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Abstract: Soil drought represents one of the most dangerous stresses for plants. It impacts 

the yield and quality of crops, and if it remains undetected for a long time, the entire crop 

could be lost. However, for some plants a certain amount of drought stress improves 

specific characteristics. In such cases, a device capable of detecting and quantifying the 

impact of drought stress in plants is desirable. This article focuses on testing if the 

monitoring of physiological process through a gas exchange methodology provides enough 

information to detect drought stress conditions in plants. The experiment consists of using 

a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a 
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group of plants under controlled drought conditions. The main objective was to use 

different digital signal processing techniques such as the Discrete Wavelet Transform 

(DWT) to explore the response of plant physiological processes to drought. Also, an  

index-based methodology was utilized to compensate the spatial variation inside the 

greenhouse. As a result, differences between treatments were determined to be independent 

of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, 

results demonstrated that the proposed system is capable to reject high frequency noise and 

to detect drought conditions. 

Keywords: drought detection; smart sensor; transpiration dynamic; photosynthesis 

measurement; plant water stress monitoring 

 

1. Introduction  

Plant stress is any factor that promotes unfavorable growing conditions on plants. Soil drought is an 

environmental stress that affects crop productivity more than any other factor. Current monitoring 

devices for precision agriculture usually take into account climatic variables. However, it is desirable 

to have tools that provide information about plant health in order to explore responses under 

unfavorable conditions.  

The main responses of plants under drought are photosynthetic dysfunction and overproduction of 

Reactive Oxygen Species (ROS) that are highly reactive and deteriorate the normal plant metabolism 

through oxidative damage of plant macromolecules [1]. These effects are cumulative; depend on the 

crop growth stage and the severity and frequency of the drought event. Fortunately, plants have several 

resistance mechanisms to survive under drought conditions; these range going from morphological to 

biochemical adaptations at subcellular, cellular, and organ level [2]. The disadvantage of such survival 

strategies is that they rely on limited plant development and low yield. However, the study of those 

mechanisms allows the development of strategies to increase drought tolerance without losing 

productivity, for example: crop varieties associated with high yield can be targeted in breeding 

programs to induce drought tolerance. Biotechnology research has made it possible to identify and 

change drought-responsive genes inducing some desired qualitative and quantitative traits. Finally, the 

exogenous application of plant growth regulators (PGR) have proven to enhance drought tolerance in 

plants [3]. Concluding, the impact of drought on agricultural practices and the requirements to 

maintain a constant improvement of drought resistant varieties makes the development of 

technological tools to detect and monitor drought in plants imperative.  

Different methodologies have been proposed for early detection of drought stress in plants. The 

predominant tendency is to use thermography and hyperspectral vision [4]. Other methods use 

impendence, thermal or gas exchange principles. The thermography utilizes infrared thermometer 

sensors or thermal cameras to measure the canopy temperature (Tc) and to define crop water stress 

indexes [5,6]. However, Tc measurement presents low resolution and it is susceptible to meteorological 

conditions and foliage geometric structure such as leaf angles [7]. On the other hand, hyperspectral 

analysis consists of monitoring changes in the chlorophyll fluorescence or in photochemical 
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reflectance. The problem with chlorophyll fluorescence analysis is that it requires a dark chamber to 

isolate a plant sample [8,9]. In this manner, the chlorophyll fluorescence response may occur as 

variations in magnitude or phase [4,10]. Monitoring reflectance has been applied to study entire crops; 

several wavelengths have been explored to find better responses and relations with current state of the 

crops. 705–750 nm was determined to be a suitable wavelength range to be used to explore plant 

response to water stress [11]. The aforementioned results have been supported by many researchers 

who have proposed different indexes to detect and even measure the effects of drought [12,13]. 

Though, the performance of hyperspectral imaging is critically affected by ambient illumination 

changes [11], it requires successive monitoring of plants [14], the image acquisition is complicated 

where drones or satellites are required [15,16]. 

Limitations to identify small variations in water stress could be solved using plant-based sensors. In 

this manner a simple sensor mounted on the leaf could measure variations in the temperature gradient 

according to the water content of the plant [17]. Electrical impedance spectroscopy is robust to 

environmental noise and has higher sensitivity than hyperspectral imaging; it has been proven to detect 

water stress, even environmental changes and nutrient deficit. However, additional studies are 

necessary to understand the environmental effects on plant impedance [18,19]. 

Gas exchange systems constitute the basis of most photosynthesis measurement tools. This consists 

of using Infrared Gas Analyzer (IRGA)-based carbon dioxide (CO2) sensors to measure the difference 

between ambient CO2 concentration and the concentration in a transparent chamber where a plant leaf 

is isolated [20]. These tools also estimate important phenomena such as transpiration and stomatal 

conductance [21,22]. Despite the fact that CO2 exchange method is more sensitive than fluorescence 

techniques to environmental changes; a higher amount of information related to plant physiology can 

be obtained [23].  

The objective of this article is the development of a novel smart sensor that performs a new signal 

processing methodology to minimize the noise in a photosynthesis measurement system which is 

based on CO2 exchange method. Furthermore, the proposed system is utilized to detect and monitor the 

effects of soil drought in tomato plants. The signal processing methodology combines average 

decimation and Kalman filters to improve signal quality, and an additional filtering stage based on 

Discrete Wavelet Transform (DWT) to explore plants signal response. Therefore, short and long-term 

novel indexes were proposed to provide a set of information regarding the response of plants  

to drought. 

The smart sensor was implemented in a FPGA due to its parallel computation capabilities and 

flexible configurability. It made possible to implement the aforementioned algorithms to calculate  

in-situ and in real-time the physiological processes of plants for decision making, data storing and  

off-line processing purposes. In order to validate the drought detection capabilities of the developed 

smart sensor, an experimental setup was carried out using tomato plants in a greenhouse. Because of 

this, three smart sensors controlled by a coordinator were installed to monitor specific groups of plants 

subjected to induced drought conditions. Finally, interesting relations between drought and plant 

physiological responses were obtained. 
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2. Background 

2.1. Plant Transpiration, Photosynthesis Dynamics and Drought 

Photosynthesis and transpiration are two of main physiological processes in plants. Photosynthesis 

is a process performed by plants and other organisms to convert light into chemical energy that can 

later be released to fuel the organism activities. More specifically, light energy drives the synthesis of 

carbohydrates from carbon dioxide and water with the generation of oxygen (O2). On the other hand, 

transpiration is an important component of temperature regulation because plants can dissipate the heat 

input from sunlight through phase exchange of water that escape into the atmosphere. This process 

controls the water movement through the plant and the evaporation from aerial parts, especially from 

the leaves [24]. Leaf surfaces contain pores called stomata; the aperture of these pores is conducted by 

guard cells. Through the stomata, plants exchange moisture with the atmosphere and permit the 

diffusion of CO2; transpiration also changes osmotic pressure of cells and enables the flow of mineral 

nutrients and water from roots to shoots. Since both processes share the same pathways, carbon 

assimilation carries a loss of water to the atmosphere through the stomata. Consequently, effects of 

drought over both physiological processes are closely related with parameters that have been 

previously stated [25]. 

Plant responses to soil drought can change according to the severity and frequency of the stress and 

the effects over physiological process does not occur immediately and linearly. Therefore, the severity of 

the stress and plant responses to drought can be summarized in three phases. Phase 1: Mild water stress. 

A reduction in transpiration is caused by a decline of stomatal conductance (gs) is presented [26]. 
However, the rate of net CO2 assimilation remains constant because stomatal closure inhibits 

transpiration more than it decreases intercellular CO2 concentrations. Even during early stages of 

drought stress, the plant increases its water-use efficiency. Phase 2: Moderate water stress. Here, a 

further decrease of gs is accompanied by large decrease of mesophyll conductance (gm), and a small 

but significant decrease in photosynthetic activity appears [27]. Finally, in phase 3: Severe water 

stress. Stomatal conductance drops below its threshold value, the photosynthetic capacity is impaired, 

and a permanent damage of photosystems suggests that the leaves are enduring oxidative stress, 

senescence and remobilization of leaf nutrients [28]. At this point, the effects of drought are 

irreversible and are reflected in the net CO2 assimilation of the plant [29]. 

Plants response is often affected by different stress conditions. Because of this, monitoring of 

multiple plant related variables promises to be a more accurate tool to assess the real plant state. 

Furthermore, changes on stomatal conductance and transpiration are more specifically related to soil 

water content than leaf water content. Consequently, stomata related changes are far more significant 

than changes in net photosynthesis; that could be considered for early detection. However, drought 

stress eventually provokes irreversible damage in photosystems and plant efficiency which allows 

utilizing this variable as a long-term indicator, principally after water recovery. 

2.2. Estimation of Plant Physiological Processes 

As aforementioned, the basis of the gas exchange method for photosynthesis (Pn) estimation 

involves a comparison between CO2 concentration in the atmosphere (Ci) and CO2 concentration in the 
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leaf chamber (Co) where the plant sample is isolated. Additionally, it is necessary to estimate the mass 

flow rate per leaf area (W) as stated in its equation in Table 1 [30]. Here, P is the atmospheric pressure 

in Bar, V is the volumetric air flow in liters per minute (lpm), TaK is air temperature in Kelvin (K) and 

A is leaf area in cm2. The 2005.39 constant is an adjusted coefficient to change mass units to mol, 

surface to m2 and time from minutes to seconds. In a similar manner, estimation of transpiration (E) is 

performed, but in this case by measuring the H2O vapor exchange. Other important processes such as 

stomatal conductance, vapor pressure deficit (VPD) and leaf to air temperature difference (LATD) can 

be estimated by using equations that have been previously stated by many authors and are summarized 

in Table 1 [22,25,31]. 

Table 1. Equations for the estimation of physiological processes of plants. 
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Vapor pressure deficit s iVPD e e= −  kPa 

Leaf to air temperature difference a leafLATD T T= −  °C 

3. Smart Sensor 

The proposed smart sensor fuses a water vapor and a CO2 gas exchange system into the same 

pneumatic line in order to estimate Pn and E. The system also estimates other phenomena such as gs, 

VPD, and LATD. Climatic variables such as solar radiation, temperature and relative humidity can also 

be monitored with the same hardware. As can be seen in Figure 1, five stages (black blocks) integrate 

the smart-sensor. 

First, the pneumatic system uses a transparent acrylic chamber to isolate the plant sample; a set of 

electrovalves switching between the environment air reference or leaf chamber, and an air pump 

applies negative pressure in order to move air through the pneumatic system where the sensors are 

attached. The set of primary sensors are located in two places as can be seen in Figure 2. A Honeywell 

Pt1000 Resistance Temperature Detector (RTD) configured to measure in a range from 0 to 65 °C with 

a measurement error of ±0.3 °C is located in the leaf chamber, which has a suitable range to monitor 

leaf temperature of the plant on contact. Also, an OSRAM SFH5711 ambient solar radiation sensor 

with a 0 to 100,000 lux range and measurement error of ±0.04% of its measured value is located near 

the plant sample, which is isolated in the leaf chamber. In the rest of the pneumatic system are attached 

a Sensirion SHT75 digital Micro Electro Mechanical System (MEMS)-based sensor that measures 

temperature and relative humidity (RH) of air with a resolution of 14-bits for temperature and 12-bits 

for RH and measurement error of ±0.4 °C and ±1.8%, respectively. An OMRON DF6 MEMS-based 

flow sensor is used to monitor the volumetric flow of the pneumatic line; this sensor has a 
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measurement range of 0 to 5 lpm with measurement error of ±0.4%. To monitor the atmospheric 

pressure, a Freescale Semiconductor MPX4115A absolute pressure sensor with a range of 15 to  

115 kPa and a measurement error of ±1.5% was utilized. Finally, in order to monitor the CO2 

concentration an Edinburgh Instruments Gascheck 2 IRGA based CO2 sensor is required. The sensor 

has a measurement range of 0–3000 ppm with measurement error of ±30 ppm. 

Figure 1. Block diagram of the phytomonitoring smart-sensor. 

 

Figure 2. Leaf chamber and sensors arrangement. 
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The signals of all primary sensors are standardized to a 0 to 5 V output format by using  

OpAmp-based modules. Then, each sensor reading is entered into the Data Acquisition System (DAS) 

through an analog front end, 2nd order anti-alias low pass filter with a cut-off frequency of 20 Hz. A 

12-bit Analog to Digital Converter Texas Instruments ADS7844 sampled the previously filtered sensor 

signals. The ADS7844 communicates via SPI with the third stage, the Digital Signal Processing and 

Control Unit (DSPCU) which is embedded in a low-cost EP2C35F672C6 FPGA that manages  

the ADS7844 at 200 kg samples per second (ksps), and also communicates via a 2-wire serial  

interface with the digital SHT75 sensor. This FPGA-processor is also responsible for controlling the 

mechanism used in the pneumatic line. The aforementioned tasks are performed simultaneously 

because of the parallel capabilities of the FPGA. Moreover, this unit performs data filtering operations 

in order to improve the quality of signals. Finally, the DSPCU estimates and transmits the 

physiological processes together with environmental readings to a coordinator device by using a 

wireless communication module. 

Digital Signal Processing Techniques 

Because the experiment is performed in a noisy environment where the greenhouse microclimate 

presents sudden changes due to the influence of external weather, two stages of signal processing units 

are embedded inside the FPGA in order to reduce the amount of noise in primary sensors readings. As 

is illustrated in Figure 3, previously the estimation of plant processes, the signals X(k) from the 

primary sensors pass through a 1024th order average decimation filter, where a single average sample 

reduced in quantization and undesirable noise is obtained every second. Furthermore, the oversampled 

versions of sensor readings Xos(k) are introduced into the Kalman filters to obtain new filtered signals 

Xosk(k) [32]. 
As can be seen in Figure 3, once all the Xosk(k) are calculated, the plant physiological process 

estimator computes Pn, E, gs, VPD, and LATD from primary sensors readings. In addition, the 

proposed smart sensor provides a new version of the aforementioned process, in which spatial 

variations induced for the solar radiation can be reduced by using the simple index expressed in 

Equation (1). Herein, Xnorm(k) represents the normalized version of the signals Pn, E, gs, VDP or LATD. 

Meanwhile Radnorm(k) is the normalized version of radiation, but considers the maximum Rad value 

from all nodes. Finally, Xrad_index(k) is the index that relates the physiological process to the radiation at 

the time when the sample was acquired:  

_

( )
( )

( )
norm

rad index
norm

X k
X k

Rad k
=  (1)

Moreover, the plant physiological estimator unit calculates the first derivative of Pn’, E’, gs’, VPD’, 

and LATD’ in order to explore phenomena involved in the changes of physiological activity. This task 

is performed by using a discrete derivative as described in Equation (2), which can easily be implemented 

in the FPGA. Herein, X’(k) can represent any of the physiological processes previously estimated: 

' ( ) ( 1)
( )

s

X k X k
X k

T

− −=  (2)
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This unit also computes the Real Time-Carbon Balance (RT-CB), by integrating Pn, this index, as 

was previously reported in [22], describes the accumulation of carbon due to the photosynthesis 

activity. It is calculated by using Equation (3), which is the discrete time version of the integral: 

0

( )
N

s n
k

RT CB T P k
=

− =   (3)

Furthermore, these signals are transmitted to a PC together with data from primary sensors to be 

stored and plotted. In addition, the PC performs a DWT to Xrad_index(k) signals in order to explore the 

responses at different frequencies. 

Figure 3. FPGA filtering stage and plant physiological estimator unit. 

 

4. Experimentation and Results 

4.1. Experimental Setup  

The experiment illustrated in Figure 4 was conducted during 2013 in a research greenhouse located 

at an altitude of 54 m, in the Universidad Autonoma de Sinaloa, School of Biology, Culiacan Rosales, 

Sinaloa, Mexico (24°48'0"N, 107°23'0"W). The greenhouse was a single span arch type with 30 m2 of 

ground, equipped with a commercial climate controller. The plants used for the experiment were single 

genotype tomatoes (Solanum lycopersicum L.) variety Raffaello; it is an indeterminate tomato 

appropriate for cultivation within greenhouse conditions and it is resistant to pests and diseases. 

The variation factor in the experiment was the content of water in the soil at two levels: (a) The 

reference that represents plants irrigated at field capacity and (b) The drought treatment where the 

irrigation is recurrently suspended one day in order to reach water deficit in the soil. Three smart 

sensor nodes were used to measure the responses of plants to different irrigation levels. In addition, 

three tensiometers Irrometer model R were installed in the monitored plants in order to monitor the 

content of water in the soil. These sensors have a 0 to 100 kPa range with an accuracy rating of ±2%.   
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Figure 4. Experimental setup for smart sensors under real operating conditions.  

 

4.2. Sample Preparation 

The tomato plants were germinated and transplanted into two liters containers where the plants were 

grown in greenhouse conditions until they were an appropriate size to attach the sample in the leaf 

chambers. The substrate used was a volcanic stone called tezontle, screened to homogenize the 

particles diameter and ensure same soil conditions (apparent density of 605 kg·m−3). In order to avoid 

other variation factors, all the plants were irrigated with Steiner solution at a concentration according 

to the plant growth stage. Finally, in order to obtain reliable responses between different plants, it was 

necessary to standardize a method to select the leaves that would be monitored. The selected leaves 

were located at the same height, not to low leaves because it is reported that they are the first to lose 

the photosynthetic activity due to aging, and not the top leaves because they are the last to respond to 

drought [33].  

4.3. In-Situ Node Adjustment and Validation  

Due to the high noise in CO2 signals and the fact that reliability of estimations depends on 

measurements of primary sensors, a test was performed in order to assess the responses of the IRGA 

CO2 sensors using an 1100 ppm CO2 reference. As can be seen in Figure 5a, the first 512 samples 

correspond to the CO2 reference and the next 512 samples correspond to the inside air of the closed 

greenhouse without plants. This test was performed for 16 cycles for the three nodes. Finally, with the 

average of cycles, an ANOVA was carried out to evaluate the response of nodes. The value of alpha α 

for this and other tests in this work was set to 0.05 (95% of confidence). The resulting p-value of the 

analysis was 0.2205, which is higher than 0.05 that represents the upper boundary considered for 

statistical differences between treatments [34]. In this manner, the resulting p-value represents no 

significant difference between node readings. As it can be observed in Figure 5b there are only two 

outlier data points in node 1 and 3. The means in the analysis were 1098.4, 1098.3, and 1098.3 ppm 

with standard deviations of 4.49, 4.31, and 4.67 ppm respectively for nodes 1, 2, and 3.  
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Figure 5. Validation test of IRGA CO2 sensors. (a) 1 cycle monitoring with an 1100 ppm 

CO2 reference; (b) Analysis of variance boxplot results. 

 

4.4. Filtering Results 

Figure 6 illustrates improvements over signal quality after the filtering stages. In the Figure 6a (CO2 

concentration) the amount of noise presented on the CO2 signal can be easily appreciated. 

Consequently, the estimation of photosynthesis showed in Figure 6b is too noisy. Furthermore, it can 

be observed that filtering stages have improved the overall signal quality of CO2 concentration at 

Figure 6c and net photosynthesis in Figure 6d. 

Figure 6. Digital filtering results over photosynthesis estimation. (a) Non-filtered CO2 

signal; (b) Pn estimation based on raw signals; (c) filtered CO2 signal; and (d) Pn 

estimation based on filtered signals. 

 

Figure 6 shows only the result of 1 node, but similar results were obtained for the other nodes of the 

network. In order to quantify how the filtered signals improved the estimation of physiological 

processes, a Pearson correlation between raw and filtered photosynthesis signals against radiation 

signal was conducted. Results presented in Table 2 suggest that the behavior of Pn when it was 

estimated with non-filtered signals do not correspond with the radiation pattern. In contrast, a better 

correlation between Rad and the Pn estimated with filtered signals was found. In Table 2, 
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photosynthesis with the subscript osk is the estimated one with filtered primary signals. The R-value 

shows the correlation weight while p-values below 0.05 confirm the existence of correlation  

between signals. 

Table 2. Correlation analysis results for radiation against photosynthesis with and  

without filtering. 

Variables Photosynthesis–Radiation Photosynthesisosk–Radiation 

Coefficients R p R p 
Node 1 0.0672 0.0515 0.5146 <0.0001 
Node 2 0.2023 <0.0001 0.5307 <0.0001 
Node 3 0.1027 0.0028 0.6557 <0.0001 

4.5. Environmental Signals 

Because the experiment was carried out in a commercial greenhouse, spatial differences in the 

microclimate produced changes on physiological processes, even for plants undergoing the same water 

stress treatment. Then, it was necessary to monitor the microclimate related variables in order to 

understand these changes. Figure 7 illustrates the most important environmental variables monitored 

inside the greenhouse at three different locations. Figure 7a shows the readings for radiation during the 

entire experiment. This variable is noteworthy because it modifies the temperature (Figure 7b), VPD 

(Figure 7c) and RH (Figure 7d) of the air inside the greenhouse and therefore the transpiration rates of 

plants. Moreover, the photosynthesis is more sensitive to radiation than to any other factor. 

Figure 7. WSN environmental readings inside the greenhouse at locations of Nodes 1, 2 and 3. 

(a) Solar radiation; (b) air temperature; (c) vapor pressure deficit; and (d) relative humidity. 
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Figure 7. Cont. 

 

Differences between node readings change throughout the day, but keep a relatively regular pattern 

in which node 3 registers a higher temperature and drier air conditions. As can be seen in Figure 8, this 

behavior is influenced by the total solar radiation received by this node. This figure illustrates how the 

greenhouse presents spatial variations provoked mainly by the structure geometry. This is important 

because it helps investigators to understand abrupt changes in transpiration and photosynthetic signals 

estimated by the system. Finally, it is important to note that received radiation was around 175 W/m2, 

which is a suitable quantity to grow Raffaello variety of tomatoes [35].  

Figure 8. Image zooms for two days of radiation. 

 

4.6. Physiological Signals  

The methodology to induce drought stress was as follows: The first two days of monitoring were a 

stabilizing period in which plants were watered at field capacity (10 kPa); on day three, the irrigation 

was suspended so that two plants could reach 30–40 kPa soil drought conditions. Then, plants were 

rehydrated in order to avoid reaching permanent wilting point (PWP). After one rehydration day, the 

drought treatment began again. The experiment lasted 19 days. As is illustrated in Figure 9, red and 

green signals correspond to plants suffering from drought stress (SP1 and SP2 respectively). The 

reference plant (RP) that was continuously irrigated at 10 kPa is represented with the blue signal. The 
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light blue shadow indicates irrigation and light orange means water depletion. The brown arrows 

indicate irrigation interruption for the RP. After two days the irrigation was resumed, this is indicated 

by the blue arrows. 

Figure 9. Physiological signals. (a) Photosynthesis; (b) transpiration; (c) stomatal 

conductance; and (d) leaf to air temperature difference.  

 

Figure 9 summarizes the physiological signals that provide more information related to plant status 

(Pn, E, gs, and LATD). As was expected, photosynthesis is not sensitive to early stages of drought. In 

Figure 9a, a difference between the RP and the treatments can be noticed only after three periods of 

stress near hour 225. Furthermore, after the fourth period of stress around hour 400, net photosynthetic 

activity for SP1 and SP2 was not recovered after being rehydrated. This behavior can be explained 
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because drought periods generate an accumulative oxidative stress in the leaves until damaging 

photosystem II in a permanent way by reactive oxygen species [2,36]. 

Transpiration results (Figure 9b) show an early response to treatments, especially in the second and 

third stages of stress. However, the most interesting behavior is at the end, enclosed by the dark ellipse, 

a low amplitude negative transpiration rate indicates that leaves are taking water vapor from the 

atmosphere instead of expelling it. This is a defense mechanism observed in plants under severe 

drought [37]. The stomatal conductance (Figure 9c) presents more marked differences as compared 

with Pn. Even in the first day of drought, SP1 and SP2 present a sudden drop in gs. This is explained 

because the stomata closure and the decrease of gs are the first defenses plants employ in order to 

reduce the amount of water lose through the stomata and it is related more to soil drought than leaf 

water status [2]. The higher decrease in the third stage of drought could be related to a decrease of gm 

because the leaves are preparing for severe stress conditions. 

The final graph (Figure 9d) illustrates the difference between air temperature and leaf temperature. 

Herein, a yellow line illustrates the day where the LADT must be zero or slightly positive. This is a 

normal behavior because in well-watered plants the Tleaf is cooler than Ta. However, if plants are under 

drought conditions, the Tleaf is higher than Ta. This tendency is clearly noticed in Figure 9d, where once 

the water depletion begins an increase in negative readings appears. This tendency is illustrated with 

the dashed black lines. Nevertheless, despite being under the same conditions, SP2 always presented a 

better tolerance to the stress than SP1. This can be noted because the red line presents more negative 

and sudden changes in LATD. On the other hand, the reference plant showed stable behavior with zero 

or positive values until the irrigation was suspended at hour 330. After this point, the drought was 

maintained for two days and a clear drop of blue line appears. After the rehydration day during hour 

375, the LATD of RP slowly returns to zero and positive values. 

Finally, it is important to mention that a significant reduction in height and the leaf areas of plants 

under drought was expressed. At the end of the experiment, plants under drought conditions 

maintained heights of approximately 80% of non-stressed plants. 

4.7. Indexes and DWT Analysis  

Despite the fact that Figure 9 provides important information about effects of drought on plants, the 

analysis requires data from at least two days in order to be able to notice a behavioral pattern. The 

problem with performing single day assessment is the amount of remnant noise, mainly for Pn and gs 

signals. Another problem is the variation in growing conditions throughout the greenhouse, which may 

cause plants under the same treatment to respond quite differently. The variable that mainly affects the 

results is the solar radiation. This problem was addressed using the index previously described in 

Equation (1). Therefore, if plants under the same treatment receive different radiation levels, the 

difference in variable responds is mitigated permitting a better comparison. This methodology was 

useful for Pn, E, and gs signals which presented a higher component of noise as compared with  

VPD or LATD. 

As it can be seen in Figure 3, after the normalization process, these signals were analyzed using the 

DWT. In a preliminary experiment, several configurations were performed in order to explore the best 

one to extract information from signals. Finally, the DWT applied to filter the signals illustrated in 
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Figure 10 uses a mother wavelet Daubechies db40 at a level A2 that rejects signals outside the range 

from 0 to 0.27 mHz bandwidth. This criterion was selected because lower mother wavelet levels 

discriminate important information related with abrupt changes due to radiation. Also, db40 mother 

wavelet required less computational resources compared with other wavelets such as Symmlets. The 

high frequency analysis of D levels is not reported because no clear patterns were found; this behavior 

could be a consequence of the system slow sampling frequency. The new version of Pn signals 

corresponding to Figure 10a presents a considerable reduction in the high frequency noise compared to 

Figure 9a, where after several stages of filtering, the Pn signal maintains a considerable amount of 

noise, this could be probably an aliasing of a frequency generated for the IRGA Sensor itself. 

However, after the use of DWT analysis such as an extra filtering stage, this component of noise was 

reduced allowing a comparison along one single day.  

Figure 10. Wavelet of processes/Radiation indexes. (a) Photosynthesis; (b) transpiration; 

and (c) stomatal conductance. 

 

Furthermore, in order to avoid the removal of information related with the plant response and 

considering that Pn is highly related with Rad, a Pearson correlation was conducted to compare Rad 

with Pn before the DWT processing. The correlation results are presented in Table 3 to support the idea 

that DWT rejects the noise on photosynthesis signal but it keeps the information related with 
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photosynthesis itself. As it can be appreciated, the correlation between Pn and Rad slightly increases 

when Pn is filtered with the DWT. Only node 3 did not repeat this trend. However, the decrease in the 

correlation is not too high. Table 3 presents the results of the hypothesis test of no correlation. The  

p-values suggest that null hypothesis is rejected.  

Table 3. Photosynthesis–radiation correlation results with and without DWT filtering. 

Variables Photosynthesisosk–Radiation PhotosynthesisDWT–Radiation 

Coefficients R p R p 
Node 1 0.5146 <0.0001 0.5600 <0.0001 
Node 2 0.5307 <0.0001 0.5574 <0.0001 
Node 3 0.6557 <0.0001 0.6308 <0.0001 

Figure 11. Real Time-Carbon Balance (RT-CB). 

 

Finally, in order to understand the impact of drought for long-term development and health of the 

plants, the analysis of Pn integral calculation which is named as Real Time-Carbon Balance index was 

proposed to explore the response of plants under drought conditions. As it can be seen in Figure 11, 

during the day RT-CB increases but stops or slightly decreases during the nights. This behavior is a 

result of the photosynthetic and respiration activity; but, as it is indicated with dark ellipses, when the 

plants were subjected to drought, the RT-CB signals remained constant until the rehydration day. Here 

it is important to state that the first day of drought did not significantly affected plant response and 

changes appeared until day two. During the rehydration days corresponding to hours 75, 175, and 275; 

the plants were recovered and photosynthetic activity was normalized. Nevertheless, SP1 and SP2 did 

not recover after the fourth period of drought, even when plants were watered at approximately  

hour 380. Here, the RT-CB index maintains the negative tendency which means that the photosynthetic 

activity stops, and the net respiration increases causing a loss of dry matter. Figure 11 also shows the 

exponential behavior of the photosynthesis activity as the plant grows, because around hour 275 of 

experimentation, the RT-CB registered an important increase for the reference plant. However, this 

tendency changed when the irrigation was suspended. The first day of scarcity, as indicated with the 

brown arrow did not change the plant response. However, the next day a fall in the Carbon assimilation 

was reported. This tendency continues until normal irrigation was re-established in the day marked 

with the blue arrow. 
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5. Conclusions 

In this investigation, a smart sensor system was developed to monitor primary variables in plants. 

Then, this information was then used to estimate physiological processes such as photosynthesis, 

transpiration, and stomatal conductance. The proposed experiment demonstrates the capabilities of the 

system to detect stress in plants submitted to soil drought conditions. It also reveals that even under 

real operation conditions (greenhouse applications) the system properly estimates the aforementioned 

physiological processes. However, important considerations must be taken into account if the system 

pretends to be operated outside due to sunlight and rain conditions. But it is important to state that this 

is a prototype that can be improved in a future. Another central consideration relies on the leaf 

chamber design and stress conditions that are produced on isolated leaves. During the experiment, it 

was necessary to periodically changed between leaves. However, during periods of three days not 

important damage over the samples was appreciated. This may be due to the Nylamid-acrilic materials 

utilized in the leaf chamber design, which do not overheat under sunlight such as aluminum based 

chambers that are used in commercial devices.  

In addition, the DWT was used to process the signal combined with an index that adjusts the 

estimation according to the plants surrounding environment. It resulted useful in order to perform a 

day by day comparison for drought detection, which is important because conventional analysis 

requires long time to detect drought conditions. Moreover, the RT-CB index provides an alternative 

method for monitoring plant growth without using destructive laboratory analysis. Therefore, RT-CB 

provides information about irregular growing circumstances such as drought. Finally, the proposed 

digital signal processing methodology implemented in the gas exchange system represents an 

alternative that can be used to detect and monitor drought under real growth conditions. Also, this 

methodology can be utilized for filtering purposes in precision agriculture applications where the 

signal-to-noise ratio is high (like chlorophyll fluorescence or impedance sensor applications). 

Furthermore, it can be utilized to explore time-frequency properties of different kinds of signals. 
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