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Abstract: The collision fault detection of a XXY stage is proposed for the first time in this 

paper. The stage characteristic signals are extracted and imported into the master and slave 

chaos error systems by signal filtering from the vibratory magnitude of the stage. The 

trajectory diagram is made from the chaos synchronization dynamic error signals E1 and E2. 

The distance between characteristic positive and negative centers of gravity, as well as the 

maximum and minimum distances of trajectory diagram, are captured as the characteristics of 

fault recognition by observing the variation in various signal trajectory diagrams. The 

matter-element model of normal status and collision status is built by an extension neural 

network. The correlation grade of various fault statuses of the XXY stage was calculated for 

diagnosis. The dSPACE is used for real-time analysis of stage fault status with an 

accelerometer sensor. Three stage fault statuses are detected in this study, including normal 

status, Y collision fault and X collision fault. It is shown that the scheme can have at least 

75% diagnosis rate for collision faults of the XXY stage. As a result, the fault diagnosis 

system can be implemented using just one sensor, and consequently the hardware cost is 

significantly reduced. 

Keywords: master and slave chaos error systems; extension neural network;  

XXY stage; dSPACE 
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1. Introduction 

Automatic production has become a common industrial practice to achieve efficiency and cost 

savings. The components requiring precision operation in the automatic system needs a good 

positioning system as support, in order to achieve uniformity in the products. Hence, a positioning 

stage can avoid low product yields that would lead to increased cost [1,2]. There are multiple 

positioning stage options, such as the traditional XYθ stage, the improved XXY stage, the UVW stage 

and other special stages providing good positioning functions. The stage used in this study is a XXY 

stage, which not only provides high accuracy positioning, but also remedies the defects and problems in 

traditional stages with its special single-layer design, thus achieving good weight capacity [3]. In the 

automatic process, even machinery with the highest precision will encounter faults during operation, 

which may be caused by improper maintenance of the positioning stage or human negligence in 

operation. There are few studies focusing on the control or design of the positioning stage, and 

discussions of positioning stage faults are also rare. There is a lack of a good fault detection system to 

effectively detect faults. These problems are addressed in this paper. The possible causes of the 

positioning stage fault classification are shown in Figure 1. The XXY positioning stage fault 

classification diagram was provided by Chiuan Yan Technology Co., Ltd. (Changhua, Taiwan). As seen, the 

major faults can be divided into motor, driver and stage. This study focused on the XXY collision faults.  

Figure 1. Positioning stage fault classification and possible causes. 

 

In normal operation, when there is wrong movement in motor operation due to human negligence or 

the internal calculation exceeding the machine movement limit, the sliding stage would move beyond 

the moving range. At this point, the machine triggers the photosensor as a protector, meaning that the 

positive or negative limit point of the machine is about to be reached. Thus, the stage is stopped forcibly 

to prevent damages. However, when the stage movement is about to exceed the limit range and the 
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protector is not triggered, the motor continues running, and the components collide with each other, thus 

damaging the stage. This is called collision fault of the stage. Collision faults cause related stage 

damage. The impact between stage parts leads to abrasion, even destruction, and the stage has errors in 

positioning that causes positioning errors. In terms of motor, the motor may be damaged, even burnt. As 

for the stage, where the stage components collide they may suffer displacements or deformations, thus 

lowering the positioning accuracy. Some effects of stage collisions on the stage may not be visible, thus, 

it is important to identify whether the stage has a collision fault when the stage is moving. Otherwise, the 

collision fault does not only occur in the XXY stage of this study, but also may exist in other two or  

more dimensional sliding stages. The proposed method could be applied to other platforms for collision 

fault diagnosis. 

In order to detect the stage collision status, the vibration signal naturally derived from the positioning 

stage is used as the fault feature. The installation of sensors is reduced by single signal acquisition. In 

terms of detection methods, there are many methods with characteristic signal analysis at present. The 

complete signal analysis methods include spectral analysis [4–7], wavelet analysis [8–12] and neural 

network [13–16]. This study used an accelerometer to measure the vibration signala on the XXY 

positioning stage. The characteristic signal was extracted by filtering. The extracted signal passed 

through the master and slave chaotic systems. The signal characteristic was strengthened by using 

chaotic characteristics. The original one-dimensional signal was changed into a chaotic dynamic error to 

become a three-dimensional signal. The trajectory diagram was plotted based on this dynamic error. The 

pattern characteristics were extracted from the error trajectory diagram. The matter-element model was 

built by the pattern characteristics and extension neural network theory, so as to determine the 

positioning stage fault statuses. The signals extracted from the stage were used for spectral analysis, and 

the signals were extracted from the analysis result. These signals were extracted by vibration signals. 

Therefore, the signals were too small to review the stage status, and the extracted signals were imported 

into different master and slave chaotic signal systems. The system dynamic error E was extracted. The 

dynamic error trajectory diagram derived from the characteristic signal was drawn. The characteristic 

pattern variation of the various statuses was selected. Finally, the distance and maximum and minimum 

distances between positive and negative centers of gravity of pattern characteristics were used as the 

pattern characteristics for stage status recognition. The matter-element model most similar to the analyte 

was calculated by using the extension set for identification. The larger calculated value of the correlation 

function was more similar to the status, and the maximum value was the stage status. Finally, the 

dSPACE was used for the required real-time status monitoring. The diagnostic flow chart of this study is 

shown in Figure 2.  

Figure 2. Diagnostic flow chart for XXY stage. 
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2. Master and Slave Chaotic Systems 

The master and slave chaotic systems are built based on the chaos theory. Chaos theory [17] is a 

nonlinear system theory. The signal derived from the chaos system generates an orderly but non-periodic 

kinematic trajectory due to the chaotic attractor. This kinematic trajectory changes significantly due to 

minor signal changes. The naturally pursued dynamic error in the two chaotic systems is extracted by the 

characteristics of the master and slave chaotic systems used in this study. Therefore, the dispersion 

between the master and slave chaotic systems should be obtained in the calculation. The value is the 

dynamic error of system. Taking the Lorenz system as an example, the Lorenz chaos system is a chaotic 

system proposed when Lorenz proposed the chaos theory, the nonlinear differential equation system 

expression is shown as follows, where x, y and z are status variables, a, b and c are system parameters:  
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where u1, u2 and u3 are the controls of slave system. The normal XXY stage signal is added in the 

master system to form a discrete signal S1[n], and the variables are defined as x1 = S1[i], x2 = S1[i + 1] 

and x3 = S1[i + 2], where i = 1, 2, 3,.., n − 2 forming the sampled data series bearing fault signal. The 

fault XXY stage signal is added in the slave system to form a discrete signal S2[n], where the variables 

are defined as y1 = S2[i], y2 = S2[i + 1] and y3 = S2[i + 2]; S2 represents the sampled data series bearing 

the normal signal, n represents the total number of sampled data in a complete cycle, so the 

master-slave system error status can be expressed as e1 = x1 − y1, e2 = x2 − y2, e3 = x3 − y3, and the 

dynamic error system (ED) is changed to:  
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According to [17], when there is no control input, the system parameters a, b and c must meet 

Equation (5), then the system has a chaotic attractor: 
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The convergence rate of chaos dynamic error can be controlled by u1, u2 and u3, and the important 

characteristics of different fault behaviors are formed by using the dynamic error trajectory diagram of 

E1, E2 and E3 on the phase plane. The signals extracted by the positioning stage are filtered, and these 

signals are added as analytic signals into the slave system, so as to obtain the dynamic error signal for the 

master system. Finally, the dynamic error trajectory is drawn according to the dynamic errors E1 and E2. 

The trajectory patterns of various fault statuses are observed. The variance in the patterns of the dynamic 

error trajectory diagrams of various statuses is used as characteristics, and the extension neural network 

theory is used to build the matter-element model.  

3. Extension Neural Network Theory 

The extension theory [18] aims to determine the regularity of statuses based on different statuses of 

things and extensibility, and concludes characteristics by mathematical operation. The extension theory 

is mainly divided into matter-element theory and extension set. The neural network is widely used in 

different areas, especially in control and diagnosis. The extension neural network [19] combines the 

above two theories. This system not only has the simple calculation of extension theory, but also has the 

ability of neural network to build non-linear neurons and strong adaptation. In comparison to other types 

of traditional neural network, the extension neural network has faster learning and higher accuracy, and 

it uses a few data to establish weights. Therefore, the extension neural network can use training data to 

build the matter-element model corresponding to the fault category, adjust and update the weights of 

various eigenvalues, and calculate the extension distance between the analyte and various categories, so 

as to identify the category of an analyte accurately.  

Figure 3 is a schematic diagram of the extension neural network architecture. First, the data are 

classified and imported into the neurons of the input layer. The number of neurons of the input layer is 

determined by the characteristic number of the matter-elements to be identified. The output layer stores 

the calculated extension distances. The extension neural network has only two layers of neurons. One is 

the input layer, the other one is the output layer. There is no hidden layer of the traditional neural 

network. As the number of neurons of the hidden layer in the neural network is determined by expertise, 
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whereas the extension neural network is free from the hidden layer, it is unnecessary to calculate the 

number of hidden neurons, so the fault recognition rate can be increased. In Figure 3, the dotted line 

connecting two layers indicates the weights, which include the upper bound of weight, weight center 

and lower bound of weight. Finally, the minimum extension distance is determined in the extension 

distance of various categories stored in the output layer, such as identifying the fault category. The 

extension neural network, like other neural networks, is divided into training stage and diagnostic 

identification stage. 

Figure 3. Extension neural network architecture. 
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General neural networks can be divided into two types. One is the supervised learning network, and 

the other one is the unsupervised learning network. In terms of supervised learning network, the known 

learning samples are imported into the neural network for recognition training. The learning is finished  

if the recognition results meet the known samples. On the other hand, if the recognition results  

do not meet the known samples, the weight is adjusted for the recognition results to meet the known 

samples. This step is repeated until all the recognition results meet the known samples. As the  

extension neural network is supervised learning, the accuracy of diagnostic system can be increased by 

adjusting the weight, and the error rate can be reduced, and the accuracy rate can be increased. The 
learning sample { }1 2 3, , , ..., NpX X X X X=  is defined before the learning procedure, where pN  is the total 

number of learning samples, and each sample contains data characteristics and category

{ }1 2 3, , , ...,k k k k k
i i i i inX X X X X= , where the learning sample 1, 2, 3,..., pi N= , n  is the total number of 

characteristics in the matter-element model, k  is the category of sample data. The extension distance is 

used to calculate the distance between sample and k-th cluster, the mathematical expression is: 
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For 1,2..., ck n=  

(6)

where k
ijx  is the j-th characteristic of the i-th learning sample of category k , kjz  is the weight 

center between the j-th input and the k-th output, U
kjw  and L

kjw  are the upper and lower limits of 

weights of the j-th input and the k-th output. 

This study used the synchronization system as the basic detector for fault diagnosis. Figure 4 is the 

schematic diagram of the chaos synchronization neural network extension architecture. First, the basic 

signal of the normal solar array is included in the chaos synchronization master system, and the fault 

distorted signal is included in the slave system. Once the fault distorted signal is received, the chaos 

synchronization system tracks the error, and transfers the error signal to the neural network (input layer). 

The number of neurons of the input layer is determined by the characteristic number of the 

matter-elements to be identified. The output layer stores the calculated extension distance. Then the 

extension matter-element model can be used to classify the fault causes completely. The basic 

architecture is shown below. 

Figure 4. Chaos synchronization extension neural network architecture. 
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4. Experimental Results 

The positioning stage used in this study is a XXY stage, developed and made by Chiuan Yan 

Technology (Changhua, Taiwan). A single accelerometer was used as the sensor. The dSPACE signal 

adapter plate transferred data to the computer. The signal changes were extracted by the filtering 

resulting from the vibration signals of various statuses. The extracted signals were imported into the 

master and slave chaotic systems. The differences between faults were increased by chaotic 

characteristics, so as to solve the difficulty in recognizing too small signals. The signal through the 

master and slave chaotic systems was more sensitive to the stage status. The dynamic error trajectory 

was drawn, and the pattern analysis was helpful to the observation of faults. Finally, the matter-element 

model of various fault statuses was built on the pattern characteristics of various statuses. The 

correlation function of the analytic stage for various fault matter-element models was calculated. The 

collision fault for this experiment was created by a sending pulse volume above the physical limit of the 

positioning stage. The positioning stage detection method proposed in this study could identify normal 

status and collision fault stage fault statuses. The collision faults were divided into Y-direction and 

X-direction. The vibration signal of stage and its FFT spectrum in normal status are shown in  

Figures 5 and 6. It can be seen that there were observed three prominent amplitudes in the spectrum. The 

experimental result showed the three prominent amplitudes are approximately the X1 signal at 550 HZ 

to 650 HZ, X2 signal at 650 HZ to 750 HZ, and Y signal at 800 HZ to 900 HZ.  

Figure 5. XXY positioning stage vibration signal. 
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Figure 6. XXY positioning stage vibration signal spectrum. 

 

This vibration signal was extracted by bandpass filtering, and the characteristic signals Y, X1 and X2 

were extracted. The characteristic signals can be observed in Figure 7. It can been seen that the vibratory 

magnitude of these extracted characteristic signals was not large, so that these characteristic signals were 

disadvantageous for fault diagnosis. The variation was very small when a fault occurred, so the Lorenz 

master and slave chaotic systems were used to strengthen the characteristics with the chaotic 

characteristics. The dynamic error resulted from the master-slave system was extracted. Finally, the 

dynamic errors E1 and E2 were selected for drawing the trajectory diagram. The dynamic error 

trajectories of the extracted signals are shown in Figure 8. It can be seen that the characteristic signal was 

affected by Lorenz chaos and the pattern characteristics were better than the original signals for 

identifying positioning stage faults. 

Figure 7. Characteristic signals: (a) Y signal; (b) X1 signal; (c) X2 signal. 
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Figure 8. Dynamic error trajectories of the extracted signals: (a) Dynamic error trajectory of 

Y signal; (b) Dynamic error trajectory of X1 signal; (c) Dynamic error trajectory of X2 signal. 
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When the positioning stage collided, different collision directions generate different vibratory 

magnitudes. The signals Y, X1 and X2 extracted by filtering thus changed. However, the change was 

very slight, so it was difficult to identify collisions. The fault status was identified easily by using 

master and slave chaotic systems. When the positioning stage had a Y-direction collision fault, the 

measured vibration signal changed. The vibration signal is shown in Figure 9. It was difficult to 

distinguish the collision fault status from the normal status in the vibration signal. This change was 

expected to be displayed by the Y characteristic signal. The Y characteristic signal is shown in Figure 10. 

The change in the Y characteristic signal only showed a slight increase in the amplitude, but the stage 

collision status was not identified. Therefore, the master and slave chaotic systems were used to 

observe the Y characteristic signal. The dynamic error trajectory is shown in Figure 11. In the dynamic 

error trajectory diagram derived from the Y characteristic signal, the pattern had obvious changes. 

When the positioning stage collided, in the trajectory diagram drawn from E1 and E2, the trajectory 

moved towards the pattern center <0,0>, so that the trajectory pattern shrank. When E1 was 0 as center 

point, the positive and negative centroids of E1 moved towards the center point, so that the distance 

between them was shortened. However, in the dynamic error trajectory diagram, the range of pattern 

was similar to the normal status, or the trajectory pattern expanded slightly. In other words, E1 

maximum value and minimum value did not change, or only increased slightly. This variation in 

characteristic pattern also occurred in the dynamic error trajectory of X1 and X2 characteristic signals. 

However, in the Y-direction collide status, the variation was not as apparent as that in Y dynamic error 

trajectory. When the positioning stage had a Y-direction collision fault, the X1 and X2 dynamic error 

trajectories had the same pattern change, as shown in Figure 12. The occurrence and directionality of 

collision fault were found by the change in the characteristic pattern. 
  



Sensors 2014, 14 21559 

 

 

Figure 9. Y-direction stage collision fault vibration signal. 

 

Figure 10. Y characteristic signal of Y-direction stage collision. 
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Figure 11. Y dynamic error trajectory of Y-direction stage collision. 

 

Figure 12. (a) X1 dynamic error trajectory of X-direction stage collision; (b) X2 dynamic 

error trajectory of X-direction stage collision. 
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Figure 12. Cont. 

 
(b) 

According to the dynamic error graph, the dynamic error E1 was selected as the major fault feature 

because its variation was more obvious than other dynamic errors’. The distance between positive and 

negative centers of gravity of E1 was used as the first feature. The maximum-minimum distance of E1 

was the second feature, and the sum of maximum-minimum distances of E1 resulted from various 

characteristic signals was the third feature. The normal status and collision fault were identified from the 
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the detection had a certain effect. 
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Table 1. Matter-element model of XXY stage fault status. 
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Table 2. XXY stage collision fault accuracy rate. 

Fault Status Accuracy 

Normal 97% 
Y Collide 75% 
X Collide 76% 

5. Conclusions 

This study focused on XXY stage collision fault detection. The characteristic signal was imported 

into master and slave chaotic systems to extract the dynamic error resulting from the master and slave 

chaotic systems. As the signal changed violently due to chaos phenomena, the features of various fault 

statuses were increased, and the pattern features were extracted from the dynamic error trajectory. 

Finally, the matter-element model was built by using an extension neural network. The present fault 

status can be known by calculating the degree of correlation of the analysis. In comparison to other 
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identification methods, the extension neural network retains the simplicity of extension operation and 

the adaptability of a neural network. The combination of master-slave chaos error extraction system and 

extension neural network theory can identify faults rapidly. The proposed system only requires one 

sensor for detection, thus lowering the cost. 
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