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Abstract: It is known that parameter selection for data sampling frequency and 

segmentation techniques (including different methods and window sizes) has an impact on 

the classification accuracy. For Ambient Assisted Living (AAL), no clear information to 

select these parameters exists, hence a wide variety and inconsistency across today’s 

literature is observed. This paper presents the empirical investigation of different data 

sampling rates, segmentation techniques and segmentation window sizes and their effect on 

the accuracy of Activity of Daily Living (ADL) event classification and computational load 

for two different accelerometer sensor datasets. The study is conducted using an ANalysis 

Of VAriance (ANOVA) based on 32 different window sizes, three different segmentation 

algorithm (with and without overlap, totaling in six different parameters) and six sampling 

frequencies for nine common classification algorithms. The classification accuracy is based 

on a feature vector consisting of Root Mean Square (RMS), Mean, Signal Magnitude Area 

(SMA), Signal Vector Magnitude (here SMV), Energy, Entropy, FFTPeak, Standard 

Deviation (STD). The results are presented alongside recommendations for the parameter 

selection on the basis of the best performing parameter combinations that are identified by 

means of the corresponding Pareto curve. 
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1. Introduction 

Ambient Assisted Living (AAL) is currently on the research agenda of many stakeholders 

worldwide, especially in Western countries, driven mainly by the needs of an aging population and in 

an attempt to address the demands of care and intervention for the elderly and those who require care. 

The main areas of interest in Assisted Living (AL) include fall prevention, promotion of independence, 

as well as ambulation and Activity of Daily Living (ADL) monitoring (for fall detection, activity 

recognition and classification). The timeliness and accuracy of the classification of ADL activities 

could have severe consequences if inadequate, especially in the case of an emergency event such as a 

fall and are therefore essential to provide the elderly with a sense of security and confidence [1,2]. 

Furthermore, reasonable levels of ADL facilitate the promotion of independence, hence the need for 

ambulation and ADL monitoring. Consequently, automated monitoring of subjects living 

independently in their homes, using wearable and off-body sensor-based devices, has been the subject 

of numerous research studies. While the literature highlights a great number of research areas for assisted 

living, such as sensor designs, placement of monitoring devices, novel monitoring techniques, fall 

detection and ADL data collection and classification methods, it fails to clarify some of the underlying 

and fundamental aspects of data collection in this field such as data acquisition and pre-processing 

(outlined in Figure 1, presenting standard prerequisites before ADL classification can take place). 

Figure 1. Pre-steps before ADL. 

 

Falls and ADL events are generally classified based on the features extracted from segments of the 

monitoring sensor data and have therefore a significant role in the accuracy of event classification [3]. 

Even though researchers are aware of the importance of sampling frequency; segmentation method; 

and window size with respect to feature extraction, the issue is not addressed in the reviewed studies 

with no clear explanation or justification given for the parameter selection. Furthermore, researchers 

tend to ignore the required Computational Load (CL) for data classification, which is of particular 

interest once data classification takes place on an embedded system for real time ADL recognition. 
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The literature review showed that there is no consensus in the selection of parameter combinations 

which once chosen, are seldom varied by researchers to improve classification results. Therefore, the 

work described in this paper empirically investigates the influence of sampling frequency (SF), 

segmentation method (SM), and windows size (WS) on the classification accuracy (CA) and 

computational load (CL) using two independent datasets (from Bao et al. and Roggen et al.). The work 

presented here tests eight commonly used features that are obtained from the accelerometer sensor data 

to determine CA and CL. The input information for the classifier are Root Mean Square (RMS), Mean, 

Signal Magnitude Area (SMA), Signal Vector Magnitude (here SMV), Energy, Entropy, FFTPeak, and 

Standard Deviation (STD). The results have been analysed using an ANalysis Of VAriances 

(ANOVA) to reveal the influence of the parameter combinations on the CA and CL. This is followed 

by an approach to recommend the parameter combinations that achieve the best CA disregarding CL 

and vice versa. Other parameter combinations may represent interesting trade-off points between these 

two preferences. This may be required in situations where time and hardware resources are limited. 

The authors aim to provide a more informed approach to parameter selection for event classification 

(with respect to the investigated ADLs) in the area of AAL. 

Section 2 will highlight existing literature to outline the inconsistency and insufficient justification 

for parameter selection in ADL classification. This section also presents the process of data acquisition 

and introduces different segmentation techniques. Section 3 describes the investigation procedure. 

Section 4 presents the experimental results with a recommendation for parameter combinations, and 

Sections 5 and 6 present the discussion of results and conclusion. 

2. Divergence in the Parameter Selection 

2.1. Sampling Rate 

The acquisition of data is one of the most critical steps in event classification as re-running 

experiments with test subjects is not always possible. Undersampling leads to loss of information and 

oversampling can result in information buried in unwanted noise. In the latter case, longer 

computational time is needed for analysis as more data needs to be processed. The minimum sampling 

rate fsampling is dependent on the maximum frequency contained in the data signal fmax (the sampling 

theorem) [4]. In the area of AAL, a review of the literature has not uncovered a typical sampling frequency. 

The highest sampling rate for AAL that the authors found during their research is 512 Hz by [5] 

followed by the works of [6] where the authors use a sampling rate of 256 Hz to collect accelerometer 

data. [7] use a two-axis accelerometer and a sampling frequency of 76.25 Hz, which is less than 1/3  

of [6] sampling rate. [8] choose fsampling to be 64 Hz. The authors acknowledge the high frequency 

sampling rate used by [6] however they reduced the sampling frequency on the bases that lower values 

are more feasible with off-the-shelf activity monitors. They further mention the work of [9], who 

sample accelerometer data at 50 Hz, therefore resampling their own data at the same frequency as well. 

Overall the literature highlights that values around 50 Hz are one of the more common sampling  

rates. [10] use 52 Hz, [11] use 50 Hz to sample their tri-axial accelerometer, while [12] and [13] also 

report a 50 Hz sampling rate for an eWatch with two-axis accelerometer and a light sensor. To the 

authors’ best knowledge, [13] are the only ones that tested different sampling frequencies (from 1 to 30 Hz) 
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for the sensor data. The outcome highlights that the recognition of ADLs improves with higher sampling 

rates but only marginally improves with sampling rates above 20 Hz. In [14] the authors demonstrate that 

98% of the FFT spectrum amplitude is contained below 10 Hz, and 99% below 15 Hz. This corresponds 

to the findings of [15] who state that a sampling frequency of 20 Hz is sufficient to successfully classify 

ADLs. The lowest sampling rate that the authors found in the literature is 5 Hz by [16]. 

2.2. Data Preprocessing Techniques 

2.2.1. Segmentation Method 

One of the challenges of data pre-processing following acquisition consists in deciding which points 

to actually use in the live stream of data. Several different segmentation methods exist to divide a 

larger data stream into smaller fit for processing chunks. The selection of the right segmentation 

technique is crucial, as it immediately impacts on the extracted features used for the ADL 

classification and the resulting classification accuracy. Therefore even the best classifier performance 

will be weak when the extracted features are non-differentiable [3]. Furthermore, the segmentation 

techniques can also have an impact on the real time capabilities as complex segmentation methods can 

increase CL but might result in improved classification accuracy. Moreover, the segmentation method 

also dictates how often features need to be extracted and classification algorithms need to be executed. 

Literature has highlighted several different segmentation techniques used in various research projects, 

such as: Fixed-size Non-overlapping Sliding Window (FNSW) [3,17], Fixed-size Overlapping Sliding 

Window (FOSW) [3,17], Top-Down (ToD) [17], Bottom-Up (BUp) [17], Sliding Window And 

Bottom-up (SWAB) [17], Symbolic Aggregate approXimation (SAX) [3], String Matching (SM) [3], 

Reference-based Windowing (RbW) [18], Dynamic Windowing (DWin) [19] and Variable-size 

Sliding Window (VSW) [20]. The significant difference in these techniques resides in their online and 

offline capabilities. The meaning of an online technique is that the data can be segmented before the 

complete data is collected, while offline methods require the entire dataset first. For real time 

applications, only online techniques are of interest. [17] note that online algorithms can produce very 

poor approximations of data under certain conditions but have a relatively good performance on noisy 

data. However, the authors also highlight that the FOSW segmentation algorithm is of particular 

interest in medical research, e.g., patient monitoring as the algorithm is simple and intuitive for 

researchers to understand. As part of this paper the algorithms investigated should be fairly simple to 

understand and online capable (FNSW, FOSW, and SWAB). 

2.2.2. Window Size 

Researchers who use fixed size window segmentation methods apply inconsistent window  

sizes. [10] use especially short windows of 1 s. [8] report to use a 2 s window based on their short 

ADLs in their research and because they achieve only a minimal gain in classification accuracies with 

features from a 3 s window. Further examples for short windows are [21] and [9], with 2 s and 2.56 s 

respectively. [13] extract features from a 4 s buffer, [12] use 5 s in their research, and [7] report a 

window length of 6.7 s. While these researchers are using short window sizes, [20] describe the usage 

of a 60 s windows in the work of [22] and 74 s in [23]. Furthermore, [20] introduce possible 
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modification to the fixed size window methods. The authors suggest in their work to dynamically 

adjust the window size based on special events in the sensor data as different ADLs have different time 

frames. They raise the point that longer window sizes can cover more than one ADL while a small 

window could split an activity, which both leads to suboptimal information for an activity 

classifications algorithm. 

Table 1. Inconsistency in sampling rates and segmentation windows for AAL. 

Authors 
Sampling 

Frequency [Hz] 

Segmentation 

Window [s] 

Segmentation 

Method 
Testsubject Information ADLs 

Huynh [5] 512 0.25, 0.5, 1, 2, 4 

FNSW, FOSW 50%, 

FOSW 75%, FOSW 

80.5%, FOSW 93.75% 
 

Walking, Standing, Jogging, Skipping, Hopping, 

Riding Bus 

Sekine [6] 256 
  

Subjects 11; Age 69.3 ± 5.6 

years; Height 1.54 ± 0.078 m; 

Weight 50.4 ± 9.6 kg 

Walking 

Bao [7] 76.25 6.7 FOSW 50% 
Subjects: 13 male, 7 female;  

Age 17–48 years 

Walking, Sitting & Relaxing, Standing Stil, 

Watching TV, Running, Stretching, Scrubbing, 

Folding Laundry, Brushing teeth, Riding 

Elevator, Walking Carrying items, Working on 

Computer, Eating or Driniking, Reading, Bicycling, 

Strength Training, Vacuuming, Lying Down & 

Relaxing, Climbing Stairs, Riding Escalator 

Preece [8] 64 2 and 3 FOSW 50% 

Subjects: 10 male, 10 female; 

Age 31  ± 7 years; Height  

1.71 ± 0.07 m; Weight  

68 ± 10 kg; BMI 24 ± 3 

Walking, Walking Upstairs, Walking 

Downstairs, Hopping on Left Leg, Hopping on 

Right Leg, Jumping 

Wang [9] 50 2.56 FOSW 50% 

Subjects: 39 male, 12 female; 

Age 21–64 years; Height  

1.53–188 m; Weight 42–94 kg 

Walking, Walking Slope Up, Walking Slope 

Down, Walking Stairs Up, Walking Stairs Down 

Casale [10] 52 1 FOSW 50% Subjects: 11 male, 3 female 
Walking Stairs Up, Walking Stairs Down, Walking, 

Talking, Staying Standing, Working at Computer 

Ravi [11] 50 5.12 FOSW 50% Subjects 2 

Standing, Walking, Running, Walking Stairs Up, 

Walking Stairs Down, Situps, Vacuuming, 

Brushing Teeth 

Pärkkä [12] 50 5 
 

Subjects 7; median (range); 27 

years (4–37); Height 180 (92–187) 

Lying, Sitting, Standing, Walking,  

Bicycling, Running 

Maurer [13] 50 4 FOSW 92% Subjects 6 
Sitting, Standing, Walking, Walking Stairs 

Up, Walking Stairs Down, Running 

Antonsson 

[14] 
1–30 

  
Subjects 12 Walking (Gait) 

Bouten [15] 20 
  

Subjects: 13 male; Age 27 ± 4 

years; Height 1.83 ± 0.07 m; 

Weight 77 ± 12 kg 

Sedentary Activities, Household Activities, 

Walking 

Gjoreski [16] 5 1.4 
  

Standing, Lying, Sitting, On all fours, Sitting on 

the Ground, Going Down, Standing Up 
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Table 1. Cont. 

Authors 
Sampling 

Frequency [Hz] 

Segmentation 

Window [s] 

Segmentation 

Method 
Testsubject Information ADLs 

Nyan [21] 256 2 
 

Subjects 22; Age 20–45 years; 

Height 1.67–1.94 m;  

Weight 45–93 kg 

Walking, Walking Upstairs, Walking 

Downstairs 

Kasteren 

[22]  
60 FNSW Subject 1 

Leaving House, Toileting, Showering, Sleeping, 

Breakfast, Dinner, Drink 

Patterson 

[23]  
74 

 
Subject 1 

Using Bathroom, Making Oatmeal, Making 

Soft-Boiled Eggs, Preparing Orange-Juice, 

Making Coffee, Making Tea, Making or 

Answering a Phone Call, Taking out the 

Trash, Setting the Table, Eating Breakfast, 

Clearing Table 

Pietka [3] 
  

FNSW, FOSW, SAX, 

SM   

Keogh [17] 
  

FNSW, FOSW, Bup, 

SWAB   

Chu [18] 
  

RbW 
  

Kozina [19] 
  

Dwin 
  

Ortiz Laguna 

[20]   
VSW 

  

The work of [16] has a similar point, indicating that to achieve good classification accuracy, 

different sensor features should be extracted using varying window sizes. These methods lead to 

complex monitoring systems if several ADLs need to be classified. Each feature window could yield 

different ADL classification results, which would then require a voting system to predict the correct 

ADL from the list of possible activities. Section 2 highlighted the divergence in parameter selection in 

the literature covering ADL event classification. Table 1 represents a summary of the different 

combinations discovered. The section above pointed out problems that are introduced when the wrong 

sampling frequency (over/undersampling) is used for the data acquisition. It also showed that 

researchers in the field are not in agreement over which sampling rate to use. The section also showed 

the use of various window sizes covering a wide range of values. Most studies base their parameter 

combinations on past experiments, hardware limitations, or do not state a specific reason. It was also 

found that possible CA or CL improvements based on different combinations are neither investigated 

nor mentioned. This inconsistency in parameter selection is the fundament for the study presented here 

for a more informed decision on parameter selection. 

3. Investigation Procedure 

This work presented here was based on two different datasets from the literature. The first dataset 

contains two-axis accelerometer data collected by [7]. The data contains 20 different participants (13 males 

and seven females with a mean age of 21.8 years (±6.59 years SD)), which were recruited at the MIT 

with the help of posters. The experiment required the test subjects to execute several different ADLs 
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under laboratory conditions without any supervision or guidance. Sensor data was collected 

simultaneously at five different positions (ankle, thigh, wrist, hip, upper arm), with a sampling 

frequency of 76.25 Hz. From the five sensor positions, the data of the hip sensor from all twenty 

different participants were used with the focus on ADLs such as, walking, sitting, walking and 

carrying an item, standing still, lying down, and climbing stairs. The second dataset is the Opportunity 

dataset collected as part of a European Funded project by [24]. The dataset is not limited to just  

body-worn accelerometer data. The complete set includes a total of 10 different sensor types, such as 

microphone, magnetometer, UWB localization, RFID, etc., totaling a collection of 72 sensors. Data 

was recorded with 12 test subjects, which are not further specified. Of these 12 subjects only three 

subjects are labeled and available in the UCI Machine Learning Database. The labeled locomotion 

activities that were used from this dataset are stand, walk, sit, and lie. As both datasets should be 

similar to allow for comparable result, the Opportunity dataset was limited to the accelerometer 

(sampled at 64 Hz) placed at the subject’s hip and limited to the x and y axis. Using Matlab [25], the 

sensor data was resampled, segmented and the data features extracted, while the Weka software 

package [26] provided the implementation of the classification algorithms. 

3.1. Resampling 

Section 2 showed that sampling rates vary greatly throughout the literature; it also indicated a high 

use of sampling rates around 50 Hz even though the work of Maurer et al. argues that sampling rates 

above 20 Hz only marginally improve classification accuracy [13]. Therefore the complete data set was 

resampled using Matlab at six different sampling rates in the range of 10 to 60 Hz in 10 Hz steps. 

Intermediate steps were ignored for the benefit of faster experiments, as well as the authors’ belief that 

the omission of intermediate steps would not cause loss of generality of the results. Additionally, 

sampling rates above 60 Hz were excluded, as the authors concur with [8], who stated that higher 

sampling rates are harder to achieve with off-the-shelve-components. 

3.2. Data Segmentation 

The work presented here focuses on three online segmentation techniques: FNSW, FOSW (with  

four different overlap percentages), and SWAB that were introduced in Section 2.2. As described 

above, the advantages of these algorithms are that they are online capable, therefore can be used while 

the data collection is in progress and are simple and intuitive so that they are easily understood.  

FNSW is a simple segmentation technique without any data overlap (see Figure 2a). The end point 

of segmentation window N is the starting point for window N + 1. It is therefore possible to exactly 

calculate the amount of windows generated for a given data set size with Equation (1): 

                    
 

  
 (1) 

where S is the total number of signal samples and                        , where           is 

the data resampling rate used (in the range of 10 to 60 Hz) and            is the selected window 

size (in the range of 0.5 to 24 s). One disadvantage of this technique is that data associated with a 

particular feature (e.g., fall) can be split between windows. A FNSW sliding technique that is not 
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covered in this paper is to leave a gap between adjacent windows, as this would result in uncovered 

sensor data and therefore could miss important information. 

Figure 2. Explanation of segmentation method. (a) FNSW; (b) FOSW with 50% overlap. 

 

The FOSW segmentation technique is based on FNSW but includes data overlap (see Figure 2b 

showing FOSW with an overlap of 50%). Depending on the percentage overlap, more or less data 

overlaps from window N into N + 1. This is also referred to as a window shift. A 0% overlap 

corresponds to the FNSW segmentation method, while an overlap of 100% would yield to a static 

window as it would not be shifted and the data would always be segmented at the exact same point. 

Therefore, the requirement for FOSW is to move with at least one data point per segmentation. The 

number of segmentation windows generated can be calculated using Equation (2): 

                    
 

      
  

   

 
(2) 

with    being one of the following percentage overlap values used for this research: 25, 50, 75, and 90. 

SWAB is the third segmentation technique used as part of the study presented here and was 

designed by [17]. It is a combination of the Sliding Window and Bottom-up approach. The process is 

visualized in Figure 3. The algorithm has a fixed size data buffer that is used for the Bottom Up 

approximation, which joins the smallest approximation segments until a stopping condition is met. 

Once the approximation for the window is complete the data buffer shifts by the first segment (here 

identified as Segment #1 in the illustration) and the process is repeated for the new buffer window. 

Each segment is used for feature extraction. As the data shift is dependent on the dataset and its 

approximation, it is not possible to estimate the amount of segmentation windows generated by the 

algorithm. The implementation is more complex compared to the FNSW and FOSW methods 

described above and therefore an increased CL is expected while the CA gain is uncertain even though 

literature suggests improved results. 

As highlighted earlier in Section 2.2, there is no clear recommendation in the published literature on 

the selection of the window size used for the data segmentation. The authors therefore tested a range of 

32 different sizes in the range of 0.5 to 24 s. In the area of 0.5 to 8 s, the size is increased in 0.5 s steps, 

while thereafter the step size is increased to 1 s. The 0.5 s step size was increased after 8 s because the 

ADLs under investigation have only a short time frame and computational load was reduced for the 

experiment. Even though literature showed the use of longer window sizes the aim is to only include 
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Segmentation

Window #1

Segmentation
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Segmentation
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Segmentation
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Segmentation
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Segmentation

Window #4

Segmentation

Window #2

(a) FNSW
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single ADLs in each window to achieve the best classification results. The authors’ initial research [27] 

supports this idea as it indicates a decrease in accuracy for window sizes above 8 s. Furthermore, it is 

the authors’ belief that most ADLs will only take a short amount of time and a maximum of 24 s 

should be sufficient to include at least two ADLs. 

Figure 3. Explanation of segmentation method SWAB. 

 

3.3. Data Feature Selection 

The following eight metrics are quite common in the area of ADL classification and therefore used 

to retrieve the different features of the accelerometer sensor data in this research: Root Mean Square 

(RMS), Mean, Signal Magnitude Area (SMA), Signal Vector Magnitude (here SMV), Energy, 

Entropy, FFTPeak, Standard Deviation (STD). These metrics and their significance are discussed 

below as each individual metric has its own influence in the research field. 

RMS has been used to distinguish walking patterns [6] as well as being an input to classifiers for 

activity recognition [16,28]. The RMS value is calculated using Equation (3): 

           
   

  
   

 
 (3) 

The Mean metric (see Equation (4)) has been used to: recognize sitting and standing [28,29]; it 

discriminates between periods of activity and rest [30]; and as an input to classifiers such as Decision 

Table, KNN, J48, Naïve Bayes, Random Forest, Hidden Markov Model (HMM) [7,16,31,32]: 

           
   

 
   

 
 (4) 
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The next metric, SMA is used to distinguish between periods of activity and rest in order to identify 

when the subject is mobilizing and undertaking activities, and when they are immobile [15,33,34]. 

Equation (5) implements SMA: 

     
        

 
            

 
 (5) 

SMV, normally referred to as Signal Vector Magnitude (SVM) but changed to SMV to avoid 

confusion with the SVM classifier used, indicates the degree of movement intensity and is an essential 

metric in fall detection [33,34]. The SMV value is calculated using Equation (6): 

     
    

     
  

   

 
 (6) 

Two additional metrics used in this research are Energy and Entropy, which discriminate between 

types of ADL such as walking, standing still, running, sitting and relaxing [7,35]. The calculation of the 

Energy value is based on Equation (7) and the Entropy is calculated using the Matlab function from [36]: 

              
      

  
   

 
            (7) 

Another feature that was extracted from the accelerometer data stream is the FFTPeak for each axis. 

The metric has been used for activity recognition [5,12,35]. The FFTPeak algorithm was based on the 

Matlab Example found at [37]. 

The last metric used is Standard Deviation (STD), which has been extensively used for activity 

recognition [29]; and as an input to classifiers, such as J48, Random Forest and Artificial Neural 

Networks (ANN) [16,38]. Equation (8) describes the calculation: 

            
                

  
    

 
 (8) 

3.4. Classifier Selection 

The software tool Weka implements the algorithms of several different classifiers from which nine 

were selected based on literature to verify the effects of changes in the described parameters  

above. [12] points out that common algorithms for activity classification are Support Vector Machines 

(SVM), Decision Trees, and Bayesian classifiers. The work of [13] included the use of Decision Tress 

and Naïve Bayes classifier. [10] based their research on Decision Trees, Bagging of 10 Decision Trees, 

AdaBoost using Decision Trees as base classifiers and a Random Forest of 10 Decision Trees. 

Additionally, in the work of [16] the authors compare J48 (Decision Trees) and Random Forest. This 

investigation therefore included the following classifiers: Naïve Bayes, SMO (based on SVM), KNN, 

KStar, MultiClassClassifier, Bagging, Decision Table, J48, and Random Forest. All algorithms were 

tested using Weka’s standard configuration and a 10-fold cross validation. An additional classifier  

fine-tuning is a research field in its own and therefore not discussed here. The use of different 

classification methods has enabled the authors to verify the impact of the sampling rate, segmentation 

method, and window size on the classification accuracy over a wide field of algorithms used in AAL. 
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4. Experimental Results 

This section will be split in three subsections to focus on different aspects of the parameter selection 

problem introduced by the variation in classification methods (CM), sampling frequency (SF), 

segmentation methods (SM) and window size (WS). The first two analyses use an ANalysis Of 

VAriance (ANOVA) to investigate the impact of the identified parameters on the two dependent 

variables classification accuracy (CA, as described in Section 4.1) and computational load (CL, as 

described in Section 4.2). The analyses have been conducted in SPSS [39]. In the third subsection the 

authors present the results of an investigation into the effects of various input parameter combinations 

on CA and CL with a view to enable optimum parameter selection based on the identification of the 

corresponding Pareto curve (see Section 4.3). 

Figure 4 below shows the different levels of the four parameters CM, SF, SM, and WS; this has 

resulted in 32 different window sizes, three segmentation methods with different parameters (resulting 

in six SM levels) and six sampling frequencies for each of the nine different classification algorithms. 

This results in 10,368 different parameter levels for each of the 23 test subjects for the analysis of 

variance (ANOVA) in SPSS. The performance measures used are classification accuracy (CA) and 

computational load (CL), as explained in Section 4.2. Next to classification accuracy, literature also 

highlighted the use of precision, recall, and f-measure. In [40] the author argues that precision, recall, 

and f-measure are especially useful for highly imbalanced datasets. For example, when faced with a 

two-class problem with a split of 98% (majority) and 2% (minority), just guessing the majority class 

will achieve an accuracy of 98%. If the detection of the minority class, say, representing rare and 

infrequent events (e.g., falls), is important, an accuracy of 98% would be misleading in terms of the 

performance of the classifier. The datasets used for this research include six and four, respectively, 

different activity classes, which are roughly equally distributed and are equally important to classify. It 

is therefore adequate to use the accuracy of the classifier instead of f-measure: 

          
                            

                
     (9) 

Figure 4. Parameter combinations for each classifier. 
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4.1. Statistical Analysis of Accuracy 

This section reports on the impact of the variations of four input parameters (CM, SF, SM, and WS) 

on classification accuracy (output). During the initial analysis of the ANOVA output, the tested 

accuracy for the KStar algorithm showed a strong sensitivity to changes in the input parameters (SF, 

SM, and WS). Its influence on the analysis was significant and superimposed on the results. As a 

consequence the impact of certain input parameters appeared to be of significance for the classification 

accuracy, while overall the impact resulted from the sensitivity of the KStar classifier. Therefore the 

authors decided to exclude KStar in the analysis in order to avoid a misinterpretation of the overall 

impact of parameters on accuracy. 

4.1.1. Dataset Bao et al. 

The ANOVA results (presented in Table 2), excluding KStar, showed that 49% of the variations in 

the dependent variable (accuracy) are described by the four input parameters. This means, that other 

input parameters that were not tested in the scope of this experiment may have further influence on the 

accuracy. Such a result is not surprising, as the investigated problem is highly complex and it is 

understandable that factors such as the test subject itself and the recorded movement have also an 

impact on the resulting accuracy. 

Table 2. ANOVA output for the CA as the dependent variable (Tests of Between-Subjects 

Effects. Dependent Variable: CA). 

Source 
Type III Sum 

of Squares 
df Mean Square F Sig. 

Corrected Model 3,257,844 a 670 4,862 260 0.000 

Intercept 1,503,713,645 1 1,503,713,645 80,275,936 0.000 

SF 116,380 5 23,276 1,243 0.000 

WS 216,554 31 6,986 373 0.000 

SM 650,201 5 130,040 6,942 0.000 

CM 1,961,904 7 280,272 14,962 0.000 

SF * SM 5,924 25 237 13 0.000 

SF * CM 7,591 35 217 12 0.000 

SF * WS 36,024 155 232 12 0.000 

SM * WS 60,930 155 393 21 0.000 

WS * CM 92,164 217 425 23 0.000 

SM * CM 110,091 35 3,145 168 0.000 

Error 3,439,779 183,633 19   

Total 1,510,410,864 184,304    

Corrected Total 6,697,622 184,303    

a R Squared = 0.486 (Adjusted R Squared = 0.485). 

The table shows the Sums of Squares (a measure for the average variability in the data), Degree of 

Freedom (df—scores that are free to vary once the mean of the set of scores is known), Mean Square 

(which is used to estimated the variance), F (F-Ratio represents the indicator for the significance on 

performance caused by the independent variables instead of chance), and Sig. (indicating the significance 
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level at which the main/two-way interaction effects are significant <0.05 or non-significant >0.05) for 

all main and two-way interaction effects. The two-way interaction effects outline a changing main 

effect of one factor for different levels of a second factor and are therefore of higher interest than the 

main effect alone, if they are identified as being significant. The Sig. column in Table 2 shows that 

each main and the six two-way interaction effects (SM and CM, WS and CM, SM and WS, SF and 

WS, SF and CM, SF and SM) have a significant impact on the accuracy. Furthermore, the Type III 

Sum of Squares can be used as an indication for the importance of the main and two-way interaction 

effects. For an easier overview the rows are already sorted and it is observed that CM is the most 

influential factor followed by SM, WS, and SF in decreasing order. The significance for the two-way 

interaction effects starts with SM and CM and is followed in decreasing order by WS and CM, SM and 

WS, SF and WS, SF and CM and SF and SM. 

Figure 5 shows the interaction effect of changes in the segmentation methods on the classifier 

methods. The Naïve Bayes classifier shows only a minor improvement in accuracy, whilst the 

remaining seven classifiers show a substantial increase with an increased segmentation overlap for 

FOSW. Another visible effect is the good performance of classifiers with the SWAB segmentation 

method, mostly outperforming FOSW with 75% overlap. For Naïve Bayes, SWAB showed a 

significant decrease in performance, which results in an even lower CA when compared to FNSW. 

Figure 5. Two-way interaction effect for SM and CM. 

 

Figure 6 presents the effect of an increased window size on the different classifiers. Besides Naïve 

Bayes, all classifiers show a decrease in accuracy for window sizes below 7 s before stagnating and 

start to decrease after the window size increases above 9 s. Naïve Bayes is the only CM that actually 

improves CA with an increased window size. 

The next effect investigated is the interaction between WS and SM in Figure 7. It is noticeable that 

an increased window size decreases the accuracy for each segmentation method. Furthermore, the 

effect reduces with an increased segmentation overlap, showing a less significant impact on FOSW 
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with 90% compared to FOSW with 25% overlap. SWAB follows the behavior of FOSW with 75% 

overlap with a decreased overall accuracy. The figure also shows that a window size of 6.5 to 11 s 

results in the best accuracy. 

Figure 6. Two-way interaction effect for WS and CM. 

 

Figure 7. Two-way interaction effect for WS and SM. 

 

Figure 8 shows the interaction effect between WS and SF. The effect of an increased window size is 

similar for all six sampling frequencies, while the effect is reduced for a sampling frequency of 10 Hz 

for longer window sizes. The graph also highlights that higher frequencies achieve the best accuracy 

for shorter window sizes, while the 10 Hz sampling frequency requires a slightly larger window. 
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Figure 8. Two-way interaction effect for WS and SF. 

 

The last effect under investigation is SF and CM. The graph is not presented, as there is no 

interaction effect between the different classifiers. The only effect that exists is a minor improvement 

of accuracy for a change of sampling frequency from 10 to 20 Hz with a nearly constant accuracy 

thereafter for all classifiers. This correlates with the statement in [13] that a sampling frequency above 

20 Hz has only a marginally effect on the classification accuracy. For sampling frequencies above 20 Hz 

only minor improvements can be reported. 

4.1.2. Dataset Opportunity 

The ANOVA results (presented in Table 3), excludes KStar for the same reason that is mentioned in 

Section 4.1.1, showed that 53% of the variations in the dependent variable (CA) are described by the 

four input parameters. As before, other input parameters that were not tested in the scope of this 

experiment may have further influence. Compared to the table earlier, the Sig. column shows this time, 

that the three two-way interaction effects (SF and SM, SF and CM, SF and WS) are non-significant for 

this dataset. The data is also sorted based on the Type III Sum of Squares for an easier overview of the 

importance of the main and two-way interaction effects. The influential factors of CM, SM, WS, and 

SF in decreasing order are the same compared to the earlier Table 2 but the order of the two-way 

interaction effects changed. The significant effect is now SM and WS, followed in decreasing order by 

SM and CM, and WS and CM with the rest non-significant. 

Figure 9 investigates the interaction between SM and WS. It is noticeable that an increased window 

size decreases the accuracy for each segmentation method. While SWAB shows a near linear decrease 

in CA, the FOSW and FNSW segmentation methods, show higher variation in CA for longer WS. 
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Table 3. ANOVA output for the CA as the dependent variable (Tests of Between-Subjects 

Effects. Dependent Variable: CA). 

Source 
Type III Sum 

of Squares 
df 

Mean 

Square 
F Sig. 

Corrected Model 1,785,658 a 670 2,665 45 0.000 

Intercept 147,805,613 1 147,805,613 2,587,861 0.000 

SF 9,501 5 1,900 33 0.000 

WS 183,628 31 5,923 104 0.000 

SM 639,572 5 127,914 2,240 0.000 

CM 759,536 7 108,505 1,900 0.000 

SF * SM 778 25 31 0.545 0.968 

SF * CM 1,445 35 41 0.723 0.886 

SF * WS 4,898 155 32 0.553 1.000 

WS * CM 25,038 217 115 2 0.000 

SM * CM 70,397 35 2,011 35 0.000 

SM * WS 90,865 155 586 10 0.000 

Error 1,540,791 26,977 57   

Total 151,132,062 27,648    

Corrected Total 3,326,449 27,647    

a R Squared = 0.537 (Adjusted R Squared = 0.525). 

Figure 9. Two-way interaction effect for WS and SM. 

 

Figure 10 shows the interaction effect of changes in the SM on the CM. The Naïve Bayes classifier 

shows only a minor improvement in accuracy, whilst the remaining seven classifiers show a substantial 

increase with an increased segmentation overlap for FOSW. Another visible effect is the poor 

performance of classifiers with the SWAB segmentation method for this dataset. Results are below 

FNSW, while earlier it was mostly outperforming FOSW with 75% overlap. 
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Figure 10. Two-way interaction effect for SM and CM. 

 

The next effect investigated is the interaction between WS and CM in Figure 11. All CM show a 

decrease in CA for longer WS. The effect is less significant on Naïve Bayes compared to the other 

classifiers. The graph shows that shorter WS result in better CA result. 

Figure 11. Two-way interaction effect for WS and CM. 

 

4.2. Statistical Analysis of Computational Load 

The selection of different SF, SM, WS and CM does not only have an impact on the classification 

accuracy but also on the CL of the system. The CL for the classification of ADL events is based on 

two main factors. The first one is the data pre-processing and feature extraction step (indicated as 
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           in Figure 12) and the second factor is the actual event classification (indicated as 

           in Figure 12). 

Figure 12. Timing factor for computational load. 

 

           depends on the selected SF, SM and WS, excluding any other pre-processing steps 

such as filtering which is not of interest in this study, while            purely depends on the selected 

CM. For real-time applications, the combination of SM and WS introduces a limitation for certain 

parameter combinations, leading to the requirement that Equation (10) needs to be fulfilled: 

                             (10) 

The authors therefore conducted an analysis with the CL as the dependent variable to investigate the 

influence of the four input parameter SF, SM, WS and CM. In the preliminary analysis, one of the 

levels of the SM input showed to have a high influence on the dependent variable. As before with 

KStar superimposing on parameters for the accuracy, the SWAB segmentation method increases 

noticeably the CL as compared to the other methods. Hence, effects that were non-significant before 

are significant once SWAB is removed as a SM level. Therefore, the analysis will outline the overall 

input variables without SWAB segmentation method. 

4.2.1. Dataset Bao et al. 

The result of the ANOVA is represented in Table 4, outlining that 48% of the variation in the 

dependent variable CL are described by the variation in the input parameters. The Source column is 

sorted based on the Sum of Squares to allow for an easier recognition of the importance of an input 

parameter. The data highlights that the most important factor for the CL is CM (with SWAB included, 

this effect was actually non-significant). This is followed by WS, SF and as the least significant 

parameter SM. For the two-way interaction effect the five significant combinations are WS and CM, 

SM and CM, SF and WS, SM and WS followed by SF and SM. 

Figure 13 shows the interaction effect between WS and CM. All classifiers require a longer CL for 

longer WS with a small visible drop in CL for short window sizes about 2 s. The graph also shows that 

the rate in which the CL increases is higher for MCC and SMO. 
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Table 4. ANOVA output for the CL as the dependent variable (Tests of Between-Subjects 

Effects. Dependent Variable: CL). 

Source 
Type III Sum 

of Squares 
df 

Mean 

Square 
F Sig. 

Corrected Model 1.316 a 626 0.002 222 0.000 

Intercept 7.755 1 7.755 818,571 0.000 

SM 0.013 4 0.003 355 0.000 

SF 0.104 5 0.021 2,202 0.000 

WS 0.330 31 0.011 1,122 0.000 

CM 0.515 7 0.074 7,769 0.000 

SF * CM 0.000 35 3.587 × 10−6 0.379 1.000 

SF * SM 0.001 20 5.456 × 10−5 5.759 0.000 

SM * WS 0.034 124 0.000 29 0.000 

SF * WS 0.082 155 0.001 56 0.000 

SM * CM 0.103 28 0.004 390 0.000 

WS * CM 0.134 217 0.001 65 0.000 

Error 1.449 152,957 9.474 × 10−6   

Total 10.521 153,584    

Corrected Total 2.766 153,583    

a R Squared = 0.476 (Adjusted R Squared = 0.474). 

Figure 13. Two-way interaction effect for WS and CM. 

 

The interaction effect for segmentation method and classifier method in Figure 14 shows that there 

is significant improvement in CL for MCC and SMO for an increased overlap. The remaining 

classifiers show only minor changes. 
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Figure 14. Two-way interaction effect for SM and CM. 

 

Figure 15 shows the interaction effects between WS and SF. The longer window sizes result in a higher 

CL in all SF. Moreover, the graph shows that for higher SF the rate of increase in CL does also increase. 

Figure 15. Two-way interaction effect for WS and SF. 

 

The last interaction effect under investigation is WS and SM. The graph in Figure 16 shows that the 

segmentation method has similar patterns to the classifier. All segmentation methods have a significant 

increase in CL for longer window sizes. An interesting observation is that segmentation methods with 

higher overlap result in lower CL for higher window sizes. 
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Figure 16. Two-way interaction effect for WS and SM. 

 

4.2.2. Dataset Opportunity 

The result of the ANOVA is represented in Table 5, outlining that 72% of the variation in the 

dependent variable CL are described by the variation in the input parameters. 

Table 5. ANOVA output for the CL as the dependent variable (Tests of Between-Subjects 

Effects. Dependent Variable: CL). 

Source 
Type III Sum 

of Squares 
df Mean Square F Sig. 

Corrected Model 0.358 a 626 0.001 93 0.000 

Intercept 1.525 1 1.525 247,087 0.000 

SM 0.008 4 0.002 328 0.000 

SF 0.021 5 0.004 671 0.000 

WS 0.090 31 0.003 470 0.000 

CM 0.112 7 0.016 2,595 0.000 

SF * SM 0.000 20 7.884 × 10−6 1 0.181 

SF * CM 0.000 35 7.236 × 10−6 1 0.223 

SM * WS 0.006 124 4.866 × 10−5 8 0.000 

SF * WS 0.011 155 6.966 × 10−5 11 0.000 

SM * CM 0.050 28 0.002 290 0.000 

WS * CM 0.060 217 0.000 45 0.000 

Error 0.138 22,413 6.172 × 10−6   

Total 2.021 23,040    

Corrected Total 0.496 23,039    

a R Squared = 0.721 (Adjusted R Squared = 0.714). 
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The Source column is sorted based on the Sum of Squares to allow for an easier recognition of the 

importance of an input parameter. The data highlights that the most important factor for the CL is CM. 

This is followed by WS, SF and as the least significant parameter SM. For the two-way interaction 

effect the four significant combinations are WS and CM, SM and CM, SF and WS, followed by SM 

and WS. The interaction effect SF and SM that was significant earlier, is non-significant for this dataset. 

Figure 17 shows the interaction effect between window size and classifiers. All classifiers require a 

longer CL for longer WS. The graph also shows that the rate in which the CL increases is higher for SMO. 

MCC that had an increased rate in the earlier dataset follows now the behavior of the other classifiers. 

Figure 17. Two-way interaction effect for WS and CM. 

 

Figure 18. Two-way interaction effect for SM and CM. 
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The interaction effect for segmentation method and classifier in Figure 18 shows that there is 

significant improvement in CL for SMO for an increased overlap. The remaining classifiers show only 

minor changes for the different segmentation methods. 

Figure 19 shows the interaction effects between WS and SF. The longer window sizes result in a 

higher CL for all SF. Moreover, the graph shows that higher sampling frequencies result in an 

increased rate of CL as well. 

Figure 19. Two-way interaction effect for WS and SF. 

 

Figure 20. Two-way interaction effect for WS and SM. 
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The last interaction effect under investigation is windows size and segmentation method. The graph 

in Figure 20 shows that the segmentation method has similar patterns to the classifier. All 

segmentation methods have a significant increase in CL for longer window sizes. An interesting 

observation, as with the other dataset, is that the segmentation methods with higher overlap result in 

lower CL for higher window sizes. 

4.3. Parameter Selection 

Based on the parameter influence described in Sections 4.1 and 4.2, the inevitable question still 

stands: what is the best parameter selection for a given requirement? The answer, however, depends 

strongly on the preference with respect to classification performance, e.g., is the best accuracy required 

or are there limitations to CL. Therefore, a set of well-performing parameter sets based on the trade-off 

between accuracy and CL were identified. For the given dataset certain parameter combinations will 

achieve a similar CA but will require different CL and vice versa. When plotted in a graph, such as 

presented in Figure 21, the best accuracy for a given CL would follow the black line (called Pareto 

frontier), with dominated parameter sets lying on the left hand side of the curve. Hence, a parameter 

set is dominated if there exists a combination of parameter values that results in the same level of 

accuracy with less CL or achieve better accuracy with the same CL. The Pareto frontier, also referred 

to as Pareto curve, outlines the set of non-dominated solutions, herein represented by a set of 

parameter combinations. One set of parameter values may achieve best CA at the cost of a high CL 

(Point 1) and another combination will achieve the lowest CL at the cost of a lower accuracy (Point 2). 

Parameter sets in between points 1 and 2 on the Pareto frontier are subject to a trade-off (Point 3), 

hence accepting the sacrifice of either, accuracy or CL, depending on the context of the applications or 

potential corresponding limitations, e.g., hardware constraints. 

Figure 21. Explanation of the Pareto curve. 

 

4.3.1. Dataset Bao et al. 

Figure 22 represents two separate Pareto curves for the Bao et al. dataset. The illustration shows a 

non-limited Pareto curve over all 10,368 possible parameter combinations and a Pareto curve that is 

limited to 10 Hz sampling frequency, as this is a common hardware limitation for researchers using 

off-the-shelf components. For the non-limited Pareto curve, with 10,368 possible combinations, only  

20 are dominating. The parameter combinations show a maximum SF of 30 Hz with equal occurrence 
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of 20 and 30 Hz (8 combinations each). For the SM parameter only the FOSW method with various 

overlaps percentages shows to be of importance. An overlap value of 90% shows higher CA, while an 

overlap value of 25% results in shorter CL. The dominating points highlight short window sizes of 1.5 s 

for the shortest CL and a WS of 7.5 s for best CA. The dominating classifiers are Naïve Bayes and 

KNN. The latter is in the majority of combinations and results in the best CA, while the former results 

in the shortest CL. The achievable CA ranges from 82.2% with a CL of 0.355 ms to 98.8% with a CL 

of 0.537 ms. The parameter combinations for the Pareto curve limited to 10 Hz SF, highlights only 14 

dominating parameter combinations. The SM shows similar behavior to the non-limited dataset, as 

well as a higher influence of the FOSW method with 75% overlap. The WS is around 1.5 s for shortest 

CL and around 7.5 s for best CA. The CM parameter for the 10 Hz limited case is nearly identical to the 

non-limited case; with the exception of the presence of J48 as an influential algorithm in the former 

case. The achievable CA ranges from 82.2% with a CL of 0.355 ms to 97.7% with a CL of 0.464 ms. 

Figure 22. Dominant points on the Pareto curve. 

 

4.3.2. Opportunity Dataset 

Figure 23 represents the two separate Pareto curves for the Opportunity dataset, based on a non-limited 

and 10 Hz limited parameter combination set. For the non-limited Pareto curve, 12 dominating points 

are identified, while the 10 Hz limited dataset shows only six dominating points. The full dataset 

shows SF parameter values in the range of 10 to 30 Hz with a majority split between 10 and 20 Hz. 

FOSW with 90% overlap (SM) dominates for higher CA and with 25% overlap for lower CL in  

both datasets. 

Short WS have a significant influence in this dataset, as both datasets include parameter 

combinations with 1.5 s or less. The dominating classifiers are Naïve Bayes, and KNN. This is a slight 

variation compared to the 10 Hz limited Bao et al. dataset. The non-limited dataset has a range of 

64.2% to 94.3% in CA with a CL of 0.376 to 0.443 ms. The 10 Hz limited dataset ranges from 63.2% 

to 92.2% for CA with 0.383 to 0.43 ms for CL. 
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Figure 23. Dominant points on the Pareto curve. 

 

5. Summary and Discussion of Results 

One of the main problems in AAL is the availability (or the lack thereof) of test subjects, as 

compared to clinical trials, where subjects can reach into the thousands. In [41] the authors highlight 

that research in AAL starts out as a demonstration of feasibility under laboratory conditions, which in a 

further step needs an increased number of participants and ethical considerations. In [42], the authors 

argue that the use of any one of two activity classification methods, uniform (where the training data 

comes from all tests subjects) and individual (training data representing separate test subjects) can lead 

to problems; generalization (arising from the uniform method), small training data set (individual) can 

both result in poor performance. The research and associated experiments presented here fall in the 

individual category as performance measures (CA and CL) are generated for each of the test subjects 

involved. The authors believe that despite the pitfalls described above, this was the better method to 

adopt; this is in line with Elbert et al.’ approach. Moreover, as the tested activities are nearly equally 

represented in the dataset, using the accuracy measure can be done without loss of validity. This is in 

contrast with the differentiation between, say, normal and abnormal conditions, where the latter occurs 

rarely resulting in an imbalanced set of data; the use precision, recall and f-measure would be a more 

appropriate performance indicator [20]. 

In summary the outputs of the work presented here, are listed below: 

 The importance of parameters for CA ranked in order of decreasing influence is CM, SM, WS 

and SF; 

 The impact of WS is different for both datasets; 

 Increased segmentation overlap improves CA; 

 The influence of SWAB on CA is different in both datasets; 

 SF above 10 Hz has only a minor improvement on CA; 

 CL behaves the same for both dataset; 

 The importance of parameters for CL ranked in order of decreasing influence is CM, WS, SF 

and SM; 

 Some dominant parameter combinations of the Pareto curve are similar for both datasets; 

 Higher CL does not automatically result in higher CA. 
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The following discussion will look into the results of the ANalysis Of VAriance (ANOVA) for CA 

and CL and finish with the dominant parameter points of the Pareto curves. The two-way interaction 

effect between SM and CM highlights for both datasets that FOSW with 90% overlap results in the 

best CA. From FNSW (no overlap) to FOSW with 90% overlap, both datasets show that more overlap 

improves the CA. A possible reason for this is that the increase in overlap allows for a bigger training 

set and has the lowest loss of information, in the range of investigated SM. The results for SWAB are 

mixed. For the Bao et al. dataset CA is just below CA for FOSW with 90% overlap, while the 

Opportunity dataset showed SWAB to be the worst segmentation method tested. Further research 

needs to look into the actual benefit of a dynamically sliding window, which incidentally was reported 

in [20] as giving good results, as the results reported here (in terms of classification accuracy) are 

inconsistent between the two datasets. Another difference between the datasets is observed for the WS 

and CM two-way interaction effect. While for the first dataset (Bao et al.), the CA improves for 

window sizes between 1 and 8 s and only decrease for WS values above 8 s, the second dataset 

(Opportunity) achieves best CA for 0.5 s and starts to decrease immediately after that. A similar 

behavior can be seen for the two-way interaction effect of WS and CM and WS and SM with both 

datasets (compare Figure 6 and Figure 7 in Section 4.1.1 and Figure 11 and Figure 9 in Section 4.1.2). 

Researchers should therefore choose smaller window sizes if possible. Another difference between the 

two datasets is the significance of the two-way interaction effect WS and SF; namely, significant 

interaction (but not the most significant) for Bao et al. and non-significant interaction for the 

Opportunity dataset. The graph in Figure 8 (see Section 4.1.1) shows that sampling frequencies above 

10 Hz achieve nearly the same CA, while the 10 Hz sampling frequency is marginally lower, endorsing 

the finding in [13] that sampling frequencies above 20 Hz result in only minor accuracy gains. 

For CL, both datasets show the same behavior for the two-way interaction effects. For the three 

interaction effects including WS (WS and CM, WS and SM, WS and SF) similar behavior is 

observable. A shorter WS results in a lower CL, while a longer WS will increase the CL. This effect is 

lowest for WS and CM and highest for WS and SM. The interaction effect between SM and CM 

highlights no significant change for any classifier besides SMO. SMO is the only classifier that can 

reduce the CL with an increased segmentation overlap. 

The authors used ANOVA to quantify the influence of the different parameters on the CA and CL. 

They have also used a Pareto curve based approach to highlight dominant parameter combinations for 

―optimum‖ achievable performance (optimality being decided by the user in a given 

context/application). Figure 24 presents the four Pareto curves based on the dominant combinations. 

The illustration shows that all graphs have a similar outline and that it is possible to achieve similar 

results irrespective of the dataset. This is highlighted with only a 4.3% difference in CA between the 

two top performing parameter combinations. However, the dominant parameter combinations are 

different for each dataset. Therefore, it is not possible to present a single combination that will work 

best for all datasets. Having said that, some dominant points have similar parameter combinations. In 

both datasets high CA is achieved with the KNN classifier and the FOSW with 90% overlap for SM. 

Furthermore, the Pareto points show that a sampling frequency above 30 Hz is not necessary and only 

minor improvements in CA are achieved with a sampling frequency above 10 Hz. As a consequence, 

the authors recommend adjusting parameters individually for each dataset and test subject to achieve 

optimal results, especially with regards to WS. The Pareto curves also reveal that a higher 
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computational load does not necessarily result in better classification accuracy, as the algorithms under 

investigation are not recursive. The Pareto curve is also a good tool to investigate the influence of a 

hardware limitation such as a low sampling rate, storage space and battery runtime. When 

superimposing the hardware limited Pareto curve with the non-limited curve a simple comparison of 

achievable CA and CL is possible. The results presented in Section 4.3 in combination with the 

ANOVA in Sections 4.1 and 4.2 can be used for future research as a tool to select parameter 

combinations for AAL event classifications with the sound understanding of how each parameter 

influences the outcome of event classification accuracy and computational load. 

Figure 24. Dominant points on the Pareto curve for both datasets. 

 

6. Conclusions and Future Work 

This paper has presented a new instrument to help select data capture and processing parameters for 

the recognition of Activities of Daily Living (ADL). A review of the literature uncovered a lack of 

consensus in terms of the selection of sampling frequency, segmentation method and window size, and 

classifier method for the recognition of ADL. The impact of the sampling frequency (six levels), 

segmentation method (three segmentation algorithms with different parameters resulting in six 

different levels) and segmentation window size (32 levels) on the classification accuracy and 

computational load of a set of commonly used classifiers (nine levels) has been investigated. This has 

involved experimenting with two datasets, containing 20 and three test subjects, respectively, and 

analysis of the resulting data using ANalysis Of VAriance (ANOVA). The analysis showed that the 

choice of classifier method is the most important parameter followed by the segmentation method, 

window size and finally sampling frequency. It also showed that in the case of computational load the 

parameters ranked in order of decreasing influence are classifier method, window size, sampling 

frequency, and segmentation method. The results have been presented graphically using a Pareto 

curve, which highlighted two dominant classifiers for both datasets (KNN, Naïve Bayes). The Pareto 

curve did not show matching dominant points in both datasets, however, it showed that combinations 

of three out of the four factors (CM, SM, SF) are likely to result in dominant points. The authors have 
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suggested that the Pareto curve is a good instrument which can be used to select sets of parameters 

based on their impact on classification accuracy and computational load and resolve trade-off issues. 

As part of their future work in the general area of AAL, the authors plan to investigate a number of 

issues specific to the findings presented in this paper. An important point of interest is the 

identification of the reasons behind the inconsistency between the two datasets used in terms of the 

influence of WS on the classification accuracy. A possible influential factor, not considered in the 

present work, is the nature of the ADL itself. It might be necessary to adjust the WS parameter with 

regards to the expected ADLs in the dataset; [16] suggested to use different WS parameter 

combinations per activity. The authors also intend to investigate the influence of the features extracted 

and the position of sensors on classification accuracy. Different feature combinations (and a reduction 

in the number of required features) may improve the classification accuracy of different ADLs as well 

as reduce the CL. Moreover, the authors’ propose to couple the results obtained so far with a Decision 

Support System (DSS). Having the option to learn, adjust from past experiences, and include new 

ADLs, would allow for more informed decisions in parameter selection over time. Additionally, 

hardware limitations, such as battery time and communication bandwidth, should be included into the 

selection process. Another direction that the authors want to pursue is the investigation of how to 

improve the Pareto curve by replacing the computational load with a measure for training time and 

training samples, as it could highlight classifiers that could achieve good accuracy within a low 

starting time. 
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