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Abstract: A review of the surface plasmon resonance (SPR) transducers based on tapered 

fibers that have been developed in the last years is presented. The devices have proved 

their good performance (specifically, in terms of sensitivity) and their versatility and they 

are a very good option to be considered as basis for any kind of chemical and biological 

sensor. The technology has now reached its maturity and here we summarize some of the 

characteristics of the devices produced. 
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1. Applied Plasmonics and the Devices that Make It Possible 

1.1. Some General Considerations 

It is almost impossible to be comprehensive or exhaustive when speaking of the many devices 

based on the excitation of plasma waves that have been presented in the last decades in the literature. 

Even to try to classify the many applications and variations of these devices is a very complex task. 
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We can rely, then, on some major features and concepts to help us introduce some order in the 

discussion. Plasmonics necessarily imply that we must be able to produce a so-called plasma wave 

under appropriate conditions, which leads us to the use of metals. To generate plasmons in these 

metals we cannot use conventional, common arrangements, since the conditions of coupling with the 

plasma waves are restrictive. In the successively published papers, varied mechanisms have been 

proposed to provide a good coupling between an incident, conventional (guided or not) electrical 

wavefield and the surface plasma waves to be generated in the selected material. 

One major goal, then, of Applied Plasmonics is to achieve the highest efficiency in this plasmon 

excitation process. While other approaches to plasma waves are more centered in the basic 

phenomenology of wave propagation in material media or the theoretical formulation of that 

propagation, we focus in the effective generation of plasmons in the desired ranges and conditions of 

measurement, and this is the key feature for any applied plasmonic devices. 

Nowadays, one very important field of application of plasmonic devices is chemical and biological 

sensing. The researchers working in this field tend to prefer surface plasmon resonance (SPR) devices 

based on evanescent coupling with thin layers obtained via the phenomenon of attenuated total 

reflection (ATR), and, in the scientific publications devoted to chemo- and biosensors the setup used to 

provide the plasma waves is only rarely discussed, assuming that it is always of this kind. It is true that 

today we can use commercial systems based on ATR with very good performance and that  

chemists and biologists can then concentrate in the research on what to add to this basic setup, namely, 

the recognition agents and the chemical or biological processes involved in the detection of the  

desired analyte. 

However, ATR is in no way the only way to provide evanescent coupling, and there exists a quite 

active field of research that focuses its interest on the development of new concepts and setups to 

excite plasmons, with an improved performance of the transducers to face the always increasing 

exigencies of chemical analysis and biotechnology. Other principles of measurements or other 

configurations have been tried in recent years, and very good results have been reported in the 

literature, but it seems that somehow the transference of the basic knowledge produced by the groups 

working in this direction to the community of users of SPR technology in the biosensing field is not as 

good as it should, which explains that sometimes very interesting proposals of new conceptions of 

plasmon generating devices with astonishingly high quality indicators have not been taken into 

account, if not to replace the existing technology, at least to complement it. Here we discuss some of 

these different possibilities, which are based on the use of waveguides of a particular kind. 

1.2. SPR Sensors Based on Waveguides 

We can achieve evanescent coupling with guiding devices in varied ways. If we limit our discussion 

to optical fibers, many devices have been reported based on evanescent coupling between the light 

guided by the fiber and one or more layers deposited on the guide. Optical fibers are ubiquitous, cheap, 

show great performance, their technology is completely mature and the assisting elements such as 

couplers, connectors, etc. are easily accessible. Optical fibers are first a channel that carries the 

interrogating beam to the sensing area, but they can also be modified to provide a coupling mechanism 

with plasmons. 
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We can then think, thanks to the use of optical fibers, of a full integration of all the elements 

required in the sensing process, from the light source to the detector in a, so to speak, closed circuit, 

where the efficiency in the light propagation and collection is maximized. We can also maintain this 

efficiency over many meters or even kilometers and therefore access distant locations (sometimes only 

reached with difficulty or even danger) without the need of displacing most of the elements of the 

measuring setup and maintaining a stable installation that processes continuously in real time, perhaps 

in a distributed or quasi-distributed way. Many different sensors based on fibers have been depicted, 

and optical fiber technology is the preferred option in quite demanding fields, such as structural 

monitoring. In what respects to SPR sensing, the use of optical fibers is already old and many sensors 

have been proposed, with very good results. We could say that all the measurements made today with 

ATR-based devices could be made in principle with fiber optic sensors (FOS), in many cases with the 

added advantages associated to fibers. However, as we have said before, it seems that these good 

characteristics are not always sufficiently taken into account by potential users. 

To develop a real SPR-FOS we must perform an in principle contradictory operation, namely, to 

make a guided wave interact with something outside the waveguide, that is, to somehow subvert the 

main reason why fibers are useful most of the time: their capacity of transporting light at long 

distances without losses. Most commonly this is made by modifying the fiber to permit the access to 

the evanescent field of the guided modes. This field is put then in contact with the metal layer that 

must be excited. 

One obvious way of doing it is by reducing the thickness of the fiber cladding. Of course this is a 

process that involves a compromise, since we still want the wave guided after the interaction with the 

studied medium, so we can conduct it to the detector via the same guide. But in some cases this can be 

done while at the same time ensuring good access to the evanescent field. The direction of the wave 

vector of this field is the right one to provide coupling with surface plasma waves, so we can deposit 

the metallic layer on the reduced cladding and, given some coupling conditions, produce SPR. The 

reduction of the thickness of the cladding is made by chemical etching or polishing, most commonly. 

Layers then are flat and are usually deposited in a vacuum chamber controlling the thickness of the 

deposited metal (gold is the most used one). One can find many results in the literature of sensors 

based on that principle, and in the past our group showed the feasibility of salinity measurements with 

a SPR sensor made with a polished fiber and a double deposit (more on the double deposit approach in 

the next section), even under real measuring conditions, with in situ experimental measurements 

performed in a research vessel [1,2]. 

1.3. Use of Tapered Fibers 

We have said that coupling efficiency is one of our main goals, and, for this, there is a better way to 

provide access to the evanescent field of a fiber: tapering it. It is better because the symmetry of the 

guide is maintained, and also because we can easily increase the size of the interaction region, and 

have more degrees of freedom in the design of the devices. 

We will describe the tapering process and the resulting tapered fibers in the next section, since this 

review is centered in the SPR sensors based on that kind of elements, but it is important to note here 

that, first, this tapering process is very easy and does not require any sophisticated apparatus (it is also 
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very repeatable and easily automatized) and, second, that, when using tapered fibers as substrate for 

the subsequent deposition of the layers where plasmons are to be generated, those layers are not going 

to be flat, which is, as we will see, very interesting in terms of performance, although it also supposes a 

certain challenge for their fabrication. 

1.4. Some Words on the State-of-the-Art 

The main objective of this paper is to provide a general view of the advantages achieved when 

tapered fibers are used as basis of SPR sensors and not to try to cover all the above mentioned fields of 

SPR sensing. Some very comprehensive and excellent reviews have already been published that can 

provide the required information [3–5]. However, it is convenient that we somehow establish some 

means of comparison between these different options to justify the usefulness of tapered-fiber-based 

SPR sensing. 

The discussion tends to be centered (abusively, in some cases) on the sensitivity of the sensors, 

taking for that the slope of the curves that relate the changes of the refractive index with the 

displacement of the plasmon dips. Here, it is common to find in the literature some works that perform 

only theoretical simulations and establish unrealistic figures. Also, in some other cases the values of 

sensitivity have been calculated starting from measurements in perfect conditions in the lab and do not 

take into account, frequently, other effects that can affect the measurements in a great way, like 

temperature. In that sense, sensitivities as high as 10
−7

 RIU have been reported, but in principle, 10
−5

 is 

a more realistic estimation, which is still incredibly good, and probably as high as one can get in 

refractometry. Our sensors, as it will be seen below, can easily reach experimental values of sensitivity 

in the range of thousands of RIU/nm, which implies that, even with a modest resolution of the 

spectrometer used in the measurements, we are comfortably placed in the range of maximum operative 

sensitivities. This is even increased when using InN as dielectric deposited material. Again, these are 

laboratory values and they can also be subject to discussion, but the main message is that shifting from 

the traditional options to tapered fibers does not decrease the performance of the device. 

When used as chemo- or biosensors, the limits of detection and the resolution are important 

parameters, and many papers discuss them, but, in that case, the response of the system depends on the 

mechanism employed to make selective the response, the recognition agents used. What we propose 

here is the immediate step before this adding of the agent and the, so to speak, basal sensitivity as a 

refractometer of tapered-fiber-based SPR sensors is perfect to ensure a very good performance in terms 

of analyte detection. 

Other aspects have been mentioned before, but they are not always taken into account by the 

authors when presenting their results. If we need to work in situ, in real time, with prolonged 

measuring times, in hazardous places, etc., any setup based in elements such as prisms, that must 

incorporate mechanisms for angular interrogation and polarization-controlling elements are not 

competitive, and can even be unusable. The good possibilities that fibers offer apply here, and the 

small size and extreme simplicity of our arrangements permits to think in highly integrated, versatile 

and robust devices, that can allow multiparametric, accurate and fast measurements and can adapt 

themselves to the concept of lab-on-a-chip. 
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To summarize, the state-of-the-art of SPR transducers based on the already existing technologies is 

that of a very mature technology, completely accepted by the analytical community which centers its 

interest in the adaptation of these setup to their needs of detection of a particular analyte. But, at the 

same time, there are other options, which are clearly more advantageous in several aspects that should 

be more exploited for the same goal of development of chemo- and biosensors, especially for some 

exigent measurement conditions, within which the use of tapered optical fibers have proved its 

validity. We will give now some indications, in the next sections of the variety of devices that have 

been produced and the ranges that they can cover, attending to the publications from by our group in, 

roughly, the last fifteen years, trying to be concise and systematic. 

2. Tapering Fibers: Some Considerations on the Fabrication Process 

The most usual setup to produce tapered fibers is the so-called travelling burner technique: a 

section of the fiber is heated by a burner displaced in an oscillating way in a trajectory longitudinal to 

the fiber and at the same time, and in this same direction, the fiber is gently pulled by two motors. The 

amplitude and frequency of the movement of the burner determine the characteristics of the tapered 

region, namely, its length, the diameter of the waist of the tapered area and also the profile of the 

transition region between this waist and the unaltered fiber portions before and after the taper. These 

parameters can easily be controlled and the fabrication process is highly repeatable. 

The tapers produced with this technique are called uniform-waist tapers (UWTs), in comparison to 

other type of also very common tapers called biconical (BTs), which are usually fabricated with a fiber 

splicer. UWTs are considerable more adiabatic than BTs, because the light in them is smoothly 

coupled between the different regions of the taper, while in BTs the transition is much more abrupt and 

the losses are quite high. Also, the travelling burner setup permits a better control of the fabrication 

parameters than with BTs [6]. 

One characteristic of UWTs extremely relevant in terms of their use as SPR devices is that 

cylindrical symmetry is always preserved in them. If we polish or etch a fiber to reduce its cladding, 

we drastically transform its geometry, which has huge impact in its guiding properties, but with UWTs 

we can achieve an almost perfect coupling between the three cylindrical guides involved: the two 

unaltered areas (regions I and V of Figure 1a), where the core “contains” the field with a little 

expansion of the evanescent field in the cladding area (we use almost always single mode fibers, so we 

can visualize guided light by thinking in that mode guided by the core) and region III, where the 

tapering process has resulted in the effective disappearance of the core and the creation of a cladding-air 

multimode guide, and where the evanescent field is easily reachable. In between these guides we have 

the transition regions that, when they have the right profile, provide adequate coupling with very low 

losses. Of course, the guiding characteristics of the waist depend on its diameter, but, as one can easily 

imagine, the smaller this diameter is, the more evident are the effects associated to the tapering, in 

particular the one we are interested in: evanescent coupling. 

We have tested many different combinations of waist length, total taper length and waist diameter. 

It is not really critical for the development of SPR sensors to force in an extreme way the tapering 

process. Waists of the order of 30 m (starting from conventional single-mode fibers in the wavelength 

region around 800 nm) are more than enough to provide spectacular evanescent coupling and 
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subsequently very strong resonances. The process is fully automatized and highly controllable and 

repeatable, as it is proven by the hundreds of tapers produced, and the agreement between the 

predictions concerning the final geometry of the taper starting from the fabrication parameters and the 

actual form of the produced tapers is extremely good. Once one has the travelling-burner scheme 

functioning (some aspects, such as the control of the fluxes of the gases of the burner, are important 

here), production of tapers implies no problem at all, and many different kind of fibers can be used 

with the same machine. A photograph of the setup is shown in Figure 1b. 

Figure 1. (a) A scheme of a uniform-waist taper, and its different regions; (b) A 

photograph of the fabrication setup. 

 
(a) (b) 

3. Generating a SPR Sensor: The Deposition of Materials 

Once we have the taper we must deposit the layers required to generate the plasmon excitation in 

the tapered region. In principle it is not exactly equivalent to depositing them only in the waist (region III) 

or on the whole taper (regions II + III + IV), but, again, the final result in terms of performance is not 

critical. However, it is obvious that it is not the same thing in any way to deposit layers on a flat 

surface, as it happens with polished fibers, that here, where the substrate is still cylindrical. Being in 

principle a disadvantage, it is on the contrary the fact that makes SPR sensors based on UWTs really 

special. This is so because of the following features: 

a. Layers are no longer flat, and a thickness gradient is imposed here. Thickness of the layers is a 

most critical parameter for SPR, so what we have in principle is the possibility of different ways 

of fulfilling the excitation conditions. This will produce multiple resonances [7]. 

b. For the same reason, the strong dependence of plasmon excitation on the polarization of the 

incident field is diminished, because we can no longer strictly define directions of vibration with 

respect to the plane of the layers (there is no such “plane” any more). In fact, this dependence 

can even be completely eliminated if we produce a symmetrical deposit. This is a most 

remarkable fact, since, as we have said, if one has a really representative feature of plasmons is 

this dependence on polarization (only TM fields can excite plasmons) [8]. 

We have experimentally demonstrated these two unusual behaviors of plasmons, thanks to the use 

of UWTs. They are not to be found in any of the other existing options for SPR, especially in those based 

on ATR. In our opinion, this is a very important fact not only from the point of view of the applications, 
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but also from the most basic point of view of the understanding and clarifying the dynamics of plasma 

wave excitation. This enrichment of phenomenology has very important practical consequences. 

Before we can present experimental evidence of these facts we must say something about the 

materials employed for the deposited layers, their choice and the range of thicknesses we must use 

(and the way we select them). The very use of the plural form when speaking of layers is interesting in 

itself. Most commonly, a single layer of gold (more rarely, of other metals such as silver or aluminum) 

is employed in SPR devices. The excitation of plasmons in that layer occurs if some conditions are 

fulfilled, that link the refractive index of the substrate, the layer and the outer medium, and the 

thickness of the layer. All of this is well-known and it is not necessary to give more details: it is what 

we find, for instance, in commercial devices.  

However, we have proved that a different combination of deposited materials permit to tune in a 

much wider dynamic range the behavior of the system, as it is shown in Section 5. We have been using 

most commonly a combination of a metal (aluminum, some nanometers to some tenths of nanometers 

thick) and a dielectric (titanium dioxide, and more recently, indium nitride, tenths of nanometers thick), 

calculating in each case which thicknesses must be deposited to permit the detection for different 

spectral ranges and values of the refractive index of the surrounding medium. These doubly-deposited 

devices (DLUWTs, double-layer uniform-waist tapers) are nowadays a consolidated technology for 

providing SPR sensing and have proven their very good behavior and performance. The rest of the 

paper will be devoted to summarize the main results obtained with DLUWTs. 

4. Experimental Results I: Influence of the Geometry of Deposition and the Dependence  

on Polarization 

We are only going to present representative results and therefore we will place the emphasis on the 

specific added value of DLUWTs with respect to the other existing devices. For that reason we show 

first how, as said above, the particularity of the non-flat geometry of the deposited layers influences 

the performance of the transducers [7]. 

Figure 2. Different options for the geometry of the deposit on the tapered region.  

(a) asymmetric; (b) double-sided; (c) symmetric. 

 
(a) (b) (c) 

In Figure 2 we show the three main possibilities for depositing layers on a taper, in a sectional view. 

In the first case, Figure 2a, we speak of “asymmetric” deposition. In principle, we can consider that, at 

least for some part of the deposited layers, we could take a representative, average value of the 

thickness, and assume that this is not too different to a flat-layer deposition. In fact, this is the way we 

can easily choose which thicknesses we desire to deposit, starting from very simple simulations that 

can predict the region of refractive indices for which the sensor will be operative. This gives, let us 

( a )

Dielectric Metal

Tapered fibre

( )b ( c )
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say, the “main plasmon” of the structure, and we have shown how it is easily tuned to the desired 

operating region. For instance, in Figure 3a (where we show the spectral transmittance of the device), 

we are working in the near infrared region and with typical thicknesses of 8–10 nm of aluminum and 

40–50 nm of titanium dioxide. If we were working with really flat layers this should be the only 

plasmon excited, but, as it can easily be seen in the figure, this is not the case anymore with 

asymmetric depositions. We can observe very well defined dips that displace the same way plasmons 

do when the refractive index of the outer medium is changed. That means that we have multiple sensor 

resonances, a feature specific of asymmetric DLUWTs. 

Figure 3. Representative experimental behavior of asymmetrically deposited DLUWTs. 

On the left (a), spectral transmittance, showing several plasmon dips, which displace 

themselves when changing outer refractive index; On the right (b) these displacement in 

terms of the value of plasmon wavelength. 

 
(a) (b) 

The possibility of counting with more than one plasmon for the measurements is very interesting 

from the practical point of view, both for self-referencing and for multiparametric detection. It is also 

an experimental confirmation of the fact that a gradient of thickness in the deposited layers provides 

not only one, but several fulfillments of the conditions of resonance, but, obviously, for different 

plasmon wavelengths. Following the displacement of those wavelengths we can measure refractive 

index with a remarkably high sensitivity (Figure 3b), although even higher ones can be achieved in 

some other cases, as we will see below. 

However, another thing that we can observe with asymmetric (and not with flat) deposits is that the 

dependence on polarization of plasmon excitation decreases. The fact that this dependence is, so to 

speak, inherent to the conditions of excitation imposes the need of adding polarization controlling 

elements to any experimental setup, if one wants to make the response of the device stable and 

optimal. This is always inconvenient, because the final configuration of the sensor is complicated. We 

have been using this kind of polarization control (normally, Lefébvre loops) and in the case of 

asymmetrical deposits we showed how the use or non-use of these elements was almost irrelevant, 

proving that the excitation of plasmons was no longer critically dependent on that, because, as we have 

said, the deposit extends itself in a larger angle, and fields vibrating in a direction other than the 

normal can produce resonances. 
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A natural way of extending this property was to produce fully symmetrical deposits, in which the 

cylindrical symmetry of the guide was still preserved once the layers are present. To achieve this we 

needed to introduce in the vacuum chamber a rotating mechanism to expose the whole circumference 

of the fiber, and the results obtained were remarkable, since no dependence with polarization was 

present at all (and hence there was no need of the addition of any controlling elements). Another 

remarkable feature of symmetrical DLUWTs is that, as expected, we had no longer multiple 

resonances, but only one, quite wide, dip (Figure 4). Since we have no preferred direction of vibration 

for the excitation and the thickness was similar in the whole section of the taper, all the resonances 

were, so to speak, the same. The width is associated to the residual gradient of thickness, unavoidable 

because the strict homogeneity of the deposit was unreachable even rotating the sample. Again, the 

results were important not only because of their potential usability (the fact that we will not need any 

more polarization controllers is a very interesting practical improvement) but also because of the 

insights that they provide to the way plasmons are generated in this kind of structures. 

Figure 4. Representative experimental behavior of symmetrically deposited DLUWTs: a 

wide plasmon dip, that displaces itself when refractive index of the outer medium changes 

and no polarization dependence (continuous and dashed lines show use or not use of 

controlling elements (originally published in [8] and reproduced by kind permission of 

Springer Science + Business Media). 

 

In that sense, the fact that the structures based on up and down deposits (type b of Figure 2) show 

an increased dependence on polarization corroborates the idea that this dependence is associated to 

privileged directions of vibration. 

5. Experimental Results II: Possibility of Wavelength Tuning in a Wide Spectral Area 

With DLUWTs, and only by changing the thicknesses of the deposited layers (not even changing 

the materials) we can displace the operating region of the devices in a range of about 1,000 nm. We 

have been working most of the time in the near infrared area (around 850 nm) and for values of the 
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measured refractive index corresponding to those of aqueous media (around 1.33), the most important 

one for biological applications. We have proven that we can work, for the same range of refractive 

indices, in the C-Band with wavelengths around 1500 nm (no single-layer device can do that) [9], or 

with wavelengths well into the visible region, down to 500 nm [10], and always with the same good 

behavior in terms of simplicity and sensitivity. This versatility is achieved at almost no cost, since the 

production of the devices is strictly the same. 

In recent times we have been studying a more ambitious step that will carry SPR technology well 

into the mid infrared region, although it seems that integrated waveguides are then the best option [11]. 

However, fibers can still be used for wavelengths longer than those of the communications band. 

In Figure 5 we show results for visible and C-Band, and in Table 1 we summarize the 

characteristics parameters of DLUWTs when used in the different spectral regions. Note how high the 

sensitivities of these devices are. 

Figure 5. Representative experimental behavior DLUWTs working in extreme spectral 

regions for aqueous outer media. (a) Visible region, shown dependence on waist diameter; 

(b) C-Band, displacement of multiple plasmons with refractive index (figures originally 

published in [10] and [9], 
©

 2010 and 2014, reproduced with permission from Elsevier). 

 
(a) (b) 

Table 1. Summary of SPR sensors based on DLUWTs for different spectral regions (table 

originally published in [10], 
©

 2014, reproduced with permission from Elsevier). 

Wavelength Range Thickness of Al [nm] Thickness of TiO2 [nm] Sensitivity [nm/RIU] Ref. 

550–700 nm 8 25 2000 [10] 

750–850 nm 8 60 4000 [8] 

C-Band, 1.5 m 19 99 5000 [9] 

6. Experimental Results III: Variations and Improvements 

Many other different possibilities have been tested with DLUWTs as SPR sensors starting from the 

basic scheme depicted above. We summarize some of them here. 
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6.1. Use of InN as Dielectric Material 

The use of InN implies some advantages from the fabrication point of view and it is also an 

environmental-friendly material. In principle, we can consider it as one of many candidates to assume 

the role that TiO2 has been playing, but, preliminary as they are, the experimental results obtained 

show how incredibly high the sensitivity of InN-based devices is (without any other change in the 

usual components of DLUWTs). In Figure 6 we show the behavior of an asymmetric DLUWT with an 

InN layer [12]. 

Figure 6. (a) Behaviour of a DLUWT with 8 nm of aluminum and 30 nm of indium 

nitride. Sensitivity, measured from the slope of the curve of figure (b) is 10,800 nm/RIU 

(figures originally published in [12], 
©

2011, reproduced with permission from Elsevier). 

 
(a) (b) 

6.2. Pre-Treatment of Fibers with Chemical Attack 

The chemical attack to the fibers with HF induces some roughness on the surfaces. In principle, it is 

expected that the deposition is favored, and, effectively, it contributes to the stability of the behavior of 

the devices in repeated immersions. Also, the variability of thickness associated to the roughness 

diminishes the dependence of the devices with polarization and contribute to the disappearance of 

secondary plasmon dips, thus approaching the behavior of asymmetric devices to that of symmetric 

ones [13]. 

6.3. Reflective Measuring Configuration 

Polishing the end of the fiber after the tapered region and using a silver deposition technique we can 

transform our devices, that usually operate in transmissive configuration, into reflective-mode 

transducers, making them more compact and smaller and simpler to operate in real measurement 

conditions. The double pass through the interaction region increases the response and decreases 

polarization dependence [14]. 
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6.4. Interrogation Scheme Based on FBGs 

With the intention of pushing the limits of SPR devices as far as we can, and also to provide the 

possibility of self-referencing and/or independence with temperature, we propose a new concept of 

sensor that, while still based on DLUWTs, incorporates fiber-Bragg gratings (FBGs) not as part of the 

transduction, but of the interrogation (Figure 7). This is a powerful concept, when considering the 

extreme spectral sensitivity of FBGs and the fact that most of the SPR-based measurements are related 

to the determination of the displacement of a given wavelength, associated to a resonance. In Figure 7 

we show a scheme of the proposed setup. The combination of the signals of the gratings permits to 

increase the resolution of the measurements. These improvements are very easily implemented when 

working with such simple devices as DLUWTs [15]. 

Figure 7. Scheme of an advanced interrogation technique for SPR sensors based on 

DLUWTs and FBGs (figure originally published in [15], 
©
 2010, reproduced with permission 

from Elsevier). 

 

6.5. Selectivity through Absorption 

All SPR refractometers (those presented here and also any other one, before any recognition agent 

is added) measure only variations of the refractive index of the outer medium, independently of how 

these variations are produced. This means that they are not selective. They begin to be selective when 

we choose a substance to be added to the basic SPR sensor setup that reacts to the analyte in any or 

other way. But we have showed, first theoretically [16] and then experimentally [17] that a 

conventional SPR device (one of the DLUWTs presented here with no further modification 

whatsoever) is in fact selective if the outer medium is absorptive and we tune the position of one of the 

plasmon wavelengths to one of the absorption wavelengths of that medium. The effect of this coupling 

is a, so to speak, inhibition of the plasmon, with an increase on the value of the transmittance 

corresponding to that dip, while the usual variation of the real part of the refractive index still produces 

the displacement of that dip. 

This is a very interesting effect, both from the theoretical and experimental point of view, and, 

although it can be applied with any scheme of plasmon excitation, it is with DLUWTs that it finds its 

real value, due to the versatility of these devices, and the possibility of tuning of their resonances in an 

easy way, as depicted above. This is an ongoing research and will become more fruitful in the future. 
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We show the effect of the “plasmon inhibition” for absorptive medium in Figure 8. This effect is, of 

course, increased with the concentration of the absorptive species that can, in this way, be measured. 

Figure 8. Behavior of a DLUWT when the resonance is tuned to an absorption wavelength 

of a substance present in the outer medium in terms of its concentration (figure originally 

published in [17], 
©

 2011, reproduced with permission from Elsevier).  

 

7. Conclusions/Outlook 

We have presented in this review a brief summary of the main results concerning the use of doubly 

deposited uniform-waist tapered optical fibers (DLUWTs) as surface plasmon resonance (SPR) 

transducers. DLUWTs are easily fabricated and their construction parameters can be accurately 

controlled. The thicknesses of the layers can be varied to adapt the response of the sensors to different 

wavelength ranges, from the visible to the C-band in the infrared. In all cases, the systems show high 

sensitivity and very good general performance. 

DLUWTs also provide unique features, that cannot be found in other SPR devices. For instance, 

asymmetric deposits produce multiple plasmon dips that can be used for simultaneous measurement of 

different effects or for self-referencing. Also, the dependence on polarization of DLUWT-based SPR 

transducers is small, and can even be eliminated with symmetrical deposits. 

DLUWTs can be used as a part of ambitious, sophisticated interrogation schemes involving FBGs, 

and their performance can be improved also by chemical preprocessing of the surfaces of the fibers. 

Additionally, when used in absorptive media they can provide selectivity to specific chemical species 

without the need of recognizing agents. 

For all these reason, tapered-fiber-based SPR transducers are ideal for their use as basis for chemo- and 

biosensors for exigent measurement conditions. The main challenge now is to adapt the basic scheme 

here presented to specific analyte detection, to ensure the correct incorporation of chemical reactants to 

the taper. 

Also, the good performance of tapered-fiber-based SPR refractometers permits to think in the 

determination of different physical parameters via the coupling with refractive index variation, for 

instance, through magneto-optical or electro-optical effects. Finally, the dynamics of plasma-wave 
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excitation and propagation in guiding structures is also greatly clarified with the experimental results 

here exposed. 
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