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Abstract: This paper presents a novel VLSI architecture for the training of radial basis

function (RBF) networks. The architecture contains the circuits for fuzzyC-means (FCM)

and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed

for the training of centers in the hidden layer of the RBF network. The recursive

LMS circuit is adopted for the training of connecting weights in the output layer. The

architecture is implemented by the field programmable gate array (FPGA). It is used as a

hardware accelerator in a system on programmable chip (SOPC) for real-time training and

classification. Experimental results reveal that the proposed RBF architecture is an effective

alternative for applications where fast and efficient RBF training is desired.

Keywords: reconfigurable computing; system on programmable chip; FPGA; radial basis

function; fuzzyC-means

1. Introduction

Radial basis function (RBF) [1,2] networks have been found to be effective for many real world

applications due to their ability to approximate complex nonlinear mappings with a simple topological

structure. A basic RBF network consists of three layers: An input layer, a hidden layer with a nonlinear

kernel, and a linear output layer. The Gaussian function is commonly used for the nonlinear kernel.
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The parameter estimation of RBF networks concerns the optimization of centers of the Gaussian

kernels as well as the connecting weights between neurons. The estimation of the above parameters is

carried out using two-staged learning strategies. In the first stage, cluster analysis is implemented to

calculate the appropriate values of the centers. In the second stage, supervised optimization procedures

are involved in the optimal estimation of the connecting weights.

One effective clustering approach for finding centers is theK-means algorithm [2]. However, because

of iterative crisp clustering operations, the results of theK-means algorithm are sensitive to the selection

of initial centers. In addition, the computation complexities of the algorithm are high for large set of

training vectors. The fuzzyC-means (FCM) algorithm and its variants [3,4] are the effective alternatives

for finding the centers. The FCM adopts a fuzzy partitioning approach for clustering. It allows the

training vectors to belong to several clusters simultaneously, with different degrees of membership.

Although the FCM is also an iterative algorithm, the clustering performance is less susceptible to the

initial centers. However, the fuzzy clustering involves the computation of degree of membership, which

may be very computationally expensive as the number of training vectors and/or the number of clusters

become large. The particle swarm optimization (PSO) techniques [5,6] are also beneficial for computing

the centers. The techniques can operate in conjunction withfuzzy clustering [6] for attaining near optimal

performance. Nevertheless, when the number of particles and/or the dimension associated with each

particle are large, the real-time RBF training may still be difficult.

To estimate the connecting weights in the output layer, least mean square (LMS) methods are the

commonly used techniques. However, basic LMS approach involves the computation of the inverse

of the correlation matrix in the hidden layer of the RBF network. When the size of the hidden layer

and/or training set becomes large, the inverse matrix computation may become a demanding task. The

requirement of inverse matrix operations can be lifted by the adoption of recursive LMS. Nevertheless,

because extensive matrix multiplications are required, especially for large hidden layer and/or training

set, the recursive LMS still has high computational complexities.

Many efforts have been made to expedite RBF training. The techniques in [7–9] focus on reducing the

training time for centers. The algorithm presented in [7] uses subtractive clustering. The fast technique

in [8] modifies the basicK-means algorithm. The center updating in [9] is based on an incremental

scheme. In [10], an incremental technique is used for the updating of connecting weights in the output

layer. These fast algorithms are implemented by software. Therefore, only moderate acceleration can be

achieved. Moreover, for the incremental algorithms [9,10], inappropriate selection of learning rate may

severely degrade the training performance.

The algorithm in [11] is suited for finding centers by hardware. It involves only replicating selected

training vectors as centers. The number of centers producedby the algorithm can be controlled by the

radius parameter [11]. Nevertheless, the mapping from the radius parameter to the number of centers

may vary for different training sets. It may then be difficultto find a search scheme efficient for seeking

optimal radius parameters subject to a constraint on the RBFnetwork hidden layer size for different

training sets.

The analog hardware implementation [12,13] for RBF training has been found to be effective for

reducing the computation time. However, these architectures are difficult to be directly used for digital

devices. Digital hardware realization of RBF in [14] focuses only on the implementation of topological
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structure of the networks. The training of the centers in thehidden layer and the connecting weights in

output layer are performed by software. Other RBF-based applications in embedded systems [15,16] are

also implemented in a similar fashion.

In [17,18], the digital hardware architectures for RBF training havebeen presented. However, the

training for centers is not considered in [17]. The training for connecting weights is based on incremental

operations. The architecture in [18] is able to train both the centers and the connecting weights. All

training operations are performed incrementally. Although the incremental training is more suitable for

hardware implementation, the performance is dependent on the selection of learning rate. The value

of learning rate may be truncated for the finite precision hardware implementation. Similar to the

improper learning rate selection, the truncation of learning rate may result in a poor local optimum

for RBF training.

The goal of this paper is to present a novel hardware architecture for real-time RBF training. The

architecture is separated into two portions: the FCM circuit, and the recursive LMS circuit. The FCM

circuit is designed for the training of centers in the hiddenlayer. The recursive LMS circuit is adopted

for the training of connecting weights in the output layer. Both the FCM and the recursive LMS circuits

are digital circuit requiring no learning rate.

The FCM circuit features low memory consumption and high speed computation. In the circuit,

the usual iterative operations for updating the membershipmatrix and cluster centers are merged into

one single updating process to evade the large storage requirement. In addition, the single updating

process is implemented by a novel pipeline architecture forenhancing the throughput of the FCM

training. In our design, the updating process is divided into three steps: Pre-computation, membership

coefficients updating, and center updating. The pre-computing step is used to compute and store

information common to the updating of different membershipcoefficients. This step is beneficial for

reducing the computational complexity for the updating of membership coefficients. The membership

updating step computes new membership coefficients based ona fixed set of centers and the results of the

pre-computation step. The center updating step computes the center of clusters using the current results

obtained from the membership updating step. The final results of this step will be used for subsequent

RBF processing.

The recursive LMS circuit performs weight updating using the centers obtained from the FCM circuit.

The recursive LMS algorithm involves large number of matrixoperations. To enhance the computational

speed of matrix operations, an efficient block computation circuit is proposed for parallel multiplications

and additions. The block dimension is identical to the number of nodes in the hidden layer so that all

the connecting weights can be updated concurrently. To facilitate the block computation, buffers for

storing intermediate results of recursive LMS algorithm are implemented as shift registers allowing both

horizontal and vertical shifts. Columns and rows of a matrixcan then easily be accessed. All matrix

operations share the same block computation circuit for lowering area cost. Therefore, the proposed

block computation circuit has the advantages of both high speed computation and low area cost for

recursive LMS.

To demonstrate the effectiveness of the proposed architecture, a hardware classification system on

a system-on-programmable-chip (SOPC) platform is constructed. The SOPC system may be used as a

portable sensor for real-time training and classification.The system consists of the proposed architecture,
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a softcore NIOS II processor [19], a DMA controller, and a SDRAM. The proposed architecture is

adopted for online RBF training with the training vectors stored in the SDRAM. The DMA controller is

used for the DMA delivery of the training vectors. The softcore processor is used for coordinating the

SOPC system. Some parameters of the RBF training process arenot fixed by hardware. They can be

modified by the softcore processor to enhance the flexibilityof the SOPC system. As compared with its

software counterpart running on Intel I5 CPU, our system hassignificantly lower computational time for

large training set. All these facts demonstrate the effectiveness of the proposed architecture.

2. The RBF Networks

This section reviews some basic facts of RBF networks. A typical RBF network revealed in Figure1

consists of an input layer, a hidden layer and an output layer. The input layer containsn source nodes,

wheren is the dimension of the input vectorx. The hidden layer consists ofc neurons. A kernel

function is associated with each neuron. A typical kernel function used in the RBF networks is the

Gaussian kernel. Letφi be the Gaussian kernel associated with thei-th neuron, which is defined as

φi(x) = exp(−
1

2σ2
||x− vi||

2) (1)

The vi in Equation (1) is the center associated with thei-th neuron. Bothx andvi have the same

dimensionn. Theσ2 in Equation (1) is termed the radius of the Gaussian kernel. It is assumed inthis

study that all kernels have the same radius.

The output layer contains only one neuron. Letŷ be the output of the neuron, which is given by

ŷ =
c

∑

i=1

wiφi(x) (2)

Thewi is termed the connecting weights between thei-th neuron in the hidden layer and the output

neuron. The RBF training usually involves the training of centersvi, and connecting weightswi,

i = 1, ..., c.

Figure 1. A typical RBF network.
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2.1. FCM for the Training of Centers

The FCM can be effectively used for the training of centers. LetX = {x1, ...,xt} be a set of training

vectors for RBF training, wheret is the number of training vectors. The FCM computesvi, i = 1, ..., c,

by separatingX into c clusters. Thevi is then the center of clusteri. The FCM involves minimization

of the following cost function:

J =
c

∑

i=1

t
∑

k=1

um
i,k||xk − vi||

2 (3)

whereui,k is the membership ofxk in classi, andm > 1 indicates the degree of fuzziness. The cost

functionJ is minimized by a two-step iteration in the FCM. In the first step, the centersv1, ...,vc, are

fixed, and the optimal membership matrix{ui,k, i = 1, ..., c, k = 1, ..., t} is computed by

ui,k = (

c
∑

j=1

(||xk − vi||/||xk − vj||)
2/(m−1))−1 (4)

After the first step, the membership matrix is then fixed, and the new centervi is obtained by

vi = (

t
∑

k=1

um
i,kxk)/(

t
∑

k=1

um
i,k) (5)

The iteration continues until the convergence ofJ . From Equations (3) and (5), it follows that the

membership matrix needs to be stored for the computation of cost function and centers. As the size of

the membership matrix grows with the product oft andc, the storage size required for the FCM may be

impractically large for hardware implementation.

2.2. Recursive LMS for the Training of Connecting Weights

The training of connecting weights is also based on the training setX = {x1, ...,xt}. Let ŷk be the

output of RBF network when the input is thek-th training vectorxk ∈ X. That is, from Equation (2)

ŷk =

c
∑

i=1

wiφi(xk)

Define

ak = [φ1(xk) φ2(xk) ... φc(xk)]
T (6)

w = [w1 w2 ... wc]
T (7)

It then follows that

ŷk = aT
kw (8)

In addition, let

ŷ = [ŷ1 ŷ2 ... ŷt]
T (9)

be the vector containing all the outputs for the training setX, and

A =











aT
1

aT
2

...

aT
t











(10)
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From Equations (8) and (10), we see that

ŷ = Aw (11)

Define

y = [y1 y2 ... yt]
T (12)

as the vector consisting of all thedesiredoutputs for the training setX, whereyk is thedesiredoutput

associated with the inputxk. Let

E =

t
∑

k=1

(ŷk − yk)
2 (13)

be the square distance betweeny andŷ. It can be shown that [2] the LMS estimate ofw minimizingE

is given by

w = (ATA)−1ATy (14)

Findingw based on Equation (14) involves the operations of matrix inverse and multiplication. The LMS

estimate ofw may therefore be difficult to be implemented by hardware whennumber of training vectors

t and/or the number of centersc are large. An effective alternative to the LMS method is the recursive

LMS. Given training setX, instead of computingw in one shot using Equation (14), the recursive LMS

computesw incrementally.

Suppose training vectors become available in sequential order. Without loss of generality, assume

x1, ...,xk−1 and the corresponding outputsy1, ..., yk−1 are available. Define

yk−1 = [y1 y2 ... yk−1]
T (15)

Based onx1, ...,xk−1, the first(k − 1) rows ofA can be evaluated. Let

Ak−1 =











aT
1

aT
2

...

aT
k−1











(16)

be the first(k − 1) rows ofA. The LMS estimate ofw based onAk−1 andyk−1, denoted bywk−1, can

be computed by Equation (14) as

wk−1 = (AT
k−1Ak−1)

−1AT
k−1yk−1

Suppose a new data pair(xk, yk) becomes available. Then instead of using all thek available data pairs

to recompute thewk, the recursive LMS takes the advantage of thewk−1 already available to obtainwk.

Define

Pk−1 = (AT
k−1Ak−1)

−1 (17)

It can then be shown that

Pk = Pk−1 −
Pk−1aka

T
kPk−1

1 + aT
kPk−1ak

(18)

and

wk = wk−1 +Pkak(yk − aT
kwk−1) (19)
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To initialize the algorithm, set

P0 = λ−1I (20)

w0 = 0 (21)

whereλ is a small positive number.

3. The Architecture

As shown in Figure2, the proposed architecture for RBF training can be separated into two units:

the FCM unit and the recursive LMS unit. The goal of the FCM unit is to compute the centersvi,

i = 1, ..., c, given the training setX. Based on the centers produced by FCM unit, and the training set

X, the recursive LMS unit finds the weightswi, i = 1, ..., c.

Figure 2. The proposed RBF architecture.

Figure 3. The FCM architecture.
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4. FCM Unit

Figure3 shows the architecture of the FCM unit, which contains six sub-units: The pre-computation

unit, the membership coefficients updating unit, center updating unit, cost function computation unit,

FCM memory unit, and control unit. The operations of each sub-unit are stated below.

4.1. Pre-Computation Unit

The pre-computation unit is used for reducing the computational complexity of the membership

coefficients calculation. Observe thatui,k in Equation (4) can be rewritten as

ui,k = ||xk − vi||
−2/(m−1)R−1

k (22)

where

Rk =
c

∑

j=1

(1/||xk − vj ||
2)1/(m−1) (23)

Given xk and centersv1, ...,vc, membership coefficientsu1,k, ..., uc,k have the sameRk. Therefore,

the complexity for computing membership coefficients can bereduced by calculatingRk in the

pre-computation unit. For the sake of simplicity, we setm = 2 for our design. Consequently,Rk

can be viewed as the sum of1/||xk − vj||
2.

The architecture for computingRk is depicted in Figure4, which can be divided into two stages.

The first stage evaluates||xk − vi||
2. The second stage first finds the inverse of||xk − vi||

2, and then

accumulate this value with
∑i−1

j=1 1/||xk − vj ||
2.

Figure 4. The architecture of pre-computation unit.

4.2. The Membership Updating Unit

Based on Equation (22), the membership updating unit uses the computation results of the

pre-computation unit for calculating the membership coefficients. Figure5 shows the architecture of

the membership coefficients updating unit. It can be observed from Figure5 that, given a training data

xk, the membership coefficients computation unit computesu2
i,k for i = 1, ..., c, one at a time. The

circuit can be separated to two stages. The first stage and thesecond stage of the pipeline are used for

computing||xk − vi||
2Rk andu2

i,k, respectively.
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Figure 5. The architecture of membership coefficients computation unit.

4.3. Center Updating Unit

The center updating unit incrementally computes the centerof each cluster. The major advantage for

the incremental computation is that it is not necessary to store the entire membership coefficients matrix

for the center computation. Define the incremental center for thei-th cluster up to data pointxk as

vi(k) = (
k

∑

n=1

um
i,nxn)/(

k
∑

n=1

um
i,n) (24)

whenk = t, vi(k) then is identical to the actual centervi given in Equation (5).

The architecture of the center updating unit is depicted in Figure 6. It contains a multiplier, an

accumulator (ACC) array and a divider. There are two groups in the ACC array. Thei-th ACC in

the first group contains the accumulated sum
∑k−1

j=1 xjµ
2
i,j. Moreover, thei-th ACC in the second

group contains the accumulated sum
∑k−1

j=1 µ
2
i,j. The outputs of the array are used for computingvi(k)

using a divider.

Figure 6. The architecture of center updating unit.
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4.4. Cost Function Computation Unit

Similar to the center updating unit, the cost function unit incrementally computes the cost functionJ .

Define the incremental cost functionJ(i, k) as

J(i, k) =

k
∑

z=1

i
∑

j=1

u2
j,z||xz − vj ||

2 (25)

As shown in Figure7, the circuit receivesu2
i,k and||xk−vi||

2 from the membership coefficients updating

unit. The productu2
i,k||xk − vi||

2 is then accumulated for computingJ(i, k) in Equation (25).

Figure 7. The architecture of cost function computation unit.

Wheni = c andk = t, J(i, k) then is identical to the actual cost functionJ given in Equation (3).

Therefore, the output of the circuit becomesJ as the cost function computations for all the training

vectors are completed.

4.5. FCM Memory Unit

This unit is used for storing the centers for FCM clustering.There are two memory banks (Memory

Bank 1 and Memory Bank 2) in the on-chip center memory unit. The Memory Bank 1 stores the current

centersv1, ...,vc. The Memory Bank 2 contains the new centersv1, ...,vc obtained from the center

updating unit. Only the centers stored in the Memory Bank 1 are delivered to the pre-computation

unit and membership updating unit for the membership coefficients computation. The updated centers

obtained from the center updating unit are stored in the Memory Bank 2. Note that the centers in the

Memory Bank 2 will not replace the centers in the Memory Bank 1until all the input training data points

xk, k = 1, ..., t, are processed.

4.6. Employment of Shift Registers for Reducing Area Costs for Large Input Vector Dimensionn

In the pre-computation unit, membership coefficient updating unit and center updating unit of the

FCM, a number of vector operations are required. Each of these operations needsn adders, multipliers

or dividers to operate in parallel. Therefore, as the input vector dimensionn becomes large, the area

costs will be high.

One way to reduce the area costs is to separate each of the input vectorsxk and centersvi into q

segments, where each segment contains onlyn/q elements. The vector operations are then performed

over the segments. This requires onlyn/q adders, multipliers or dividers to operate in parallel. To

implement the segment-based operations, each of the registers holding the input vectorsxk and centers

vi has to be implemented as aq-stage shift register. Each stage of the register consists of n/q elements
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(i.e., one segment). That is, the shift registers are able to fetch or deliver one segment at a time. The

shift registers are then connected to an array ofn/q adders, multipliers or dividers for vector operations

with reduced area costs. The vector operations will not be completed until all the segments in the shift

registers are processed. Therefore, the latency of the vector operations may increase byq-fold.

The shift-register based approach has a number of advantages. First of all, it does not change the

basic architectures of the proposed FCM circuit. In fact, the FCM circuits with differentq values

share the same architectures for pre-computation, membership coefficient updating, center updating,

and cost function computation. Only the registers holding input training vectors and centers may have

different architectures. For the basic FCM circuit withq = 1, these registers are the simplen-elements

parallel-in parallel-out registers. Whenq ≥ 2, these registers becomeq-stage shift registers with each

stage consisting ofn/q elements.

The second advantage is that it provides higher flexibility to the FCM circuit. It is especially helpful

when the input vector dimensionn is large. In this case, basic design withq = 1 is suited only for

applications requiring fast speed computation. However, because of the large area costs, it is difficult to

implement the circuit in small FPGA devices. This difficultymay be solved by the realization of FCM

with largerq values, which usually requires significantly lower consumption of hardware resources.

5. Recursive LMS Unit

The architecture of recursive LMS unit is shown in Figure8, which contains kernel Gaussian

Computation unit, memory unit and matrix computation unit,and control unit.

Figure 8. The proposed recursive LMS architecture.



Sensors2013, 13 3859

5.1. Kernel Gaussian Computation Unit

The goal of kernel Gaussian computation unit is to computeφi(x) given in Equation (1). Givenxk and

the centersv1, ...,vc, the kernel Gaussian computation unit calculates theφ1(xk), ..., φc(xk), sequentially

to produce the vectorak. Figure9 shows the architecture of the kernel Gaussian computation unit. In

addition to adders and multipliers, the architecture contains circuit for computing exponential function.

This circuit is implemented by Altera Floating Point Exponent (ALTFP EXP) Megafunction [20].

Figure 9. The architecture of kernel Gaussian computation unit.

Similar to the FCM circuit, the number of adders and multipliers in this unit grows with input vector

dimensionn. Whenn is large, the area costs for implementing the unit will be high. The shift register

based approach employed in the FCM circuit can also be used here for reducing the area complexities.

In this approach, each of the registers holdingxk andvi is aq-stage shift register. The number of adders

and multipliers becomen/q. The hardware resource consumption can then be lowered.

5.2. Memory Unit

The memory unit is used to hold values required for the computation of recursive LMS algorithm

shown in Equations (18) and (19). As depicted in Figure10, there are 8 buffers (Buffers Y, W, P, G, S,

H, T, and A) in the memory unit. Whenxk is the current training vector, the Buffer A storesak obtained

from kernel Gaussian computation unit. The Buffer Y contains theyk. The Buffers P and W consists of

Pk−1 andwk−1, which are the computation results for the previous training vectorxk−1. Based onak,

yk, Pk−1 andwk−1, the matrix computation unit is then activated for the computation ofPk andwk. The

intermediate results during the computation are stored in the Buffers G, S, H and T. ThePk andwk are

then stored in Buffers P and W for the subsequent operations for the next training vectorxk+1. These

buffers can operate as parallel-in parallel-out (PIPO), parallel-in serial-out (PISO), serial-in parallel-

out (SIPO), and/or serial-in serial-out (SISO) registers.The attributes of these buffers are summarized

in Table 1.
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Figure 10. The architecture of memory unit.

Table 1. The attributes of the buffers in the memory unit.

Buffers Number of Input Ports Number of Output Ports Size of Buffer Structure

Buffer Y 1 1 1 SISO

Buffer W c c c× 1 PIPO

Buffer P c c c× c PIPO

Buffer G c c 1× c SIPO and PIPO

Buffer S c c c× c PIPO

Buffer H 1 c 1× c SISO and SIPO

Buffer T 1 1 1 SISO

Buffer A 1 c 1× c SIPO

5.3. Matrix Computation Unit

The matrix computation unit containsN 2-input multipliers,N 2-input adders, oneN-input adder,

and one inverse operator, as shown in Figure11. The matrix computation unit therefore is able to perform

c parallel multiplications and additions. The circuit operates in four modes, as shown in Figure12.

Modes 1 and 2 performc parallel multiplications and additions, respectively. Mode 3 usesc 2-input
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multipliers forc parallel multiplications, and then usesc-input adder to obtain the sum of thec products.

Mode 4 performs the inverse operation.

Figure 11. The architecture of matrix computation unit.

Figure 12. Four modes of matrix computation unit.
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Figure 12. Cont.

5.4. Control Unit

The control unit of the recursive LMS unit coordinates the operations of the kernel Gaussian

computation unit, memory unit and the matrix computation unit. Figure 13 shows the state diagram

of the control unit. As shown in Figure13, the control unit operates in 13 states. State 0 readsxk from

external bus, and computesak using the kernel Gaussian Computation unit. The operationsfrom State 1

to State 7 is to computePk based on Equation (18). The operations from State 8 to State 12 then finds

wk based on Equation (19). All the operations from State 1 to State 12 involve the Memory unit and

Matrix Computation unit. For the operation of each state, the Memory unit provides the source data. The

Matrix computation unit processes the source data. The computation results are then stored back to the

Memory unit.

Note that each state may not be able to complete its operations in a single step. Because the Matrix

Multiplication unit is able to perform up toc multiplications or additions at a time, when a state requires

more thanc multiplications or additions, multiple-step operations are required. Figure14 shows the

multiple-step operations of State 1, which computePk−1ak. Because there arec2 multiplications in
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State 1, we needc steps to complete the operation, as revealed in the figure. Figures 15 and 16 show

the multiple-step operations of States 2 and 3, respectively. For sake of brevity, Table2 summarizes the

operations of each state. The summary consists of the sourceand destination buffers provided by the

Memory unit, the operation mode of the Matrix Computation unit, and the number of steps required for

each state.

Figure 13. The state diagram of the control unit.
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Figure 14. Multiple-step operations of state 1.
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Figure 15. Multiple-step operations of state 2.
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Figure 16. Multiple-step operations of state 3.
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Table 2. The operations of state 1 to state 12.

State Source Buffers Mode of Matrix Destination Numbers
and Their Contents Computation Buffer and Its of

Unit Contents Steps

State 1 Buffer P Buffer A Mode 2 Buffer G c

Pk−1 ak Pk−1ak

State 2 Buffer P Buffer A Mode 2 Buffer H c

Pk−1 ak aT
kPk−1

State 3 Buffer G Buffer H Mode 3 Buffer S c

Pk−1ak aT
kPk−1 Pk−1aka

T
kPk−1

State 4 Buffer H Buffer A Mode 2 Buffer T 1

aT
kPk−1 ak aT

kPk−1ak

State 5 Buffer T Mode 4 Buffer T 1

aT
kPk−1ak

1
1+aT

k
Pk−1ak

State 6 Buffer T Buffer S Mode 3 Buffer S c
1

1+aT

k
Pk−1ak

Pk−1aka
T
kPk−1

Pk−1aka
T

k
Pk−1

1+aT

k
Pk−1ak

State 7 Buffer P Buffer S Mode 1 Buffer P c

Pk−1
Pk−1aka

T

k
Pk−1

1+aT

k
Pk−1ak

Pk

State 8 Buffer A Buffer W Mode 2 Buffer T 1

aT
k wk−1 aT

kwk−1

State 9 Buffer Y Buffer T Mode 1 Buffer T 1

yk aT
kwk−1 yk − aT

kwk−1

State 10 Buffer P Buffer A Mode 2 Buffer G c

Pk ak Pkak

State 11 Buffer G Buffer T Mode 3 Buffer G 1

Pkak yk − aT
kwk−1 Pkak(yk − aT

kwk−1)

State 12 Buffer W Buffer G Mode 1 Buffer W 1

wk−1 Pkak(yk − aT
kwk−1) wk

5.5. The Proposed Architecture for Online RBF Training and Classification

Suppose there areb classes to be classified. A direct approach to use the proposed architecture for

RBF training is to train theb classes in one shot. However, this may require large number of training

vectorst and large number of nodesc in the hidden layer to achieve high classification success rate.

As a result, the hardware costs of the proposed architecturemay be high. An effective alternative is

to train one class at a time. That is, after the training, eachclass has its own centersv1, ...,vc and

weightsw1, ..., wc for RBF classification. In addition, because each training is for a single class only, the

corresponding training vectorsx1, ...,xt belong to the same class. Therefore, their desired RBF output

valuesy1, ..., yt are identical. For sake of simplicity, lety = y1 = ... = yt be the values of the desired



Sensors2013, 13 3868

output. During recursive LMS training, the buffer Y in the memory unit for storing desired RBF outputs

should only need to be initialized asy before the training of each cluster. It is not necessary to update

Buffer Y for each new inputxk during the training process.

The training process can further be simplified by allowing the desired outputy to be identical for the

training of all the clusters. In this way, the buffer Y shouldonly be initialized before the training of the

first cluster. Its value will then be reused for the training of subsequent clusters.

This simplification is also beneficial for RBF classificationafter the training. It is not necessary to

store the desired output for individual clusters because they share the same one (i.e., y). Given an input

vectorx for RBF classification, let̂y be the output of the RBF network for classi, and letEi = (ŷ − y)2

be the squared distance between the desired output and the actual output. The vectorx will be assigned

to classi∗, when

i∗ = arg min
1≤i≤b

Ei (26)

The classification circuit for each class mainly contains the kernel computation unit shown in Figure9,

andc multipliers for the computation of̂y based on Equation (2). It can be effectively implemented in a

pipelined fashion. Replicated copies of the circuit with one for each class (i.e., b copies) can operate in

parallel to further enhance the throughput of classification.

The proposed architecture can be employed in conjunction with the softcore processor for on-chip

learning and classification. As depicted in Figure17, the proposed architecture is used as a custom

user logic in a system-on-programmable-chip (SOPC) consisting of softcore NIOS II processor, DMA

controller, ethernet MAC and SDRAM controller for controlling off-chip SDRAM memory.

Figure 17. The SOPC architecture.

The NIOS II processor is used for coordinating all components in the SOPC. It receives training/test

vectors from ethernet MAC and stores these vectors in the SDRAM. It is also able to deliver the training

and classification results to external hosts via the ethernet MAC. In addition, the softcore processor is
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responsible for the initialization of the proposed architecture and DMA controller. The initialization of

the proposed architecture involves the loading of the initial parameters to the FCM and recursive LMS

circuits. These parameters include the number of centersc, the initial centersvi, i = 1, ..., c, for FCM

circuit, andσ2 , y,P0 andw0 for recursive LMS circuit. The parameters are all stored in registers and can

be accessed by softcore processor. Allowing these parameters to be pre-loaded by softcore processors

may enhance the flexibility of the SOPC system.

The proposed architecture is only responsible for RBF training. The input vectors for the RBF training

are delivered by the DMA controller. In the SOPC system, the training vectors are stored in the SDRAM.

Therefore, the DMA controller delivers training vectors from the SDRAM to the proposed architecture.

After the RBF training is completed, the NIOS II processor then retrieves the resulting neurons from the

proposed architecture. All operations are performed on a single FPGA chip. The on-chip learning is

well-suited for applications requiring both high portability and fast computation.

6. Experimental Results

This section presents experimental results of the proposedarchitecture. We first compare the proposed

RBF network with existing classification techniques. The comparisons are based on datasets from

the UCI database repository [21]. There are 4 datasets considered in the experiment: Balance-Scale,

BCW-Integer, Iris and Wine. These datasets provide useful examples for the classification of balance

scale states, breast cancer diagnosis, iris plant recognition, and wine recognition. The datasets have

different sizes, number of attributes, and number of classes. The description of the datasets is shown in

Table 3.

Table 3. Description of datasets.

Balance-Scale BCW-Integer Iris Wine

Sizes (Instances) 625 699 150 178

Attributes (n) 4 9 4 13

Classes (b) 3 2 3 3

Class Names L, B, R Benign, Setosa, 1,2,3

Malignant Versicolor,

Virginica

The classification success rate (CSR) is used to measure the performance of classification techniques.

The CSR is defined as the number of input patterns that are successfully classified divided by the total

number of input patterns. From Table4, it can be observed that the proposed RBF network has highest

CSRs for the datasets Iris and Wine. In addition, it has CSRs comparable to those of the best classifiers

for the datasets Balance-Scale and BCW-Integer. The RBF network has superior performance because

the centers and the connecting weights of the network can be effectively found by FCM and recursive

LMS, respectively.

Next we compare FCM with the algorithm in [11] for selection of centers in RBF design for texture

classification. The textures considered in the experimentsare shown in Figure18. The textures are
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labelled T1, T2, T3, T4 and T5 in the figure, respectively. Thedimension of input vectors isn = 4× 4.

The comparisons are based on CSRs for 2-, 3- and 4-class texture classification (i.e., b = 2, 3 and 4).

To achieve meaningful comparisons, all RBF networks are based on recursive LMS algorithms for the

training of connecting weights. They only have different center selection algorithms. Table5 shows

the results of the comparison. For each texture classification experiment, the table reveals the largest

CSR for each center selection algorithm. Because differentnumber of centers may result in the same

CSR, the lowest number of centers (i.e., c) yielding the CSR is also shown in the table. The RBF network

with lowestc has the smallest hidden layer size, which is beneficial for subsequent training of connecting

weights at the output layer. It can be observed from Table5 that both center selection algorithms produce

the same minimum number of centers for each experiment. For the experiment withb = 2, both methods

also attain 100% CSR. Nevertheless, whenb = 4, the FCM has superior CSR. Therefore, FCM is an

effective alternative for RBF design.

Table 4. The CSRs of various classifiers for datasets from the UCI database repository [21].

Data Proposed RBF Kotsiantis Webb Zheng De Falco Friedman
Sets Network et al. [22] [23] et al. [24] et al. [25] et al. [26]

Balance-Scale 87.04% 91.19% 75.80% 69.80% 86.88% 69.70%

BCW-Integer 97.00% 96.18% 94.86% 97.00% 97.36% 95.00%

Iris 98.00% 94.87% 97.37% 94.20% 94.74% 94.40%

Wine 98.31% 98.14% 82.23% 96.00% 97.12% 94.70%

Figure 18. The textures considered in the experiments.

T1 T2 T3

T4 T5



Sensors2013, 13 3871

Table 5. The highest CSR of the RBF networks for 2-, 3- and 4-class texture training.

Texture Classification Proposed RBF RBF Network in [11]

2-class 100% (c = 4) 100% (c = 4)

(T1 & T2)

3-class 99.23% (c = 8) 99.29% (c = 8)

(T1 & T3 & T4)

4-class 96.87% (c = 8) 92.47% (c = 8)

(T1 & T3 & T4 & T5)

We then evaluate the area complexities and latency of the proposed architecture. The area

complexities are separated into four categories: the number of adders, the number of multipliers, the

number of dividers and the number of registers. The latency is the training time. Table6 shows the

area complexities and latency of the proposed architecture. It can be observed from Table6 that the area

complexities of FCM mainly grows linearly with the vector dimensionn. In addition, when theq-stage

(q > 1) shift register is used, the area costs can be reduced. On theother hand, the area complexities of

the recursive LMS increases with both the vector dimensionn and the number of neurons in the hidden

layerc. Moreover, the area costs grow inversely withq. The training time of FCM and recursive LMS

increase withc andq. It also grows linearly with the number of training vectorst.

Table 6. The area complexities and latency of the proposed architecture.

FCM Recursive LMS Entire RBF

Adders O(n/q) O(c+ (n/q)) O(c+ (n/q))

Multipliers O(n/q) O(c+ (n/q)) O(c+ (n/q))

Dividers O(n/q) O(1) O(n/q)

Registers O(nc) O((n/q) + c2) O(nc+ (n/q) + c2)

Latency O(qct) O(qt+ ct) O((qc+ q + c)t)

To further evaluate the area complexities, the physical implementation of the proposed architecture

is considered. The design platform is Altera Quartus II [27] with SOPC Builder and NIOS II IDE. The

target FPGA device for the hardware design is Altera CycloneIII EP3C120. Table7 show the hardware

resource consumption of the proposed architecture for vector dimensionsn = 4 × 4 and the number

of neuronsc = 8 in the hidden layer, respectively. The FCM circuit is the basic circuit with q = 1.

The hardware resource utilization of the entire SOPC systems is also revealed in Table7 for comparison

purpose. Three different area resources are considered in the tables: Logic Elements (LEs), embedded

memory bits, and embedded multipliers. The LEs are used for the implementation of adders, dividers,

and registers in the proposed architecture. Both the LEs andembedded memory bits are also used for

the implementation of NIOS CPU of the SOPC system. The embedded multipliers are used for the

implementation of the multipliers of the proposed architecture. It can be observed from the table that the
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entire SOPC consumes 84% of the LEs of the target FPGA device.Because the area costs grow withn,

the extension of the circuit withq = 1 to largern may be difficult.

Table 7. The Hardware Resource Consumption of the Proposed Architecture withn = 4×4,

c = 8 andq = 1.

FCM Recursive LMS Entire RBF SOPC

Logic 25541/119088 57987/119088 88413/119088 99817/119088

Elements (21%) (49%) (74%) (84%)

Embedded 79/576 200/576 342/576 346/576

Multiplier (14%) (35%) (59%) (60%)

Embedded 132864/3981312 9799/3981312 142913/3981312 1558177/3981312

Memory Bits (3%) (1%) (4%) (39%)

Table8 shows the effectiveness of using shift register based approach for RBF hardware design. The

input vector dimension is extended fromn = 4 × 4 to n = 8 × 8. That is, the vector dimension is

increased 4 folds. We setq = 4 to reduce the number of adders, multipliers and dividers forthe new

vector dimension. In fact, from Table8, we can see that the SOPC can still be implemented in the target

FPGA even withn = 8×8. Note that, as compared with LE consumption in Table7, the LE consumption

for n = 8 × 8 andq = 4 only slightly increases from 84% to 90%. Without the employment of shift

registers for vector operations, the LE consumption will exceed the capacity limit of the target FPGA

device forn = 8× 8.

Table 8. The hardware resource consumption of the proposed architecture withn = 8 × 8,

c = 8 andq = 4.

FCM Recursive LMS Entire RBF SOPC

Logic 30661/119088 60035/119088 95581/119088 106985/119088

Elements (26%) (50%) (80%) (90%)

Embedded 79/576 200/576 342/576 346/576

Multiplier (14%) (35%) (59%) (60%)

Embedded 165632/3981312 9799/3981312 175681/3981312 1590945/3981312

Memory Bits (4%) (1%) (4%) (40%)

Table 9 compares the area costs of proposed FCM with those of the FCM architecture presented

in [28] for various c values withq = 1. The dimension of input vectors isn = 2 × 2. Because

the architecture presented in [28] uses broadcasting scheme for membership coefficients and center

computation, we can see from Table9 that the proposed architecture consumes significantly less

hardware resources. As the number of neurons reaches 32, thearchitecture presented in [28] consumes

114117 LEs, which is 97% of the LE capacity of the target FPGA device. In contrast, whenc = 128,
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the proposed architecture only consumes 92295 LEs, which is78% of the LE capacity of the target

FPGA device.

Table 9. Comparisons of the area costs of various FCM architectures with n = 2× 2.

c LEs of Proposed FCM Architecture LEs of Architecture in [ 28]

4 16553/119088 (14%) 21084/119088 (18%)

8 18504/119088 (16%) 35423/119088 (30%)

16 22568/119088 (19%) 59868/119088 (50%)

32 30827/119088 (26%) 114117/119088 (97%)

64 47412/119088 (40%) NA

96 69810/119088 (59%) NA

128 92295/119088 (78%) NA

The speed, area costs and CSRs of various hardware architectures for iris plant classification are

shown in Table10. The measurement of speed is the throughput, which is definedas the number of

classifications per second. The hardware circuits are implemented in different FPGA devices. Therefore,

it may be difficult to have direct comparisons on the hardwareresource consumption. Our comparisons

are based on the facts that logic cells (LCs) are the major hardware resources available in the FPGA

devices for [29,30]. The LCs and LEs have similar structures, which contain a look-up table (LUT) and

a 1-bit register. Therefore, the comparison of hardware resource consumption is based on the number

of LEs or LCs used by the circuits. The CSR of these circuits are measured from the same dataset Iris

obtained from UCI repository. There are 4 attributes for each instance. Therefore, all the circuits have

the same input vector dimensionn = 4. Two RBF networks with different number of centers (c = 2 and

c = 4) are considered in this experiment. From Table10, we can see that the proposed architectures with

c = 2 andc = 4 have the highest throughput and CSR, respectively. They outperform the architecture

in [29] in throughput, LE/LC consumption and CSR. They also have higher speed as compared with

the architecture in [30]. The proposed RBF withc = 2 has slightly lower CSR as compared with the

RBF with c = 4. However, it has higher throughput and lower LE consumption. Therefore, when both

the speed and hardware consumption are important concerns,the RBF withc = 2 is more effective.

Alternatively, when high speed computation and high CSR aredesired, the RBF withc = 4 may be a

better selection.

The proposed RBF architecture also features fast training time for texture classification. To illustrate

this fact, Table11 compares various hardware and software implementations for the training. The

number of textures considered in this experiment isb = 4. The textures T1, T3, T4 and T5 shown

in Figure 18 are used as the training images for the experiments. The CPU time of the proposed

RBF architecture and the architecture in [31] are measured by the NIOS II 50 MHz softcore CPU in

the SOPC platform. The architecture [31] is based on the generalized Hebbian algorithm (GHA) [2].

The number of principal components in the GHA is 7. Both the implementation of RBF and GHA

architectures are based on the same FPGA device (i.e., Cyclone III). It can be observed from Table11

that the proposed architecture achieves comparable CSR to that of GHA architecture with significantly



Sensors2013, 13 3874

lower computation time. In fact, the training time of the proposed architecture is only 4.32% of that

of its software counterpart (126.68 msvs. 2927.38 ms). As compared with the GHA algorithm based

on incremental updating/training processes, its trainingtime is only 2.42% of that of GHA architecture

(126.68 msvs. 5240.92 ms). All these facts demonstrate the effectiveness of the proposed architecture.

Table 10.Comparisons of different hardware architectures for Iris classification.

FPGA Devices Throughput LE/LC Consumption CSR

Xilinx

Polatet al. [29] Spartan 3

XC3S2000 10.0× 106 39636 96.60%

Xilinx

Shi et al. [30] Virtex e

XCV2000E 5.4× 106 3276 98.00%

Altera

Proposed Cyclone III

RBF (c = 2) EP3C120 30.0× 106 16147 97.33%

Proposed Cyclone III

RBF (c = 4) EP3C120 15.0× 106 21665 98.00%

Table 11.Comparisons of various implementations for texture training.

SOPC Based on Proposed RBF Architecture SOPC Based on GHA Architecture [31] RBF Software

CPU

Time 126.68 ms 5240.92 ms 2927.38 ms

CPU Altera Altera Intel

50 MHz NIOS II 50 MHz NIOS II 1.6 GHz I5

FPGA Cyclone III Cyclone III

Device EP3C120 EP3C120

CSR 96% 98% 97%

7. Concluding Remarks

A novel RBF training circuit capable of online FCM training and recursive LMS operations has been

realized. Its FCM implementation consumes less hardware resources as compared with existing FCM

designs. The hardware recursive LMS can also expedite the training at the output layer. Experimental

results reveal that the proposed RBF network has superior CSR over existing classifiers for a bundle

of datasets in the UCI repository. In addition, the proposedRBF architecture has superior speed

performance over its software counterparts and other architectures for texture classification. In fact,

the RBF network is able to attain CSR of 98% for Iris plant classification. Moreover, it has CSR of 96%

for the 4-class texture classification. The training time ofthe RBF architecture is only 126.68 ms. By

contrast, the training time of its software counterpart is 2927.38 ms. In addition, for the low cost FPGA
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devices such as Altera Cyclone III, only 84%, 60% and 39% of logic elements, embedded multipliers,

and embedded memory bits are consumed for dimensionn = 4×4. The proposed architecture therefore

is an effective alternative for on-chip learning applications requiring low area costs, high CSR, and high

speed computation.
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