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Abstract: Inspired by the human 3D visual perception system, we present an obstacle 

detection and classification method based on the use of Time-of-Flight (ToF) cameras for 

robotic navigation in unstructured environments. The ToF camera provides 3D sensing by 

capturing an image along with per-pixel 3D space information. Based on this valuable 

feature and human knowledge of navigation, the proposed method first removes irrelevant 

regions which do not affect robot’s movement from the scene. In the second step, regions 

of interest are detected and clustered as possible obstacles using both 3D information and 

intensity image obtained by the ToF camera. Consequently, a multiple relevance vector 

machine (RVM) classifier is designed to classify obstacles into four possible classes based 

on the terrain traversability and geometrical features of the obstacles. Finally, experimental 

results in various unstructured environments are presented to verify the robustness and 

performance of the proposed approach. We have found that, compared with the existing 

obstacle recognition methods, the new approach is more accurate and efficient. 

Keywords: mobile robotic navigation; obstacle detection and classification; time-of-flight 

camera; region of interest detection; unstructured environment perception 
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1. Introduction 

Nowadays, mobile robots, such as the unmanned ground vehicle (UGV), rescue robots, and space 

robots, are being increasingly utilized in complex and unstructured environments extending from the 

traditional indoor or man-made environments. With the increasing environmental complexity, fast and 

robust 3D environment perception and recognition have become extremely important in autonomous  

robotic navigation. 

There are three key requirements for a field robot to make an optimal trade-off between efficient 

navigation and safety: (1) as illustrated in Figure 1, a robot should detect obstacles in its heading 

direction in real-time. Compared with a structured environment, unstructured environments are usually 

more complex and have less static and obviously distinguishable features, such as planar surfaces, 

country roads and other easily recognizable field features. A more realistic case is shown in Figure 1a, 

where there are two regions with large height differences. However, there are no obvious image 

features, such as color, texture, intensity etc., to distinguish the height differences from each other. In 

addition, there are more noises and environmental disturbance, such as dramatic light changes. 

Consequently, conventional vision based navigation methods have significant limitations in these 

complex environments; (2) compared with the indoor robot, a field robot usually manipulates several 

types of motion primitives, each of which is adapted to a specific terrain type. As illustrated in Figure 1, 

there are different types of obstacles, such as stones, rocks, ditches, cliffs, etc. Field robots must have 

obstacle recognition ability to help the planner select the most appropriate navigational behavior; (3) a 

field robot usually has a certain cross-country ability, such as walking over stones, rocks, and ditches 

as well as climbing. It is necessary to acquire the 3D information of the obstacle for autonomous 

navigation. For the case where obstacles are present in the heading direction, such as the stones or 

ditches illustrated in Figure 1b,c, the robot needs information about heights and widths of obstacles to 

decide whether to avoid or walk over them according to its mechanical capability. For the situations 

where a robot faces multiple obstacles as illustrated in Figure 1d, the robot needs to calculate relative 

distances between neighboring obstacles to determine whether the obstacles can be overcome and 

which travel direction is optimal. 

The existing stereo-vision or range-sensors can hardly provide the complete information about 3D 

environments in real-time, so field robots still have great difficulties in autonomous navigation. The 

Time of Flight (TOF) camera is a 3D visual sensing system that captures image along with per-pixel 

3D space information. Therefore, the TOF camera has great advantages in assisting terrain perception 

and recognition. This paper proposes an obstacle detection and classification method based on the use 

of TOF Camera-SR3000 manufactured by Mesa Imaging AG (Zürich, Switzerland). By modeling 

human walking mechanisms, obstacles are firstly segmented from the scene as regions of interest using 

both the intensity image and the 3D data provided by the SR3000 camera. Based on the 3D geometry 

parameters of obstacles, a multi-RVM classifier is designed to classify obstacles into four classes 

consisting of ditches, rocks, slopes and stones. The novelty of this work lies in fast and robust obstacle 

recognition in unstructured environments without prior knowledge, while providing valid and dense 

3D measurement of obstacles.  
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Figure 1. Some specific navigational tasks for robots in unstructured environments.  

(a) Cliff recognition; (b) Multiple obstacle detection and geometrical relationship 

measurement; (c) Stone recognition and 3D information measurement; (d) Ditch 

recognition and 3D measurement. 

  
(a) (b) 

 
 

(c) (d) 

This paper is organized as follows: in Section 2, relevant literatures are reviewed. Section 3 

describes the proposed approach in detail. Section 4 presents experimental results and data analysis. 

Section 5 is a comparison and discussion about the proposed method. Finally, conclusions are given  

in Section 6.  

2. Related Works 

2.1. 3D Sensors for Robot Navigation 

Currently three kinds of sensor technologies are mainly used in 3D sensing of mobile robots, 

including laser sensors, stereo cameras and 3D range cameras.  

2.1.1. Laser Sensors 

Sensors using lasers to acquire 3D data can be classified into actuated laser ranger finders and 3D 

laser ranger finders [1]. Typically, an actuated ranger finder is a 2D sensor attached to a platform 

rotated by a servomotor [2–5]. Some groups use two 2D laser rangefinders to enhance performance [6,7]. 

In order to receive consistent 3D data with such sensors, a stop-and-go mode for traveling is necessary, 

and multiple consequent scans are taken and merged. The precision of 3D data points depends on the 
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resolution of servomotor and on the precision of the scanner. The main disadvantage of actuated 2D 

laser ranger finders is that they are slow and the scan is time-consuming. 

The 3D laser range finders can provide high-resolution data at a very high sampling rate. Examples 

of this type of range finders include RIEGL, CYRAX, zoller + fröhlich scanner, Velodyne 3D-LRF, 

and space ground LiDAR, which all generate consistent 3D data points within a single 3D scan. The 

major benefits of these sensors are high resolution and large field of view. Unfortunately, these sensors 

are usually heavy in weight, with high power consumption and high cost. In contrast to expensive 3D 

laser sensors, the FX 3D LIDAR sensor is relatively lightweight and has no rotational mechanical 

parts, but its resolution is low. 

2.1.2. Stereo Vision Systems 

Stereo vision systems acquire 3D data with two or more cameras by passive sensing. Some commercial 

stereo vision systems are available, such as those manufactured by PointGray and VidereDesign. 

Comparing to laser ranger sensors, the range data resolution of a stereo camera is usually lower. 

However, it can provide high-resolution images, texture and color information, not just a 3D geometry. 

Now, stereo cameras have been widely applied to map-building [8–12], natural environment navigation, 

and rescue missions [13]. Nevertheless, stereo vision has limitations, especially in environments with 

few features and limited visibility due to undesirable light conditions. Furthermore, stereo vision is 

effective only in the near field as its range precision and maximum depth is limited because its range 

resolution usually decreases rapidly as the depth increases. 

2.1.3. 3D Range Camera 

3D range cameras have been developed for 3D data gathering providing both an intensity image and 

a range image. A TOF camera has an active sensor that determines both the range and intensity 

information at each pixel by measuring the time taken by infrared light beam traveling to the object 

and reflected back to the camera [14,15]. Now several manufactures have begun marketing of these 

cameras, such as MESA Imaging, PMD Technologies, and 3DV Systems. Microsoft Kinect is another 

kind of popular range camera based on the light coding technology. Its ability to fast and reliable access 

to 3D data at high frame rates has enormous potential applications in mobile robotic mapping [16–20], 

navigation [21,22] and localization [23], industrial robot collision avoidance [24,25], human tracking [26], 

special measurement [27]. 

In general, the distance accuracy and image quality of TOF cameras is still relatively low compared 

to that of other 3D sensors. External as well as internal factors which affect the camera performance 

are integration time, target reflectivity, object distance, movement artifacts, environmental conditions 

(temperature, light, multiple reflections, non-ambiguity range) and so on [28–30]. Signal noise 

reduction is usually conducted by either averaging information over time or by using spatial smoothing 

filters [30,31]. Some calibration methods have been presented for range error rectification [31–33] 

caused by object reflectivity, distance and etc. Low integration time is often used for reducing the 

blurring effect caused by motion, but it is necessary to compensate for the low SNR of a single image. 

One possible approach is to fuse data from multiple frames recorded at a higher frame rate to improve 



Sensors 2014, 2 10757 

 

 

SNR of the averaged signal [28]. Lindner et al. introduced a solution for motion artifacts of ToF 

cameras based on optic flow techniques [34].  

Meanwhile, researchers have proposed lots of methods to enhance the resolution in either the 3D 

depth image or the 2D image. Some of the methods are based on the combination of higher resolution 

image and depth image acquired by a 2D camera and a ToF camera [35–37], while other methods are 

based on the fusion of a stereo camera and a ToF camera [38,39]. Yuan et al. [40] proposed a  

laser-based navigation system enhanced with 3d time-of-flight data. With the development of 3D range 

cameras, this has a great future in an enormous range of applications. 

2.2. Obstacle Detection Based on 3D Information 

Compared with measurement data from 2D laser sensors or sonar sensors, 3D data acquired by 3D 

sensors contains a large amount of information about the environment which may correspond to 

obstacles, drivable surfaces (ground), or objects that the robot cannot reach [41]. Consequently, the 

extraction of safe navigation areas is done by calculating the probability of each mesh point belonging 

to the ground surface (safe navigation zones) or to an obstacle [5,21,40]. The plane-based obstacle 

detection approach states that the environment’s ground can be modeled by planes and obstacles are 

considered to be these 3D points standing out of the estimated ground planes [42–45].  

Using 3D range data to fit a least squares plane as the ground plane is the most direct and simple 

method [46,47]. Other fast and robust methods determine the planarity of the area by the surface 

normal and the offset distance from the sensor origin [1,4]. This plane-based approach can also be 

applied indirectly, such as through an estimated homography [48] or through a Hough space of  

planes [49]. The plane-based approaches for obstacle detection are highly appealing because of their 

high computational efficiency. 

Unfortunately, most terrain environments are not perfectly planar, small variations in height on 

uneven terrains are often confused with small obstacles. In those situations obstacles are better defined 

in terms of geometrical relationships between their composing 3D points [50,51]. Gor et al. [46] used 

intensity information to detect small rocks and height distance between object to the ground plane to 

detect large rocks in the image. Santana et al. [52] presented a stereo-based all-terrain obstacle 

detection method using visual saliency. Another obstacle detecting approach is to use heuristics in the 

form of local point statistics obtained directly from a 3D point cloud [53].  

2.3. Obstacle Classification Based on 3D Information 

There are two major approaches to obstacle classification, including semantic classification and 

geometric parameter-based classification. Lalonde [3] presented a semantic classification method using 

visual saliency features to classify 3D point clouds of terrain containing vegetation into three classes: 

―scatter‖, ―linear‖ and ―surface‖. Procopio [54] introduced a near-to-far learning method for terrain 

classification with a stereo camera. For geometry parameters based obstacle classification,  

Lux and Shaefer [55] yields map of obstacles based on range information of 3D laser sensors, in which 

a horizontal section of the scene is labeled as traversable, inaccessible and undetermined, respectively.  

In order to classify the scene with further meaning, 3D maps are often introduced to acquire more 

geometry parameters [56]. Further possible 2.5D representations are elevation maps, such as digital 
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elevation models (DEM) and digital terrain models (DTM) [10,57]. Saitoh et al. presented an Inclined 

Surface Grid (ISG) map representation which stores height, slope (roll and pitch angle) and roughness 

information [58]. Some literatures [6,59] introduce a goodness map, and each cell of the map contains 

the height, roughness, step heights and traversability information. Rusu et al. [60] presented a hybrid 

3D map representation from octree cells and polygonal modeling with semantic labeling for ground, 

vertical, level stairs and unknown areas. Compared to the above methods, a 3D polygonal representation 

of a planar surface directly extracted from 3D point clouds is more efficient in computation and 

memory storage, while it can represent structured object [4,19,54]. However, it is limited to natural 

environments with unstructured objects, such as trees, round slopes, etc. 

3. Proposed Method for Obstacle Detection and Classification 

3.1. General Scheme  

Visual attention, which rapidly detects certain parts of interest in a given scene, plays a fundamental 

role in human vision [61]. 3D vision is an intrinsic component of biological vision, and depth information 

obtained is critical in detecting objects of interest [61,62]. Generally, in order to avoid collision, 

humans need pay attention to nearby regions with obstacles at a relevant distance and in meaningful 

dimensions, particularly those at the ground level, while navigating in a complex environment. If there 

is an obstacle, an obstacle-free ground path is selected for navigation without collision. The non-relevant 

regions, such as those above the person’s head (e.g., sky), distant objects and a flat ground, do not 

affect a selected path of movement. For humans, those regions are extracted based on the spatial 

information obtained from both eyes. Since the ToF camera provides 3D information like that in the 

human vision, our navigational system utilizes 3D spatial information and classifies the scene into both 

irrelevant regions and regions of interest (ROI) as defined in Table 1, inspired by observing the 

characteristics of the human visual system. 

Table 1. The definition of region of interest and irrelevant region. 

Region Type Definition Specification Operation 

Sky Region is higher than robot can reach 

Irrelevant region 

for robot navigation 

Remove it  

from the scene 

Far 

background 

Region is far from the robot in the heading 

direction, and it has little effect on local 

navigation behavior 

Ground Flat region where robot can walk safely 

Obstacles 

Regions where robot has difficulty in 

walking through, such as ditch, rock, tree, 

wall, inclines, etc. 

Regions of interest 

(ROI) for robot 

navigation 

Detection, 

measurement and 

classification 

According to this definition, sky, ground and far background do not affect the route of a mobile 

robot. Therefore, we call the corresponding regions irrelevant regions. The robot focuses on detecting 

obstacles as regions of interest (ROI), such as stones, slopes, etc. rather than irrelevant regions as 

illustrated in Table 1 and Figure 2. 

 



Sensors 2014, 2 10759 

 

 

Figure 2. Region of interest and irrelevant region in unstructured environment. 

 

As obstacles are often irregular in shape and have undefinable features, it is difficult to detect and 

recognize them directly, especially in the unstructured environment. However, we can extract 

irrelevant regions of a scene according to the definition in Table 1 (see detail in Section 3.2.2) after the 

3D information of this environment becomes available. We thus propose a different obstacle detection 

method by removing irrelevant regions from the environment using the 3D information of the SR3000. 

The proposed method performs obstacle detection and recognition in a procedure illustrated in  

Figure 3. It can be divided into three key parts, 3D information acquiring, obstacles detecting based on 

ROI and obstacle recognition-based RVM, which will be presented in detail in the following sections. 

Figure 3. General scheme of the proposed method. 

Acquiring intensity image and 

3D data using SR-3000 Camera

Irrelevant region  detection

Far background detection

Ground plane detection

Sky region detection

Remove detected irrelevant 

region from the intensity image

Clustering and segmentation for 

possible obstacle region based on 

intensity image and 3D information

Geometrical parameters and features 

Measurement of detected obstacles

Obstacle classification by multi-RVM

Stop navigation?

Start navigation

End

Yes

No
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3.2. Obstacle Detection Based on TOF Camera 

A self-developed robot equipped SR3000 camera is used in this paper. A SR3000 camera captures 

intensity images in the 176 × 144 resolution along with the per-pixel 3D space information.  

To describe the proposed method clearly, some notations are defined as follows. The intensity image 

from the SR3000 camera is defined as GI, and the corresponding 3D data is [X, Y, Z]. For a space point 

P with projection pixel coordination ),( ji  on a SR-3000’s intensity image, ),( jiGI  stands for the 

intensity value; Referred to the SR3000 camera coordinate system, ),( jiX  is the value in horizontal  

x-axis direction of space point P, ),( jiY  is the height value in the vertical y-axis direction, ),( jiZ  is 

the distance value in z-axis direction. 

3.2.1. 3D Information Acquiring and Preprocessing  

(1) Camera parameters setting and 3D Information acquiring 

Since the integration time of ToF cameras has a direct effect on signal-to-noise (SNR) of 

measurement, accuracy of measurement, movement artifacts, and so on, it should be selected based on 

the required acquisition speed, the measurement quality and measured objects. In our case, we select 

integration time based on the following facts:  

First, as we focus on obstacle detection and classification, the environment is simplified in our 

study. Only static obstacles in the scene are processed. Furthermore, the robot operates in stop-go 

mode when capturing a scene by ToF camera. Therefore, movement artifact in our measurement can 

be ignored. 

Since ToF camera measurement is based on the received modulation signal, the accuracy of 

distance measurement of a ToF camera depends heavily on the signal-to-noise of the received signal. 

Longer integration time allows one to capture a larger amount of reflected light, which results in lower 

noise. In addition, the requirements for integration time are different for different objects. To reach the 

same measurement quality, a longer integration time needs to be set for low-reflective and further 

objects than for high reflective and closer objects. Consequently, long integration time is necessary to 

ensure the accuracy of measurement with less noise. However, longer integration time also induce 

higher temperature of the sensor. Furthermore, very long integration time leads to saturation. 

Based on the above mentioned facts and the existing analysis [28–32], different integration times 

were tested and compared in our test environments, and 80 ms was finally selected for SR3000 in our 

case to get measurement data with constant accuracy and less noise.  

Furthermore, to reduce the amount of heat generated, the camera is operated in triggered mode 

rather than continuous mode. The focus of SR3000 camera is fixed during the whole navigation process. 

In our situations, as shown in Section 4, interesting obstacles are usually in the range of 2 m–5 m. As a 

result, we set the focus in the distance of 3.5 m. Additionally, in order to improve the distance accuracy, 

we calibrate the measurement data according to the neural network based approach described in 

reference [33]. 
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(2) Noise reduction based on spatial smoothing 

Besides the integration time, noise in images obtained by the SR3000 camera is reduced using a 

spatial smoothing filter. Compared with median filter and Gaussian filter, the bilateral filter [63,64] 

takes into account the difference in value within the neighbors to preserve edges while smoothing. 

Therefore, it can filter out random noises of distance information inside the object region while 

keeping edges of the object. Consequently, the bilateral filter is introduced for distance measurement 

denoising before obstacle detection and measurement.  

(3) ―Back folding‖ measurement filtering  

Measurements by the SR3000 are also subject to a so-called ―ambiguity‖ or a ―back-folding‖ 

phenomenon. When the distance of object is further than the ambiguity range (here 7.5 m), the 

measurement is usually a random value in range of 0~4 m with a low amplitude instead of a true value. 

The possible solution is to filter those values out by setting an amplitude threshold as objects situated 

outside the non-ambiguity range. However the amplitude threshold is difficult to define due to the 

difference of scene and object characteristics.  

Figure 4. ―Back folding‖ measurement filtering in lab scene based on proposed  

method [65]. (a) Gray image of lab scene (b) Depth image of lab scene (c) Depth image 

after processing.  

 

Distance of this 

region is above 7.5m

  

(a) (b) (c) 

Figure 5. ―Back folding‖ measurement filtering in ditch scene based on proposed  

method [65]. (a) Gray image of ditch scene c (b) Depth image of ditch scene (c) Depth 

image after processing.  

 

(a) (b) (c) 
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In the robot developed by us the ToF camera is mounted horizontally. Consequently, along the 

vertical direction in ToF images, pixels with a longer distance usually appear in the upper area 

compared with pixels with a shorter distance in an open or obstacle free environment. If pixels do not 

hold this feature, they should belong to a valid obstacle or a ―back-folding‖ region. In addition, valid 

object region should satisfy the principle of image spatial continuity and deep information continuity, 

and its range or image information should be continuous instead of random. Based on this knowledge 

and the characteristics of amplitude, we have presented a method to remove those noisy measurement 

caused by ―back folding‖ phenomenon [65]. As shown in Figures 4 and 5, regions with ambiguity 

measurements are filtered out using our proposed method, which effectiveness has been verified. 

3.2.2. Irrelevant Region Detection 

(1) Far background detection 

According to the above definition, a pixel ),( ji  on intensity image GI falls within a far-background 

region if its distance value ),( jiZ  is more than a distance threshold FBD . As a result, the point is 

removed from the intensity image by setting its intensity value to zero: 

If FBDjiZ ),(  then 0),( jiGI  (1) 

(2) Ground plane detection 

In order to calculate the accurate ground plane, a simple and fast histogram based method is 

presented. The TOF camera is mounted horizontally on the robot. As a result, the ground plane means 

the points on the plane have a constant height.  

Figure 6. The principle of safe region for robot. (a) Robot’s configuration and safe region 

definition. (b) The sampled region for ground detection.  
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(a)                                          (b) 

As illustrated in Figure 6a, generally the area adjacent to the robot in the forwarding direction is the 

safest area for safe navigation, and the lower center region in the intensity image will also likely be a 

safe region for the robot. Consequently, as shown Figure 6b, we select a sample region (SR) in the 

intensity image to calculate the parameters of ground plane because ground plane will appear in this 

area with the highest probability. 
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For a given pixel ),( ji  on the intensity image of the SR-3000 camera, we can draw its 

corresponding 3D information provided by ),,( zyxP . Therefore, we express the height of any point in 

the SR region as ),( nmY . However, the ground is not perfectly planar in most terrain environments. 

Small variations in height on uneven terrains are commonly encountered. Consequently, we assume 

that the height of points on the ground plane has a Gaussian distribution ),( 2

HgHN  , where gH  is the 

average ground plane height, and   is the standard deviation of the ground height. The parameters of 

ground plane are calculated as follows: 

(a) As the camera is mounted horizontally on the robot with height 0H  (the distance between the 

center of camera to the ground), we defined the heights of points in the SR region in the range 

of ]10,10[ 00  HH  (in cm), for all possible points in a ground plane set, denoted by PG. 

(b) For a point in PG, we calculate its height distribution histogram. The horizontal axis X in this 

histogram stands for the height with step of 2 cm, and the vertical axis Y stands for the number 

of points drops in the height range  )1(),( iHiH represented as ))(( iHPNum .  

(c) We select the top three scores in the histogram as ))(( iHPNum , ))(( jHPNum  and 

))(( kHPNum , calculate the sum of points in one neighborhood and select the maximal one. 

Then, the more accurate height range of ground plane is defined as follows: 

       

)]1(*210),1(*210[

)(,)(,)()(

00

1

1

1

1

1

1

1

1











 



jHjHGRangethen

wkHPnumwjHPnumwiHPnumMaxwjHPnumif
mmmw

 (2) 

(d) The parameters of ground plane are calculated as follows: 

GRangenmY
K

nmY

H

M

i

N

j

g 


 

),(,

),(
1 1

 
(3)  

 
GRangenmY

K

HnmY
M

m

N

n

g







  ),(,

),(
1 1

2

  
(4)  

where K is the number of points with height in the range of GRange . 

(e) As the parameters of ground plane are calculated, the points on the ground plane are defined. 

Pixel ),( ji  of intensity image GI with height value ),( jiH  falls in the range of 

]2,2[   gg HH  will be considered as a ground plane point. In order to remove the ground 

points from the intensity image for further obstacle detection, the corresponding intensity value 

of ground plane point is set to 0, as illustrated in Equation (5): 

0),(),(]2,2[),(  jiGIandGPlanejithenHHjiYIf gg   (5) 

For different complex environments, the ground plane can be detected with high robustness and 

accuracy, and most points on the ground plane are removed from the scene. However, there are still 

some undetected ground points with considerable height variance in the image, which need to be 

removed by further processing (to be described in Section 3.2.3).  
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(3) Sky detection 

The sky region is defined as the region where which height is far beyond what the robot can reach. 

As the ground plane is detected, we define the sky region according to the height difference with 

ground plane height. A pixel ),( ji  in the intensity image GI with height ),( jiY  belongs to the sky 

region if its height is higher than the ground plane with threshold S , and then the corresponding 

intensity value of the pixel is set to zero: 

If SgHjiY ),(  then 0),( jiGI  (6) 

3.2.3. Obstacle Detection Based on Intensity Image and 3D Information 

(1) Segmentation of regions of interest  

According to the definition in Table 1, the remaining pixels in the intensity image GI after  

removing irrelevant regions are regions of interest. This fact immediately suggests the use of binary 

images to represent these regions. A binary image has an intensity value 0 for the irrelevant regions 

and 1 otherwise: 

If 0).( jiGI  then ( . ) 1GI i j   (7) 

In practice, the detected ground plane often contains unwanted ―noisy parts‖ because of the 

coarseness and surface irregularity of the ground. A morphological filtering method is introduced to 

suppress noises. As given in Equations (8) and (9), erosion followed by dilation with the same 

structuring element B is used to remove isolated small objects or noises from image GI:  

  BBGIBGI   (8) 

  BBGIBGI   (9) 

(2) Region of interest clustering and obstacle detection 

After extracting obstacles, some parts of the obstacles are often overlapped with each other in the 

intensity image. Naturally, obstacles should be individual objects (such as rocks, slope, and so on). For 

any individual obstacle, we know that adjacent points in the intensity image must also be adjacent in 

spatial relation. Consequently, detected interested points can be clustered into separate obstacles on the 

basis of their geometric information (i.e., depth and horizontal information) and connectivity.  

Comparing adjacent points located in the obstacle region, if the distance between two points stays 

within a certain range, we assign them to the same category. Otherwise, we assign them to different 

categories. Then, a current point is regarded as starting point of new category and compared with the 

rest points. In this paper, the Manhattan Distance is selected to calculate distance between two points 

as follows: 

),(),(),(),(),(),( 221122112211, jiZjiZcjiYjiYcjiXjiXcD DHWji  , (10) 

where HW cc ,  and Dc  represent contributions to clustering, which is determined by spatial changes in 

horizontal, vertical and depth directions. For the obstacles, change of distance in the depth direction is 

usually more obvious, thus we have DHW ccc  . 
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3.3. Obstacle Recognition with Multi-RVM 

Geometrical information is the basis of obstacle classification. However, irregular shapes of 

obstacles and their multiple geometrical features do not allow clear distinction rules to be defined. As a 

result, definition of each class is overlapped and ambiguous in some extent. Consequently, it is 

difficult to build an exactly mathematical classifier to differentiate obstacles into multiple classes.  

It has been shown that the support vector machine (SVM) and relevance vector machine (RVM) 

methods are effective in tackling those classification problems. We thus adopt a multi-RVM method to 

perform accurate and robust obstacle recognition.  

3.3.1. Obstacles to be Recognized 

In Section 3.2, obstacles are clustered and detected. To realize navigation in a natural environment, 

it is important to recognize obstacles and plan different efficient navigation strategies accordingly. It is 

assumed that the robot can climb step-like obstacles with a height threshold Hrc and slope obstacles 

with a slope angle threshold rc . However, the robot can walk across obstacles higher than Hrc if the 

obstacle region has a certain slope angle. In this paper obstacles are expected to be fall into four 

categories for navigation purposes, based on the movement performance of the robot. 

(1) Rock: Small obstacles (rocks or steps) can be traversed by robot without avoiding them 

according to movement performance of robot. In addition to help distinguishing them from 

other obstacles, the maximum height of a rock obstacle is defined as Hr which is usually higher 

than Hrc.  

(2) Stone: Compared with rocks medium obstacles such as stones, pillars and trees must be avoided 

by robots. The Width and Ddepth of stone obstacles should be smaller than the width threshold of 

slope (Wsl) while its height is above the threshold Hrc. 

(3) Slope: huge obstacles, such as a slope, wall or a megalith (certainly, whether a slop can be climbed 

is determined by its slope angle and mechanical properties of the robot). Its height is higher than 

Hr while its minimum width is defined as Wsl which is usually wider than the robot’s width.  

(4) Ditch: obstacles below the ground plane, such as a ditch or a small water path. 

3.3.2. Features Used for Obstacle Recognition 

Each obstacle is characterized by its geometry features. However, natural obstacles may have an 

irregular shape. Thus, a feature vector  AreaDepthDRHeightWidth depthLH ,,,,,  is selected to describe 

width, height, ratio between length and height, the maximal depth difference, and the average depth 

and area of the obstacle, as illustrated in Figure 7 and defined as follows. 

Width: The maximum horizontal width between the rightmost and the leftmost points in each row 

within the region: 

 ),(),(max LR jiXjiXWidth   (11) 

Height: The maximum height difference between the ground and each point within the obstacle is 

the region’s height: 
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)),(max( gHjiYHeight   (12) 

Ratio between Width and Height:  

HeightWidthRLH /  (13) 

Ddepth: The maximum difference of depth value of obstacle or object region, which stands for the 

obstacle’s distance range in the direction of depth. As for ditch obstacle, Ddepth is defined as the range 

difference between two regions where ground and ditch meeting respectively: 

 ),(),( farfarnearneardepth jiZjiZMaxD   (14) 

Depth: the distance between robot and obstacle. The average value of distances of all pixels in the 

object region stands for the object Depth. In addition, the Depth definition is a little different for a  

slope obstacle compared with other obstacles. Depth of slope is defined as the average distance of the 

region where there is a slope and ground effect since slope regions usually have a big range of distance 

distributions: 

PjiZDepth 


 ),(  
(15)  

Area: It is clear that the same object would have different amounts of pixels in its image if the  

object is at different distances to the camera. The relationship between the object area and its depth is 

generally linear. Consequently, we define the area as a feature related to the true area instead of the 

ground truth area: 

DepthPArea *  (16) 

Figure 7. Geometrical features of obstacles. 
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Similarly, other features about obstacles can also be calculated to describe its location and  

spatial relationships: 

Distance between obstacles: For neighboring obstacles, obsD  is defined as the distance between the 

most right point ),( RR ji  of the left obstacle and the most left point ),( LL ji  of the right obstacle 

without consideration of the height difference:  

   22
),(),(),(),( RRLLRRLLobs jiZjiZjiXjiXD   (17)  
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Obstacle center: Obstacle’s location is defined as its gravity center ),( cc ji  in the intensity image: 
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 (18)  

3.3.3. Obstacle Recognition Based on Multi-RVM 

According to the definition in Section 3.3.1, possible obstacles are classified into four classes. As 

obstacles like ditches are under the ground plane, this kind of obstacles can be distinguished easily 

from other three classes of obstacles based on the height difference with the ground plane. As obstacles 

in the terrain or field environment vary greatly in shape, it is difficult to acquire enough samples for all 

possible obstacles. Essentially, obstacles recognition subjects to the problem of small sample and 

nonlinear pattern recognition.  

RVM is a machine learning technique that uses Bayesian inference to obtain solutions for 

classification. This method depends only on a subset of the training data and is able to solve nonlinear 

pattern recognition problems. RVM has an identical functional form to the support vector machine, but 

provides probabilistic classification. Compared to SVM, the Bayesian formulation of the RVM avoids 

the set of free parameters of the SVM (that usually require cross-validation-based post-optimizations), 

and has less relevant vectors than support vectors given the same prediction performance. Based on 

these advantages, RVM is used as the obstacle classifier in this work. 

Figure 8. Scheme of obstacles classification based on multi-RVM. 
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Since we must solve a multi-class problem, the system needs a multi-RVM classifier. We adopt 

―one-versus-one‖ method of multi-RVM. In this method, we will construct all the possible two-class 

classifiers for three kinds of training samples. Every classifier will be trained on two-class training 

samples of three classes of obstacles. Therefore, six sub-RVM classifiers for two-class classification 

are needed. Decision is made by a max-wins voting strategy, in which every classifier assigns the 
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instance to one of two classes. Then, the vote for the assigned class is increased by one vote, and 

finally the class with the most votes determines the instance classification. A detailed scheme is shown 

in Figure 8. 

4. Experiments and Data Analysis 

To verify the proposed method, extensive experiments were conducted in different terrain 

environments based on our self-developed mobile robot shown in Figure 9. In Section 4.1, the obstacle 

detection results in five different scenes are presented to test the obstacle detecting performance of the 

proposed method. Then, the feasibility and efficiency of the multi-RVM classifier are evaluated in 

Section 4.2. 

Figure 9. Self-developed mobile robot. The robot is equipped with a SR3000 camera 

horizontally which simultaneously produces both an intensity image and 3D data with 

resolution 176 × 144 pixels in real time. The robot can climb obstacles such as steps  

of 15 cm high, ditches of 10 cm wide, and slopes of 45 degree. It can even walk across 

obstacles higher than 15 cm with a certain slope angle. 

 

4.1. Obstacle Detection and Feature Computation 

Experimental results from five different scenes are presented. The parameters used are mH S 4 ,

mDFB 7 , 15.01 c , 2.02 c , 65.03 c . In our results, black areas stand for irrelevant regions, and 

different obstacles in regions of interest are distinguished using different colors except black. The 

definition about geometrical parameter (Width, Height, Depth, Ddepth and Obstacle Center) is presented 

in Section 3.3.2. The center of detected obstacle is marked as black pixels in Figures 10i, 11f and 12i–14i 

respectively. In addition, detected obstacles in the experiment were used as samples to train the  

multi-RVM classifier for obstacle recognition. Related parameters for obstacles labeling are  

Hrc = 0.15 m, Hr = 0.30 m, Wsl = 1.20 m which are set based on the movement performance and 

characters of the robot. Consequently, the class type of obstacle is labeled according to the obstacle 

definitions in Section 3.3.1 and related human-labeled data.  
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Figure 10. Obstacle detection process and results of the proposed method in Scene 1.  

(a) Original image (b) Far Background removed (c) Ground and sky region removed;  

(d) Binary image of ROI (e) Image erosion and dilation (f) X dimension information of scene;  

(g) Y dimension information of scene (h) Z dimension information of scene (i) Detected obstacles. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 11. Obstacle detection process and results of proposed method in Scene 2.  

(a) Original image (b) Irrelevant region removed (c) Binary image of ROI; (d) Image 

erosion and dilation (e) Z dimension information of scene (f) Detected obstacles. 

   

(a) (b) (c) 
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Figure 11. Cont. 

   

(d) (e) (f) 

Figure 12. Obstacle detection process and results of proposed method in Scene 3.  

(a) Original image (b) Far background removed (c) Ground and sky region removed;  

(d) Binary image of ROI (e) Image erosion and dilation (f) X dimension information of 

scene; (g) Y dimension information of scene (h) Z dimension information of scene  

(i) Detected obstacles. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 
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Figure 13. Obstacle detection process and results of proposed method in Scene 4.  

(a) Original image (b) Far background removed (c) Ground and sky region removed;  

(d) Binary image of ROI (e) Image erosion and dilation (f) X dimension information of 

scene; (g) Y dimension information of scene (h) Z dimension information of scene  

(i) Detected obstacles. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 14. The obstacle detection process and results of proposed method in Scene 5.  

(a) Original image (b) Far background removed (c) Ground and sky region removed;  

(d) Binary image of ROI (e) Image erosion and dilation (f) Horizontal information of scene; 

(g) Height information of scene (h) Depth information of scene (i) Detected obstacles. 

   

(a) (b) (c) 
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Figure 14. Cont. 

   

(d) (e) (f) 

   

(g) (h) (i) 

4.1.1. Experiment in Scene 1: Stones and Rocks with Occlusion 

This environment was a specific scene with a ground with sands, stones and a back wall. The 

ground was not very flat, and the color difference was not obvious with obstacles. In addition, some 

obstacles were overlapped in the intensity image. 

According to the proposed method, the whole obstacle detecting process is shown in Figure 10. The 

original intensity image of the scene is shown in Figure 10a. The maximum distance of this scene is 

smaller than far background threshold (7 m).Therefore no pixels in this scene can be removed in this 

step of far background elimination. Following this step, the far background region, ground, and sky 

region respectively were removed, as shown in Figure 10b,c and regions of interest were segmented. 

The binary image of the region of interest is illustrated in Figure 10d. Consequently, image erosion and 

dilation were applied to the binary image of the region of interest to filter out small objects or suppress 

noise. The result is shown in Figure 10e. Finally, based on the 3D geometric information, the detected 

regions of interest are clustered into separate obstacles as shown in Figure 10f–h. The detected 

obstacles are shown in Figure 10i. 

The result shows that five obstacles were completely detected, even for the very small and 

overlapped stones. Obstacle feature parameters were also computed in order to test the accuracy of the 

presented method. The ground truth data were measured manually. The relative error between the 

measurement value and human labeled data value is shown in Table 2. The length measurement of the 

3rd obstacle had a very big relative error with human labeled data, as it was partly occluded by the 2nd 

obstacle in the horizontal direction.  
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Table 2. Detected obstacles and its 3D parameters by proposed method in scene 1. 

Obstacle Class Type 
Width × Height × Depth 

Measurement by Robot (cm) Human Labeled Data (cm) Relative Error (%) 

1-Left-back Stone 40 × 41 × 230 39 × 42 × 233 2.6 × 2.3 × 1.3 

2-Left-middle Stone 39 × 41 × 273 40 × 42 × 271 2.5 × 2.3 × 0.7 

3-Left-last Rock 18 × 13 × 297 27 × 14 × 300 33.3 × 7.1 × 1.0 

4-Right Stone 46 × 25 × 376 48 × 26 × 376 4.1 × 3.8 × 0.0 

4.1.2. Experiment in Scene 2: Small Stones and Convex Sand Region  

As mentioned in the above section, the ground is often imperfect and not planar in most terrain 

environments. If the ground height is defined with a narrow range, some ground regions will be 

detected as obstacles. However, if the ground height is set with a big range, some obstacles will 

probably not be detected correctly if their height is smaller than the height range. This scene was 

designed to evaluate the performance of the proposed method in small obstacles detection which 

height is below 30 cm. 

As shown in Figure 11, the presented method gives a satisfactory detection result. Firstly, far 

background, ground plane and sky region were detected and removed from the scene as shown in 

Figure 11b. Two small obstacles and two convex regions with little slope angle were detected correctly 

as shown in Figure 11f. The measurement error was also in acceptable range, as shown in Table 3. 

Table 3. Detected obstacles and its 3D parameters by proposed method in Scene 2. 

Obstacle Class Type 
Width × Height × Depth 

Measurement by Robot (cm) Human Labeled Data (cm) Relative Error (%) 

1-Left Rock 52 × 19 × 350 60 × 16 × 359 13.3 × 18.7 × 2.5 

2-Left-center Rock 29 × 18 × 253 34 × 20 × 255 17.6 × 10 × 0.8 

3-Right-center Rock 19 × 25 × 215 23 × 27 × 211 17.3 × 7.4 × 1.9 

4-Right Stone 105 × 57 × 376 110 × 53 × 366 4.6 × 7.6 × 2.2 

4.1.3. Experiment in Scene 3: Trees and Grass in Natural Environment 

This scene is a typical natural outdoor environment. The uneven ground is randomly covered with 

grass and trees. As shown in Figure 12, firstly the house is separated from the image as its distance is 

far beyond the Far-Background threshold, and then tree is detected as obstacle after ground detection 

region clustering. 

As shown in Table 4, the height measured by robot looks a bit different from its manual reference 

value. The reason consisted of two sides, the first is that the sky threshold was just selected as the 

reference ground truth; the other reason was that the ground is uneven and the detected region became 

a little shorter after ground deletion and region clustering. 

Table 4. Detected obstacles and its 3D parameters by proposed method in Scene 3. 

Obstacle Class Type 
Width × Height × Depth 

Measurement by Robot (cm) Human Labeled Data (cm) Relative Error (%) 

1 Stone 31 × 379 × 435 33 × 400 × 433 6.1 × 5.3 × 0.5 
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4.1.4. Experiment in Scene 4: Slope 

There were three parts in this scene, a wall (Far-background), a ground and a slope made of sands. 

As the texture and color for ground and slope were same, it was difficult for a robot to distinguish each 

other depending on 2D images. However, it was very easy to detect slope region based on the proposed 

method, the detail process is shown in Figure 13. The computed parameters of obstacle and its relative 

error with human labeled data are shown in Table 5.  

Table 5. Detected obstacles and its 3D parameters by proposed method in Scene 4. 

Obstacle Class Type 
Width × Height × Depth 

Measurement by Robot (cm) Human Labeled Data (cm) Relative Error (%) 

1 Slope 418 × 132 × 574 430 × 129×578 2.8 × 2.3 × 0.7 

4.1.5. Experiment in Scene 5: Ditch in Field Environment 

In this scene there was a ditch under the ground. Once again, it was easily detected by the proposed 

method, the detail steps and results are shown in Figure 14. Ddepth in Table 6 is the range difference 

between two regions where ground and ditch are meeting, respectively, which stands for the ditch’s 

width in the depth’s direction. Depth is still defined as the average distance of all points in region. As 

for the human labeled data, we sampled the distance along the ditch evenly, and made an average as a 

reference value. This definition is coherent with the definition of other obstacles. In addition, the 

computed parameters of obstacle and its relative error with human labeled data are shown in Table 6. 

Table 6. Detected obstacles and its 3D parameters by proposed method in Scene 5. 

Obstacle Class Type 
Width ×Ddepth × Depth 

Measure by Robot (cm) Human Labeled Data (cm) Relative Error (%) 

1 Ditch 352 × 35 × 221 360 × 37 × 225 2.2 × 5.4 × 1.8 

4.2. Experiment of Multi-RVM Obstacle Recognition 

4.2.1. Multi-RVM Training 

Five hundred scenes with different obstacles were selected as training samples. Based on the 

proposed obstacle detection method, obstacles and their feature were detected in every scene. As 

shown in Tables 2–6, every sample includes obstacle features and its class type which is denoted by 

vector  ClassAreaDRHeightWidth depthLH ,,,,, . The number of extracted training set and testing set  

from 500 scenes is listed in Table 7. In addition, the performances of the presented method and SVM 

based method were compared and analyzed. 

Table 7. Numbers of training set and testing set for different obstacle class. 

Obstacle Class Number of Training Set Number of Testing Set 

Rock 238 163 

stone 282 201 

Slope 167 114 

Total 687 478 
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The RBF kernel function was applied for multi-RVM based obstacle classification, as shown  

in Equation (19): 

)exp()(
2

ji xxxx,K   (19)  

4.2.2. Obstacle Classification Results and Analysis 

When the RVM classification method was trained, obstacles were classified and recognized by 

imputing detected obstacle regions. For test samples with 1.0 , the classification results are shown 

in Table 8. 

Table 8. Recognition result of testing sample set using multi-RVM with 1.0 . 

Obstacle Class Number of Sample Set Accuracy 

Rock 163 92.7% 

stone 201 90.4% 

Slope 114 95.5% 

Total 478 92.86% 

The test set recognition results are shown as in Tables 9 and 10 in which the classifier was trained 

with different parameters, Table 9 shows the results of the SVM-based classifier with the same training 

parameters. Table 10 presents the test set recognition result with the RVM-based classifier, where 

different parameters were used to train the classifier. The experiment results show that the RV number 

was greatly reduced compared to the SV number. As a result, the processing time of the proposed 

method was also shorter than that of the SVM-based method. The recognition rate of proposed method 

was just slightly lower than that of the SVM-based method. 

Table 9. Recognition accuracy and SV number of multi-SVM with different σ. 

Kernel Parameter σ C Recognition accuracy SV Number 

0.1 1000 93.62% 322 

1 65 94.07% 338 

1.74 40 95.85% 353 

1.74 1000 95.56% 335 

Table 10. Recognition accuracy and RV number of multi-RVM with different σ. 

Kernel Parameter σ Recognition Accuracy RV Number 

0.1 92.86% 45 

0.7 93.40% 56 

1 93.67% 61 

1.74 93.24% 50 

4.2.3. Experiment Result Analysis of Obstacle Detection and Measurement 

Experiments have been done to test the accuracy of the proposed method on obstacle classification 

and geometrical feature measurement. Experimental results in the presented five typical scenes showed 

that the proposed method can detect obstacles as well as provide valid and dense 3D geometrical 
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measurement with high efficiency and robustness, which is critical for intelligent robot navigation.  

In addition, experimental results are analyzed in detail as follows: 

(1) This method has a very high robustness in complex and unstructured environments. Firstly, in 

our tested environments, the obstacle classification accuracy of the proposed method maintains 

a high level. As shown in Table 10, the recognition accuracy of obstacles reaches 93%. 

Secondly, the relative error illustrated in Tables 2–6 is usually lower than 5% except for some 

special overlapped or very irregular cases in Tables 2 and 3. On the other hand, since the 

ground truth is provided by human labeling, it has some inherent measurement error, especially 

for irregular or overlapped obstacles in complex environments. As a result, the real relative 

accuracy of the presented method may be higher or lower than the data in above experiments, 

which reflects a trend of accuracy. 

(2) The accuracy of the proposed method can be improved in the future. As the ToF camera has 

low resolution either in the 2D intensity image output or 3D depth image, compared with the 

enhancement on range accuracy [24,28–34], it is also very necessary to improve the accuracy 

on obstacle segmentation. As for our proposed method, the accuracy of obstacle geometrical 

parameters, such as Width, Height, Dobs, are greatly affected by the object segmentation 

accuracy. In the future, we will consider the fusion of ToF camera with a 2D high-resolution 

camera. This will produce high quality color image as well as corresponding depth image, 

which will improve the segmentation accuracy of obstacles further. 

(3) The proposed method is highly efficient and easy to implement. It can finish the process of 

obstacle recognition and 3D measurement within the time of a single frame of the ToF camera 

data without any prior knowledge. In addition, the method is easy to implement as the whole 

process consists of only simple operations.  

5. Comparison and Discussion 

Compared with existing laser or stereo-vision based obstacle detection methods, our method 

presents a new ToF-camera based obstacle recognition and measurement solution inspired by human 

3D vision perception. As no public databases with the abovementioned different sensors in same 

scenes are available, it is difficult to conduct a comparison test using the same environment. Therefore, 

in this section, we presents a performance and advantage analysis based on published technical data of 

the existing methods. 

Laser sensor based methods are efficient in obstacle detection because its readings focus on 

specified height and direction. This process is fast and accurate. However, laser sensor reading on the 

whole 3D space is sparse and time-consuming, which greatly limits the applications of this method to 

obstacle classification and 3D measurement. As a result, this paper does not present a comparison 

between the proposed method and the laser-based methods. 

Since the stereo-vision system can provide both an intensity image and the depth information, it has 

been widely used in obstacle recognition and measurement. The technical characteristic comparison 

between the proposed method and stereo-vision based methods is presented as follows along with the 

results listed in Table 11: 



Sensors 2014, 2 10777 

 

 

(1) The presented method can recognize more obstacle classes with higher efficiency than  

stereo-vision based methods. Based on one single frame, as shown in Table 11, the proposed 

method can recognize four types of obstacles while the methods reported in [23,28,29] can only 

one or two obstacles. In addition, the 3D information computing process is complex and the 

quality of the 3D information varies in different scenes. Consequently, stereo-vision based 

methods are usually used for obstacle detection and simple classification. For example, the 

method in [28] can only detect rocks, and the methods in [23,29] can make a distinction 

between large rocks and small rocks. To improve the classification performance, some methods 

introduced more stereo frames. In [19], obstacles are classified into ―Obstacles‖, ―Negative 

obstacle‖ and ―irrelevant‖ from three stereo image frames. In [37], environment is semantically 

labeled as Level, Ground, Vertical, Stairs based on 3D map model of the scene built by registered 

stereo data sequence. As a result, the proposed method is more advantageous in accurate 

obstacle subdivision compared with single frame based stereo methods. In addition, our method 

is computing and memory efficient compared with multiple frames based stereo methods. 

(2) The proposed method has a higher accuracy in obstacle identification based on a single frame. 

As shown in Table 11, the proposed method reaches 93% in average accuracy for four obstacle 

classes, while the method in [28] reached 89% for one obstacle class. A more advanced  

method [29] reached 90% for two obstacle classes. 

(3) The proposed method has obvious advantages in 3D geometrical measurement of obstacles.  

As illustrated in Section 4, we make use of 3D information and intensity image for detecting 

obstacles, and provide high resolution 3D information of detected obstacles. Although stereo 

vision based methods also allow efficient detection of obstacles, the limited depth resolution 

and depth accuracy decrease as the distance between camera and obstacle increase. This 

problem imposes a strong restriction for geometrical feature measurement of obstacles. The 

method [37] provides 3D information of detected obstacles depending on a 3D map 

reconstructed from stereo image sequence of the environment rather than single stereo frame. 

Table 11. Technical comparisons between the proposed method and stereo-vision based 

methods. (―—‖ indicates corresponding method does not provide this item). 

Methods  

Compared Items 

Proposed  

Method 
V. Gor [23] R. Castano [28] P. Santana [29] T. Dang [19] R. Bogdan [37] 

Sensors ToF camera 
Stereo 

camera 
Stereo camera Stereo camera Stereo camera Stereo camera 

Recognized  

obstacle types 

Four types: 

Stone/Rock/Slope/Ditch 

Two types: 

Small 

rocks/large 

rocks 

One type: Rock 

Two types: large 

obstacles/small 

obstacles 

Two types: 

obstacle/negative 

obstacle‖ 

irrelevant 

Tree types: 

Level(Slope)/ 

Vertical/Stairs 

Frames needed for 

obstacle recognition 

Single  

ToF-camera Frame 

Single Stereo 

Frame 

Single Stereo 

Frame 

Single Stereo 

Frame 

Three 

consecutive 

stereo frames 

Multiple stereo 

frames to build 3D 

model of the scene 

Computing efficiency real time 
Near real 

time 
Near real time Near real time Not real time Not real time 

Classification 

accuracy 
About 93% Low About 89% 90% in average — — 

3D information  

of Object 

Accurate 3D 

information available 
— — — — 

3D information 

available 
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6. Conclusions 

This paper presents a method for real-time obstacle detection and recognition in unstructured 

environments based on the use of a ToF camera. The proposed method defines regions of interest to 

guide navigation, simulating the perception mechanism in human navigation. Based on the 3D data 

acquired by the SR 3000 ToF camera, we first perform a detection of irrelevant regions based on the 

geometrical characteristics of certain objects irrelevant to navigation, such as far background, sky and 

the ground which do not affect the movement of a robot. Then, the obstacles as other regions of 

interest are detected ignoring the irrelevant regions from the input scene. After this step, the 3D 

geometrical parameters and other features of every detected obstacle are computed for classification. 

Finally, considering possible irregular obstacle shapes and the movement performance of the robot, a 

multi-RVM classifier is designed to classify obstacles into four classes. Experimental results on 

obstacle detection in different scenes indicate that our method can detect obstacles robustly, and it 

even works well for small obstacles with height below 30 cm and situations with a certain occlusion. 

In addition, the relative error of obstacle features with human labeled measurement was found to be in 

a similar small error range of our autonomous navigation, and the proposed multi-RVM classifier 

produces a satisfactory recognition rate with a very small RV number. 

This work provides a robust, simple and high efficiency solution for practical robotic navigation 

problems involving 3D obstacles in unknown, unstructured environments. However, the resolution, the 

quality of the intensity image, and the range measurement accuracy of the ToF camera (SR3000) are 

currently low, which directly limits the accuracy in geometrical measurements and classification of 

obstacles. Besides improvements on range accuracy, we will improve the accuracy of obstacle 

measurement and classification further by fusing a 2D color camera with the ToF camera to produce 

both high-quality image and the corresponding depth information. 
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