
dictionary Am×N will consist of N = nk elements. For any given inquiry template x, one can formulate
the following sparse coding problem:

min
a
||a||1 + λ||xm×1 −Am×NaN×1|| (4)

where sparse coefficients a will be exploited to tell which subspace the inquiry is associated with. Ideally,
the sparsest solution will associate the inquiry with the group of templates from a single subject class.
However, due to noise and modeling errors, inference from other competing classes might arise; in
other words, one might observe small nonzero entries associated with several subject classes. Therefore,
it is often desirable to identify the subject by a twist of the above minimum-error strategy; namely,
one can calculate the residual errors after projecting onto the subspace spanned by each class of
target templates [14]:

E(i) = ||xm×1 −Am×Nδ(i)(aN×1)|| (5)
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where δ(i)(a) is the characteristic function that assigns ones to the entries associated with subject i in a.
Then, the identity of inquiry x is obtained by Id = argminiE(i), 1 ≤ i ≤ k.

As articulated in [15], it is the idea of collaborative representation—namely, the formulation of joint
dictionary A—that contributes to the good performance of Equation (5) in robust face recognition. It has
been shown that replacing l1-norm by its l2-counterpart achieves comparable recognition performance,
even though the computational complexity of the solution algorithm can be dramatically reduced (since
the regularized least-square problem admits the analytical solution). When compared against previous
l2-based approaches (e.g., eigen-face [32]), we note that it is collaborative representation that enforces
the global constraint on the collection of appearance subspaces spanned by individual subjects. In other
words, the competition among sparse coefficients ai contributes to the effectiveness of the winner-take-all
strategy, and therefore, it is possible to obtain robust recognition by searching for the smallest
projection errors.

Despite the use of sparse coding in both object tracking and recognition, it should be emphasized that
the relationship between them has not been studied in the open literature. To the best of our knowledge,
joint tracking-and-recognition has only been addressed in two isolated scenarios: one is to embed them
into a single particle filtering framework [8], and the other is to integrate tracking with recognition
specially for the class of face biometrics [9]. The apparent similarity between Equations (3) and (5)
inspires us to explore a unified sparse coding-based approach toward joint tracking-and-recognition.
The primary objective of this paper is to demonstrate that such a joint approach can offer several new
insights into the design of robust vision systems and find niche applications in challenging environments,
such as remote and night biometrics using FLIR data.

3. Joint Tracking-and-Recognition: A Unified Approach via Sparse Coding

In this paper, we formally define a joint tracking-and-recognition problem as follows. Given an
inquiry FLIR video X containing walking pedestrians and a database of k subjects each associated
with n video segments (training samples), establish the identity of the inquiry video. Note that unlike
previous studies, [8] and [9], in which only one subject is considered, tracking and recognition are more
tightly twisted in our multi-subject formulation (i.e., one has to simultaneously track and recognize
multiple subjects). At first sight, the interference among multiple subjects (e.g., one person could become
occluded due to another person’s presence) makes the joint tracking-and-recognition problem a lot more
challenging than the single-subject scenario. To overcome this difficulty, we propose to gain a deeper
understanding between tracking and recognition in this section.

3.1. Tracking-for-Recognition: Exploiting Temporal Redundancy

We first consider a simplified scenario where only one walking pedestrian is present in the inquiry
video. When no interference is present, tracking a single pedestrian is a solved problem, and the
recognition subproblem can be solved by sparse coding in a similar fashion to face recognition [14].
A more interesting question is: how can tracking help recognition? Here, we present a Bayesian
interpretation of sparse coding-based recognition [14], which facilitates the exploitation of temporal
redundancy arising from tracking a target template in the inquiry video. The key observation behind
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tracking-for-recognition lies in the fact that if it is known as a priori that multiple templates are associated
with the same identity, such information can be exploited by the recognition system to improve the
accuracy. Each template can be viewed as an independent classifier, and accordingly, the idea of
combining classifiers [33] can be easily implemented under the sparse coding framework.

Following the same notation used above, we consider a dictionary Am×N consisting of k subjects
each containing n templates ti,j ∈ Rm (N = nk). The subspace constraint of the appearance model for
subject i (1 ≤ i ≤ k) implies that a target template x associated with subject i can be best approximated
by the following sparse coding strategy:

x ≈ Aδ(i)(a), (6)

where δ(i)(a) is a binary vector in RN , whose only nonzero elements are located at j =

(i − 1) ∗ n + 1, ..., i ∗ n (i.e., those associated with subject i). If the approximation error is given by
E(i) = x − Am×Nδ(i)(aN×1) and assumed to observe an i.i.d. Gaussian model N(0, σ2

w), then the
likelihood function of observing a template xi given subject i (denoted by wi) can be written as:

p(x|wi) ≈ exp(−||E(i)||
2
2

2σ2
w

) (7)

Now, it follows from the Bayesian formula that the maximum a posteriori (MAP) classification of a
given template x can be obtained from:

max
i
p(wi|x) = max

i

p(x|wi)p(wi)

p(x)
(8)

which implies the equivalence between the MAP strategy in the Bayesian classifier and the
minimum-distance classifier of Equation (5) used in SCR. Such a connection allows us to conveniently
exploit the temporal redundancy of an inquiry video under the framework of combining classifiers, as
we will elaborate next.

Similar to the setup in [33], we use {w1, ..., wk} to denote k different classes of subjects/identities and
{x1, ...,xl} the collection of measurement vectors. Given an inquiry FLIR video X , those measurement
vectors are obtained by tracking a single target template x across multiple frames. Therefore, a Bayesian
classifier works by assigning the label Id = maxi p(wi|x1, ...,xl), which, in turn, can be written as:

max
i
p(wi|x1, ...,xl) = max

i

p(x1, ...,xl|wi)p(wi)

p(x1, ...,xl)
(9)

Under the assumption that all measurement vectors are conditionally statistically independent, we have:

p(x1, ...,xl|wi) =
l∏

j=1

p(xj|wi) (10)

Substituting Equations (7) and (8) into Equation (10), we can obtain the so-called feature-level
fusion strategy:

p(x1, ...,xl|wi) ≈ exp(−
∑l

j=1 ‖Ej(i)‖22
2σ2

j

) (11)

Therefore, the MAP decision boils down to a generalized minimum-distance classifier defined with
respect to the group of measurement vectors. Alternatively, as suggested in [33], one can combine the
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decision outcomes instead of posterior probabilities, e.g., the final decision can be made by either sum
rule Id = argmini

∑l
j=1 ‖Ej(i)‖22, 1 ≤ i ≤ k or majority-vote rule Id = mode{Id1, ..., Idl}, where

Idj is the label returned by applying the minimum-distance classifier of Equation (8) to measurement
vector xj. Even though the benefit of combining classifiers has been well-established in the literature
(e.g., refer to [34]), the relationship between the number of classifiers l and performance gain is not. As
we will show in the Experimental Results, even a small number of l (<10 frames) measurement vectors
can dramatically boost the recognition accuracy.

3.2. Tracking-by-Recognition: Nonlocal Template Updating

Now, let us consider the more general situation: a multi-subject extension of the above joint
tracking-and-recognition problem. In the literature, the problem of multi-object tracking is often
addressed under the framework of energy minimization (e.g., refer to [35,36] and their references). Two
common technical challenges with tracking multiple objects is that the space of all possible trajectories
is large and the appearance of a target might vary dramatically, due to the presence of occlusion or
illumination variations. Consequently, it often requires special attention to design an appropriate cost
function and a fast search strategy to solve the multi-object tracking problem. By contrast, we propose
to cast multi-object tracking under the framework of sparse coding and explore the question of how
the recognition result could help a multi-object tracking algorithm fight against adversary factors, such
as occlusion and illumination variations. The basic assumption behind our tracking-by-recognition
approach is that as long as the problem of multi-object tracking can be solved in a robust fashion, the
recognition of multiple objects becomes straightforward (e.g., based on what we have discussed in the
previous subsection on tracking-for-recognition).

The key observation behind our tracking-by-recognition is that one person’s appearance along the
moving trajectory behaves like the noise to the tracking of another person. For this reason, only
the person of interest (that has been recognized) contributes to the formation of dictionary A in
sparse coding-based tracking; all others can be handled the same way as background clutter. In other
words, recognition facilitates the multi-object tracking problem by recognizing that for each appearance
subspace of an individual subject, all other subjects, as well as the background can be modeled by the
outliers. Such an observation leads us to rethink the template updating strategy proposed in [11], where
the least-important template is eliminated from the dictionary and ωi = ||ti||2 is adopted to quantify
the importance of a template ti. Empirical studies have shown that such strategy is highly sensitive to
occlusion, due to the reasons listed above. Instead, we propose a nonlocal alternative strategy of template
updating; based on the recognition result, one can switch to a default set of templates upon the suspicion
of occlusion. One way of implementing such a strategy is to save a copy of templates that have been
recognized to be the same person (but likely in the distant history or even in the training set).

It is enlightening to appreciate the advantage of the above tracking-by-recognition formulation for
multi-object tracking over existing energy minimization approaches. In energy minimization approaches,
occlusion handling is often a thorny issue to address when coming up with an appropriate energy term
for multi-object tracking. For example, a sophisticated global occlusion reasoning strategy is studied
in [36], where a principled modeling of occlusion remains elusive, due to the complex dependency
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between a target’s visibility and other targets’ trajectories. By contrast, we argue that if the ultimate
objective of the surveillance system is to recognize walking pedestrians, one can get around the tricky
occlusion issue by stopping the tracker. In other words, the continuity of motion trajectory is unnecessary
for the task of recognition; what matters is only the accumulated group size of measurement vectors
(occlusion will reduce this size, but there is no need for accurate occlusion detection). In other words,
tracking and recognition are essentially two sides of the same coin: tracking where a target template goes
in the next frame is conceptually equivalent to recognizing whether a new hypothesized template in the
next frame still belongs to the same class as the target one. With the recognition result available, tracking
can always rely on a more trustworthy source (e.g., nonlocal rather than local) for template updating.

4. Experimental Results

4.1. Experimental Setup

In this section, we report our experimental results with two FLIR pedestrian databases:
one is collected by CASIA (Dataset C in the CASIA Gait Database, Publicly available at
http://www.cbsr.ia.ac.cn/english/Databases.asp), and the other is collected at the WVU Erickson
Alumni Center (not publicly available, but it can be requested from http://www.citer.wvu.edu/
biometric_dataset_collections). The CASIA Dataset C contains 153 subjects, each of which contains 11
video clips acquired by an FLIR camera. Each subject passes through the scene with and without carrying
a bag, as well as at varying walking speeds; although silhouettes of those 153 subjects are supplied,
we have found that they are error-prone, and therefore, we do not utilized them in our approach. The
WVU dataset contains 30 subjects (18 males and 12 females) walking at three planned camera distances:
20, 25 and 30 m. In addition to the bag carrying option, the protocol includes both single-person and
double-person scenarios. In the latter, two person walk toward each other, one carrying a bag and the
other empty-handed; when they meet halfway, the bag will be handed to the other; then, they walk away
from each other. Both occlusion and carrying a bag are adversary factors to pedestrian tracking and
recognition in this setup.

To promote reproducible research, the source codes and saved experimental results accompanying
this research can be accessed at http://www.csee.wvu.edu/ xinl/code/FLIR.zip. In our MATLAB-based
implementation, we have built upon two previous releases of sparse coding for tracking
and recognition. The source codes of sparse coding for l1-based tracking and recognition
have been obtained from http://www.dabi.temple.edu/ hbling/code_data.htm#L1_Tracker and
http://www.eecs.berkeley.edu/ yang/software/l1benchmark/. More specifically, the dictionary needed
for sparse coding-based recognition is obtained from the tracking result; we simply normalize the
cropped templates to a common size. For the CASIA Dataset C, the following parameter setting is
adopted: k = 153, n = 40.

4.2. Single-Object and Multi-Object Tracking

We first demonstrate the tracking result for single-object tracking. Figure 2 shows a collection of
sample frames obtained from one typical FLIR video of CASIA Dataset C by l1-based tracking. Since
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the background is relatively simple and only one pedestrian is present, the tracking is not a challenging
issue for this data set. The new insight supplied by this experiment lies in that l1-based tracking offers an
automatic and robust cropping tool to obtain matching templates; i.e., the elements of dictionary A. Note
that the length of even a short video segment is a few seconds, which implies that at least dozens (or even
hundreds) of matching templates can be cropped from the video clip. We note that this fact suggests that
there is a significant amount of temporal redundancy that can be exploited by the recognition component.

Figure 2. Sample tracking results for the forward-looking infrared (FLIR) video (red boxes
highlight the locations of the walking pedestrian).

(a) (b) (c)

(d) (e) (f)

A more interesting comparison result is in the scenario of multi-object tracking. For example, the
WVU dataset contains test sequences in which two person walk toward each other. When the two
pedestrians meet, one hands the bag to the other, and then, they continue walking away from each other.
Such a protocol dictates that occlusion is present for a relatively long period of time. As shown in
Figure 3, the straightforward application of the l1-based tracking algorithm in [11] expectedly fails
at the occlusion. The algorithm will be confused by the overlap of target templates associated with
two pedestrians. By contrast, a recognition-based, nonlocal, template-updating strategy proposed in the
previous section can produce robust and accurate tracking, even after one person hands the bag to the
other (note that there are significant variations in terms of appearance), as shown in Figure 4. This is
because when occlusion occurs, the recognition-based strategy will update the template stored from a
distance past (in other words, nonlocal becomes more trustworthy than the local temporal neighborhood).
Such experimental results justify the effectiveness of our tracking-by-recognition approach.



Sensors 2014, 14 11254

Figure 3. Tracking failure result obtained by [11] due to occlusion (after the two persons pass
by each other, the tracking algorithm got confused; both red and green boxes get attached to
the pedestrian walking to the right).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Joint tracking-and-recognition is capable of persistently tracking both pedestrians
regardless of the occlusion and bad exchange (both red and green boxes are correctly
associated with the correct identity).

(a) (b) (c) (d)

(e) (f) (g) (h)

4.3. Robust Pedestrian Recognition from FLIR Video

Next, we report our experimental results with sparse coding-based recognition. In particular, we want
to explore the gain brought by exploiting temporal redundancy (through combining classifiers) and the
impact of occlusion on recognition performance. In the first experiment, we change the parameter l—the
size of measurement vectors or the total number of frames for which we have successfully tracked for
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the inquiry video X . Two rules of combining the classification results have been implemented: sum vs.
majority vote. Figure 5a shows how the accuracy of recognition evolves as l varies: it can be observed
that the gain improves rapidly as l increases and quickly saturates. Therefore, even when a small number
of measurement vectors (e.g., l = 9 or < 1

3
second for 30 fps of video) is available, highly accurate

recognition (close to 100%) is possible thanks to the power of temporal fusion. By contrast, we note that
the best recognition performance reported for this data set is 96% in the open literature (e.g., gait energy
image based [21]). Such a finding seems to suggest that video-based biometrics has a lot more potential
than image-based, thanks to the blessing of redundancy.

Figure 5. The recognition performance of sparse coding-based recognition: (a) exploiting
temporal redundancy improves the recognition accuracy (solid: sum rule; dashed: majority
voting); (b) the recognition performance gracefully degrades as the occlusion ratio increases
(no temporal fusion involved l = 1).

(a) (b)

In the second experiment, we artificially mask a certain percentage of the inquiry template (e.g.,
to simulate how the lower part of human body is occluded by bushes or deep grass in a real-world
scenario) and test the performance of sparse coding-based recognition (no fusion is involved, i.e., l = 1).
Figure 5b includes the result for the masking percentage varying from 10 to 90. It can be observed that
sparse coding-based recognition is indeed insensitive to occlusion to some degree: about 30% occlusion
degrades the recognition performance by about 5%. This is not surprising, because the lower part of the
human body is not as discriminating as the upper part (more theoretical justifications can be found in
the paper [14]). Combined with the result in Figure 5a, we conclude that when spatial clue becomes
less reliable (e.g., due to occlusion), it is plausible to exploit temporal ones by a strategy, such as
tracking-for-recognition.

Finally, we use experimental results to clarify the importance of obtaining a good dictionary for
sparse coding-based recognition. One basic assumption behind sparse coding-based recognition is that
the dictionary contains a densely sampled representation of appearance subspace; such an assumption is
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not always valid in practical situations. For instance, if the training set and testing set are significantly
different (e.g., without and with a bag), the accuracy of recognition will be affected. Table 1 includes the
experimental results of sparse coding-based recognition on CASIA Dataset C for a variety of different
training/testing set situations. It shows that the walking speed of the pedestrian has a minor impact on
the recognition performance; while the effect of carrying a bag or not is substantial. This is in contrast to
what we have observed for the tracking experiments, where handing a bag over does not affect the result
much. Nevertheless, the recognition accuracy achieved by SCR (even in the situation of no fusion being
involved) is at least comparable to the template-matching-based approach, as reported in [37]. One
can expect that much better recognition performance can be obtained by temporal fusion, as we have
shown above.

Table 1. The recognition performance of the baseline algorithm for the training/testing data
of different conditions.

Training Testing This Work [37]
Normal Normal 91.05% 94%
Normal Slow 84.05% 85%
Normal Fast 88.35% 88%

Slow Normal 81.24% -
Fast Normal 83.70% -

with bag with bag 93.56% -
w/obag w/o bag 92.94% -
w/o bag with bag 57.61% 51%
with bag w/o bag 49.75% -

5. Conclusions

In this paper, we studied a unified approach toward robust pedestrian tracking and recognition
from FLIR video via sparse coding. Under the joint tracking-and-recognition framework, tracking
helps recognition by generating matching templates needed for the dictionary and by facilitating the
exploitation of temporal redundancy; recognition helps multi-object recognition by supplying a nonlocal
template updating strategy instead of a local one. The main contributions of this work include: (1) an
automatic night biometrics system capable of tracking and recognizing pedestrians from infrared video;
and (2) an extension of sparse coding-based tracking from a single target to multiple targets, enabled by
the proposed recognition-based template updating strategy. We have reported our experimental results
on two FLIR video data sets: the CASIA gait database and the WVU Infrared Pedestrian database.
On the former, we show how joint tracking-and-recognition can improve the accuracy and robustness
of sparse coding-based recognition; on the latter, we demonstrate that the nonlocal template updating
strategy based on the recognition result is capable of boosting the performance of sparse coding-based
tracking in the presence of occlusion.
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