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Abstract: This paper presents a novel VLSI architecture for the tngrof radial basis
function (RBF) networks. The architecture contains theuts for fuzzyC-means (FCM)
and the recursive Least Mean Square (LMS) operations. THd Eitcuit is designed
for the training of centers in the hidden layer of the RBF reiov The recursive
LMS circuit is adopted for the training of connecting weighih the output layer. The
architecture is implemented by the field programmable gateydFPGA). It is used as a
hardware accelerator in a system on programmable chip ($@P@al-time training and
classification. Experimental results reveal that the pseddRBF architecture is an effective
alternative for applications where fast and efficient RE#ing is desired.
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1. Introduction

Radial basis function (RBF)1[2] networks have been found to be effective for many real world
applications due to their ability to approximate complexlimtear mappings with a simple topological
structure. A basic RBF network consists of three layers: iut layer, a hidden layer with a nonlinear
kernel, and a linear output layer. The Gaussian functionimsraonly used for the nonlinear kernel.
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The parameter estimation of RBF networks concerns the wg#ton of centers of the Gaussian
kernels as well as the connecting weights between neurdms.e3timation of the above parameters is
carried out using two-staged learning strategies. In tis¢ $tage, cluster analysis is implemented to
calculate the appropriate values of the centers. In thensestage, supervised optimization procedures
are involved in the optimal estimation of the connectinggis.

One effective clustering approach for finding centers igthmeans algorithmd]. However, because
of iterative crisp clustering operations, the results efAkimeans algorithm are sensitive to the selection
of initial centers. In addition, the computation compl@stof the algorithm are high for large set of
training vectors. The fuzz¢'-means (FCM) algorithm and its varian®4] are the effective alternatives
for finding the centers. The FCM adopts a fuzzy partitionipgraach for clustering. It allows the
training vectors to belong to several clusters simultasowvith different degrees of membership.
Although the FCM is also an iterative algorithm, the clustgmperformance is less susceptible to the
initial centers. However, the fuzzy clustering involves ttomputation of degree of membership, which
may be very computationally expensive as the number ofitrgivectors and/or the number of clusters
become large. The particle swarm optimization (PSO) teples p,6] are also beneficial for computing
the centers. The techniques can operate in conjunctiorfudity clustering §] for attaining near optimal
performance. Nevertheless, when the number of particld®oathe dimension associated with each
particle are large, the real-time RBF training may still biéalilt.

To estimate the connecting weights in the output layer,tlessan square (LMS) methods are the
commonly used techniques. However, basic LMS approachvesahe computation of the inverse
of the correlation matrix in the hidden layer of the RBF neattvoWhen the size of the hidden layer
and/or training set becomes large, the inverse matrix ctéatipn may become a demanding task. The
requirement of inverse matrix operations can be lifted leyatloption of recursive LMS. Nevertheless,
because extensive matrix multiplications are requirepgeeslly for large hidden layer and/or training
set, the recursive LMS still has high computational comipiles.

Many efforts have been made to expedite RBF training. ThHaigaes in -9] focus on reducing the
training time for centers. The algorithm presenteddjuses subtractive clustering. The fast technique
in [8] modifies the basid<{-means algorithm. The center updating 8} is based on an incremental
scheme. In10], an incremental technique is used for the updating of cotmg weights in the output
layer. These fast algorithms are implemented by softwanerdfore, only moderate acceleration can be
achieved. Moreover, for the incremental algorithf@4d.Q], inappropriate selection of learning rate may
severely degrade the training performance.

The algorithm in 1] is suited for finding centers by hardware. It involves ordyplicating selected
training vectors as centers. The number of centers prodogdide algorithm can be controlled by the
radius parameterlfl]. Nevertheless, the mapping from the radius parameteramtimber of centers
may vary for different training sets. It may then be difficddtfind a search scheme efficient for seeking
optimal radius parameters subject to a constraint on the RBWwork hidden layer size for different
training sets.

The analog hardware implementatiat2[13] for RBF training has been found to be effective for
reducing the computation time. However, these architestare difficult to be directly used for digital
devices. Digital hardware realization of RBF Y] focuses only on the implementation of topological
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structure of the networks. The training of the centers inhidelen layer and the connecting weights in
output layer are performed by software. Other RBF-baseticaions in embedded systenib[16] are
also implemented in a similar fashion.

In [17,18], the digital hardware architectures for RBF training héaesn presented. However, the
training for centers is not considered @kv]. The training for connecting weights is based on increralent
operations. The architecture i is able to train both the centers and the connecting weightks
training operations are performed incrementally. Althotige incremental training is more suitable for
hardware implementation, the performance is dependenth@sdlection of learning rate. The value
of learning rate may be truncated for the finite precisiordhare implementation. Similar to the
improper learning rate selection, the truncation of leagniate may result in a poor local optimum
for RBF training.

The goal of this paper is to present a novel hardware ar¢bredor real-time RBF training. The
architecture is separated into two portions: the FCM cirand the recursive LMS circuit. The FCM
circuit is designed for the training of centers in the hidtssrer. The recursive LMS circuit is adopted
for the training of connecting weights in the output layeottBthe FCM and the recursive LMS circuits
are digital circuit requiring no learning rate.

The FCM circuit features low memory consumption and highespeomputation. In the circuit,
the usual iterative operations for updating the memberstapix and cluster centers are merged into
one single updating process to evade the large storagereetgnt. In addition, the single updating
process is implemented by a novel pipeline architectureefdrancing the throughput of the FCM
training. In our design, the updating process is divided thtee steps: Pre-computation, membership
coefficients updating, and center updating. The pre-comguwtep is used to compute and store
information common to the updating of different memberstopfficients. This step is beneficial for
reducing the computational complexity for the updating @mniership coefficients. The membership
updating step computes new membership coefficients basafhad set of centers and the results of the
pre-computation step. The center updating step computasetiiter of clusters using the current results
obtained from the membership updating step. The final resdlthis step will be used for subsequent
RBF processing.

The recursive LMS circuit performs weight updating using ¢lenters obtained from the FCM circuit.
The recursive LMS algorithm involves large number of matgperations. To enhance the computational
speed of matrix operations, an efficient block computaticoud is proposed for parallel multiplications
and additions. The block dimension is identical to the nundenodes in the hidden layer so that all
the connecting weights can be updated concurrently. Tditétei the block computation, buffers for
storing intermediate results of recursive LMS algorithm ianplemented as shift registers allowing both
horizontal and vertical shifts. Columns and rows of a matar then easily be accessed. All matrix
operations share the same block computation circuit foetowg area cost. Therefore, the proposed
block computation circuit has the advantages of both higkedpcomputation and low area cost for
recursive LMS.

To demonstrate the effectiveness of the proposed architech hardware classification system on
a system-on-programmable-chip (SOPC) platform is coottds The SOPC system may be used as a
portable sensor for real-time training and classificatidme system consists of the proposed architecture,
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a softcore NIOS Il processod 9|, a DMA controller, and a SDRAM. The proposed architectige i
adopted for online RBF training with the training vectorsretl in the SDRAM. The DMA controller is
used for the DMA delivery of the training vectors. The sofeprocessor is used for coordinating the
SOPC system. Some parameters of the RBF training procesmafixed by hardware. They can be
modified by the softcore processor to enhance the flexilmfithe SOPC system. As compared with its
software counterpart running on Intel I5 CPU, our systemsigisificantly lower computational time for
large training set. All these facts demonstrate the effengss of the proposed architecture.

2. The RBF Networks

This section reviews some basic facts of RBF networks. AcgldRBF network revealed in Figufe
consists of an input layer, a hidden layer and an output Iayee input layer contains source nodes,
wheren is the dimension of the input vectar. The hidden layer consists efneurons. A kernel
function is associated with each neuron. A typical kernekcfion used in the RBF networks is the
Gaussian kernel. Let; be the Gaussian kernel associated withittteneuron, which is defined as

6i(x) = exp(—5 5 lbx — vill?) @

The v; in Equation () is the center associated with tlx¢h neuron. Bothx andv; have the same
dimensionn. Theo? in Equation () is termed the radius of the Gaussian kernel. It is assuméusn
study that all kernels have the same radius.

The output layer contains only one neuron. fdte the output of the neuron, which is given by

Y= sz’¢z’(x) (2)

The w; is termed the connecting weights between #tlke neuron in the hidden layer and the output
neuron. The RBF training usually involves the training ohteesv,, and connecting weights;,

1=1, .., c
Figure 1. A typical RBF network.
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2.1. FCM for the Training of Centers

The FCM can be effectively used for the training of centeet X = {x;, ..., x;} be a set of training
vectors for RBF training, whereis the number of training vectors. The FCM compwes =1, ..., ¢,
by separatingX into c clusters. The; is then the center of clustér The FCM involves minimization
of the following cost function:

c t
J:ZZU%HM—WHQ (3)
=1 k=1

wherew, ; is the membership aof;, in class:, andm > 1 indicates the degree of fuzziness. The cost
function J is minimized by a two-step iteration in the FCM. In the firgstthe centersy, ..., v., are
fixed, and the optimal membership matfix; ., = 1, ...,c,k = 1, ..., ¢} is computed by

C

wige = (k= vill/|Ixi = v, | )¥ =) (4)
j=1
After the first step, the membership matrix is then fixed, d@dtew centey; is obtained by
t t
k=1 k=1

The iteration continues until the convergenceJof From Equations3) and §), it follows that the
membership matrix needs to be stored for the computatioosiffanction and centers. As the size of
the membership matrix grows with the product @ndc, the storage size required for the FCM may be
impractically large for hardware implementation.

2.2. Recursive LMS for the Training of Connecting Weights

The training of connecting weights is also based on theitrgisetX = {x,...,x;}. Let ¢, be the
output of RBF network when the input is theth training vector, € X. That s, from Equation2)

Up = Z w;d; (X
=1

Define
ay = [p1(xn) da(xk) o de(xi)]” (6)
w o= [w wy .. w]" (7)
It then follows that
g = apw (8)
In addition, let
y =10 92 - 4" 9)
be the vector containing all the outputs for the trainingsetind
af
ay

A= (10)

T
A
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From Equations§) and (L0), we see that
y = Aw (11)

Define
y=1[y yo . w]" (12)

as the vector consisting of all tlteesiredoutputs for the training seX, wherey, is thedesiredoutput
associated with the input,. Let

E=Y (—w) (13)
h=1

be the square distance betwgeandy. It can be shown tha@] the LMS estimate ofv minimizing £
is given by
w=(ATA) ATy (14)

Findingw based on Equatiorif) involves the operations of matrix inverse and multiplicat The LMS
estimate ofw may therefore be difficult to be implemented by hardware wihenber of training vectors
t and/or the number of centersare large. An effective alternative to the LMS method is theursive
LMS. Given training sefX, instead of computingv in one shot using Equatioi4), the recursive LMS
computesw incrementally.

Suppose training vectors become available in sequenti@roiWithout loss of generality, assume
X1, ..., Xx_1 and the corresponding outpufs ..., yx_; are available. Define

Yi—1 = [y1 Y2 ... yk:—l]T (15)

Based orxy, ..., x;_1, the first(k — 1) rows of A can be evaluated. Let
(16)

be the first(k — 1) rows of A. The LMS estimate ofv based oM ;_; andy,_;, denoted byw,_;, can
be computed by Equatioi4) as

w1 = (A} A1) TAL v

Suppose a new data pait;, v, ) becomes available. Then instead of using allifevailable data pairs
to recompute thev,, the recursive LMS takes the advantage ofwhe ; already available to obtaw,.
Define

Py = (A{Ax )7 (17)
It can then be shown that
Pk—laka;}FPk—l

P,.=P,_, —
k k—1 11 alP, a;

(18)

and

wi = W1 + Prag(yr — aj wi_1) (19)
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To initialize the algorithm, set

P, = )1 (20)

where\ is a small positive number.

3. The Architecture

As shown in Figure2, the proposed architecture for RBF training can be sepdiate two units:
the FCM unit and the recursive LMS unit. The goal of the FCMtusito compute the centens,
i = 1,...,c, given the training seX. Based on the centers produced by FCM unit, and the traidhg s
X, the recursive LMS unit finds the weighis, i = 1, ..., c.

Figure 2. The proposed RBF architecture.
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Figure 3. The FCM architecture.
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4. FCM Unit

Figure3 shows the architecture of the FCM unit, which contains shxsunits: The pre-computation
unit, the membership coefficients updating unit, centeratipg unit, cost function computation unit,
FCM memory unit, and control unit. The operations of eachuib are stated below.

4.1. Pre-Computation Unit

The pre-computation unit is used for reducing the companali complexity of the membership
coefficients calculation. Observe that, in Equation &) can be rewritten as

Wi = |[xp — il | VR (22)

where

c

Ri=7 (1/llx = |51 (23)

7j=1

Givenx; and centers/q, ..., v., membership coefficients, j, ..., u., have the same?,. Therefore,
the complexity for computing membership coefficients canrééuced by calculating?, in the
pre-computation unit. For the sake of simplicity, we set= 2 for our design. Consequently;
can be viewed as the sum bf||x; — v;||*.

The architecture for computing, is depicted in Figurel, which can be divided into two stages.
The first stage evaluatel;, — v;||>. The second stage first finds the inverse|gf — v;||?, and then
accumulate this value with™'~} 1/[|x;, — v;||*.

Figure 4. The architecture of pre-computation unit.

1-stage 2-stage

Xk — i1
v >®—<§ »| Inverse Register >;‘/
] ——i

4.2. The Membership Updating Unit

2

X"V,

Based on Equation2@), the membership updating unit uses the computation sesfltthe
pre-computation unit for calculating the membership cokffits. Figures shows the architecture of
the membership coefficients updating unit. It can be obskingem Figure5 that, given a training data
X, the membership coefficients computation unit compmf%sfor 1 =1,...,c,one at atime. The
circuit can be separated to two stages. The first stage arskbtimad stage of the pipeline are used for
computing||x; — v4|[* Ry andu?,, respectively.
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Figure 5. The architecture of membership coefficients computation un

1-stage 2-stage
. X-
» Register ——» 1
) i 5
% | e —vi]
x 9 » Register ——»
Vi —i
2
a ui‘k—l
@ > Inverse > x Register ——»
R]( v

4.3. Center Updating Unit

The center updating unit incrementally computes the ceariteach cluster. The major advantage for
the incremental computation is that it is not necessarya@ghe entire membership coefficients matrix
for the center computation. Define the incremental centathie:-th cluster up to data point, as

vilk) = O ultx,) /() (24)

whenk = t, v;(k) then is identical to the actual centergiven in Equation¥).

The architecture of the center updating unit is depictediguiffe 6. It contains a multiplier, an
accumulator (ACC) array and a divider. There are two groupthé ACC array. Theé-th ACC in
the first group contains the accumulated s@j;ll x;u7 ;. Moreover, thei-th ACC in the second
group contains the accumulated s@j‘f;ll ,uZ%j. The outputs of the array are used for computing:)
using a divider.

Figure 6. The architecture of center updating unit.
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4.4. Cost Function Computation Unit

Similar to the center updating unit, the cost function umirementally computes the cost functién
Define the incremental cost functioft:, k) as

k i
T k) =3 "ul [|x. — v, (25)
z=1 j=1
As shown in Figuré, the circuit receives?, and||x; —v;||* from the membership coefficients updating

unit. The product:; . ||x, — v;||* is then accumulated for computinigi, k) in Equation @5).

Figure 7. The architecture of cost function computation unit.
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Wheni = candk = ¢, J(i, k) then is identical to the actual cost functidrgiven in Equation 3).
Therefore, the output of the circuit becomésas the cost function computations for all the training
vectors are completed.

4.5. FCM Memory Unit

This unit is used for storing the centers for FCM clusterifere are two memory banks (Memory
Bank 1 and Memory Bank 2) in the on-chip center memory unie Wlremory Bank 1 stores the current
centersvy, ..., v.. The Memory Bank 2 contains the new centets..., v. obtained from the center
updating unit. Only the centers stored in the Memory Bank el gelivered to the pre-computation
unit and membership updating unit for the membership coeffis computation. The updated centers
obtained from the center updating unit are stored in the MgrBank 2. Note that the centers in the
Memory Bank 2 will not replace the centers in the Memory Bank(fil all the input training data points
xi, k =1,...,t, are processed.

4.6. Employment of Shift Registers for Reducing Area Costsairge Input Vector Dimension

In the pre-computation unit, membership coefficient updatinit and center updating unit of the
FCM, a number of vector operations are required. Each oktbpsrations needsadders, multipliers
or dividers to operate in parallel. Therefore, as the inmdtor dimensiom becomes large, the area
costs will be high.

One way to reduce the area costs is to separate each of thevegorsx, and centerss; into g
segments, where each segment contains apdyelements. The vector operations are then performed
over the segments. This requires omlyg adders, multipliers or dividers to operate in parallel. To
implement the segment-based operations, each of theeegislding the input vectoss, and centers
v; has to be implemented as;astage shift register. Each stage of the register condistgpelements
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(i.e., one segment). That is, the shift registers are able th fetaeliver one segment at a time. The
shift registers are then connected to an array afadders, multipliers or dividers for vector operations
with reduced area costs. The vector operations will not mepteted until all the segments in the shift
registers are processed. Therefore, the latency of theneperations may increase pyfold.

The shift-register based approach has a number of advant&gest of all, it does not change the
basic architectures of the proposed FCM circuit. In face BCM circuits with differenty values
share the same architectures for pre-computation, metmpecsefficient updating, center updating,
and cost function computation. Only the registers holdmmut training vectors and centers may have
different architectures. For the basic FCM circuit witk= 1, these registers are the simplelements
parallel-in parallel-out registers. When> 2, these registers becomestage shift registers with each
stage consisting of/q elements.

The second advantage is that it provides higher flexibibtthe FCM circuit. It is especially helpful
when the input vector dimensianis large. In this case, basic design with= 1 is suited only for
applications requiring fast speed computation. Howewerahse of the large area costs, it is difficult to
implement the circuit in small FPGA devices. This difficuibay be solved by the realization of FCM
with largerq values, which usually requires significantly lower constioipof hardware resources.

5. Recursive LMS Unit

The architecture of recursive LMS unit is shown in Fig@ewhich contains kernel Gaussian
Computation unit, memory unit and matrix computation uauitgi control unit.

Figure 8. The proposed recursive LMS architecture.
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5.1. Kernel Gaussian Computation Unit

The goal of kernel Gaussian computation unit is to compi(te) given in Equationl). Givenx; and
the centers, ..., v, the kernel Gaussian computation unit calculatesifigy ), ..., ¢.(xx ), Sequentially
to produce the vectas,. Figure9 shows the architecture of the kernel Gaussian computahdn kn
addition to adders and multipliers, the architecture dasteircuit for computing exponential function.
This circuit is implemented by Altera Floating Point Expah@ALTFP_EXP) Megafunction20].

Figure 9. The architecture of kernel Gaussian computation unit.
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Similar to the FCM circuit, the number of adders and mulégiin this unit grows with input vector
dimensionn. Whenn is large, the area costs for implementing the unit will benhighe shift register
based approach employed in the FCM circuit can also be useddrereducing the area complexities.
In this approach, each of the registers holdipgandv; is ag-stage shift register. The number of adders
and multipliers become/q. The hardware resource consumption can then be lowered.

5.2. Memory Unit

The memory unit is used to hold values required for the coatprt of recursive LMS algorithm
shown in Equations1@) and (L9). As depicted in FigurdO0, there are 8 buffers (Buffers Y, W, P, G, S,
H, T, and A) in the memory unit. Whex, is the current training vector, the Buffer A storgsobtained
from kernel Gaussian computation unit. The Buffer Y corddhrey,. The Buffers P and W consists of
P,_; andw,_4, which are the computation results for the previous trgniactorx, ;. Based omy,
Y, Pr_1 andw,_q, the matrix computation unit is then activated for the cotapan of P, andw,. The
intermediate results during the computation are storebdarBuffers G, S, H and T. ThB, andw,, are
then stored in Buffers P and W for the subsequent operatmmihié next training vectox,.,. These
buffers can operate as parallel-in parallel-out (PIPOJjaltel-in serial-out (PISO), serial-in parallel-
out (SIPO), and/or serial-in serial-out (SISO) registérke attributes of these buffers are summarized
in Table 1.
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Figure 10. The architecture of memory unit.
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Table 1. The attributes of the buffers in the memory unit.

Buffers  Number of Input Ports Number of Output Ports  Size of Buffer Structure

Buffer Y 1 1 1 SISO
Buffer W c c cx1 PIPO
Buffer P c c cXec PIPO
Buffer G c c 1xe SIPO and PIPO
Buffer S c c cXc PIPO
Buffer H 1 c 1xc SISO and SIPO
Buffer T 1 1 1 SISO
Buffer A 1 c 1xec SIPO

5.3. Matrix Computation Unit

The matrix computation unit containg 2-input multipliers,N 2-input adders, on&/-input adder,
and one inverse operator, as shown in FidLiteThe matrix computation unit therefore is able to perform
¢ parallel multiplications and additions. The circuit ogesin four modes, as shown in Figuté.
Modes 1 and 2 perform parallel multiplications and additions, respectively. dé&o3 uses: 2-input
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multipliers forc parallel multiplications, and then usesnput adder to obtain the sum of thg@roducts.
Mode 4 performs the inverse operation.

Figure 11. The architecture of matrix computation unit.
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Figure 12. Cont
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5.4. Control Unit

The control unit of the recursive LMS unit coordinates theerapions of the kernel Gaussian
computation unit, memory unit and the matrix computation.ufigure 13 shows the state diagram
of the control unit. As shown in Figurg3, the control unit operates in 13 states. State O readsom
external bus, and computag using the kernel Gaussian Computation unit. The operafrons State 1
to State 7 is to computB, based on Equatiori8). The operations from State 8 to State 12 then finds
wy based on Equatiorilf). All the operations from State 1 to State 12 involve the Mgmmit and
Matrix Computation unit. For the operation of each state Memory unit provides the source data. The
Matrix computation unit processes the source data. The atatipn results are then stored back to the
Memory unit.

Note that each state may not be able to complete its opesaiticm single step. Because the Matrix
Multiplication unit is able to perform up tomultiplications or additions at a time, when a state recuire
more thanc multiplications or additions, multiple-step operations aequired. Figurd4 shows the
multiple-step operations of State 1, which compRte ;a,. Because there ar€ multiplications in



Sensor013 13

3863

State 1, we need steps to complete the operation, as revealed in the figugeirés 15 and 16 show

the multiple-step operations of States 2 and 3, respeyti#elr sake of brevity, Tabl2 summarizes the
operations of each state. The summary consists of the saactéestination buffers provided by the
Memory unit, the operation mode of the Matrix Computatioit,uamd the number of steps required for

each state.

Initialization

Figure 13. The state diagram of the control unit.
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A Compute P,a, (yk — aiwkfl) using Mode 3

State 12 *

Compute W, =W, +Pa, ()’k - aiwk—l)
using Mode 3

State 0

k <= k+1 |<«—No

Yes

Stop
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Figure 14. Multiple-step operations of state 1.
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Figure 15. Multiple-step operations of state 2.
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Figure 16. Multiple-step operations of state 3.
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Table 2. The operations of state 1 to state 12.

State Source Buffers Mode of Matrix Destination Numbers
and Their Contents Computation Buffer and Its of
Unit Contents Steps
State 1 Buffer P Buffer A Mode 2 Buffer G c
P ay, Py_1a;
State 2 Buffer P Buffer A Mode 2 Buffer H c
P ay, aj Py
State 3  Buffer G Buffer H Mode 3 Buffer S c
Pj_1a; aj Py P,_1aal Py_y
State4  BufferH Buffer A Mode 2 Buffer T 1
alP;, ay, alP;_ay
State 5 Buffer T Mode 4 Buffer T 1
aj Pj_1ay .

1+a£Pk,1ak
State 6 Buffer T Buffer S Mode 3 Buffer S 1

1 Pr1araiPr
1+aEPk_1ak, 1+a£Pk,_1ak

T
quakak Py,

State 7 Buffer P Buffer S Mode 1 Buffer P c
Py Do Py Py
State 8 Buffer A Buffer W Mode 2 Buffer T 1
ap Wk-1 ap Wi
State 9 Buffer Y Buffer T Mode 1 Buffer T 1
Yk aZWk—l Yk — azwk—l
State 10  Buffer P Buffer A Mode 2 Buffer G c
P, ay, P.a;
State 11  Buffer G Buffer T Mode 3 Buffer G 1
Pay Yk — Al Wi Pray(yp — af wi_1)
State 12  Buffer W Buffer G Mode 1 Buffer W 1
Wi—1 Pkak(yk - a;;Fkal) Wi

5.5. The Proposed Architecture for Online RBF Training anasSification

Suppose there arfeclasses to be classified. A direct approach to use the prdoshitecture for
RBF training is to train thé classes in one shot. However, this may require large nunfiteaiaing
vectorst and large number of nodesin the hidden layer to achieve high classification succets ra
As a result, the hardware costs of the proposed architeatagebe high. An effective alternative is
to train one class at a time. That is, after the training, edabks has its own centexs, ..., v. and
weightswy, ..., w. for RBF classification. In addition, because each traingfgii a single class only, the
corresponding training vectoss, ..., x; belong to the same class. Therefore, their desired RBF butpu
valuesy, ..., y; are identical. For sake of simplicity, let= vy, = ... = y; be the values of the desired
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output. During recursive LMS training, the buffer Y in the mery unit for storing desired RBF outputs
should only need to be initialized gsbefore the training of each cluster. It is not necessary ttate
Buffer Y for each new inpuk, during the training process.

The training process can further be simplified by allowing desired outpug to be identical for the
training of all the clusters. In this way, the buffer Y showolaly be initialized before the training of the
first cluster. Its value will then be reused for the trainifigabsequent clusters.

This simplification is also beneficial for RBF classificatiafter the training. It is not necessary to
store the desired output for individual clusters becaueg share the same onieg(, y). Given an input
vectorx for RBF classification, lef be the output of the RBF network for classnd letE; = (j — y)?
be the squared distance between the desired output andttia¢ @atput. The vectax will be assigned
to classi*, when

i* = arg min E; (26)

1<i<b

The classification circuit for each class mainly contaireskrnel computation unit shown in Figude
andc multipliers for the computation gf based on Equatior2). It can be effectively implemented in a
pipelined fashion. Replicated copies of the circuit witledar each class.é., b copies) can operate in
parallel to further enhance the throughput of classificatio

The proposed architecture can be employed in conjunctitim thie softcore processor for on-chip
learning and classification. As depicted in Figu'g the proposed architecture is used as a custom
user logic in a system-on-programmable-chip (SOPC) ctingisf softcore NIOS Il processor, DMA
controller, ethernet MAC and SDRAM controller for contindj off-chip SDRAM memory.

Figure 17. The SOPC architecture.
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The NIOS Il processor is used for coordinating all compos@mthe SOPC. It receives training/test
vectors from ethernet MAC and stores these vectors in the/SIDR is also able to deliver the training
and classification results to external hosts via the ethé#e€C. In addition, the softcore processor is



Sensor£013 13 3869

responsible for the initialization of the proposed arattilee and DMA controller. The initialization of
the proposed architecture involves the loading of theahgarameters to the FCM and recursive LMS
circuits. These parameters include the number of centehe initial centerss;,i = 1, ..., ¢, for FCM
circuit, ando? , v, Py andw, for recursive LMS circuit. The parameters are all store@gisters and can
be accessed by softcore processor. Allowing these paresrtetbe pre-loaded by softcore processors
may enhance the flexibility of the SOPC system.

The proposed architecture is only responsible for RBFitnginT he input vectors for the RBF training
are delivered by the DMA controller. In the SOPC system, thiming vectors are stored in the SDRAM.
Therefore, the DMA controller delivers training vectorsrfr the SDRAM to the proposed architecture.
After the RBF training is completed, the NIOS Il processa@rthetrieves the resulting neurons from the
proposed architecture. All operations are performed omglsiFPGA chip. The on-chip learning is
well-suited for applications requiring both high portatyiend fast computation.

6. Experimental Results

This section presents experimental results of the propastatecture. We first compare the proposed
RBF network with existing classification techniques. Thenparisons are based on datasets from
the UCI database repositor21]. There are 4 datasets considered in the experiment: Bai8oale,
BCWe-Integer, Iris and Wine. These datasets provide usedamgles for the classification of balance
scale states, breast cancer diagnosis, iris plant recognand wine recognition. The datasets have
different sizes, number of attributes, and number of clas$be description of the datasets is shown in
Table 3.

Table 3. Description of datasets.

Balance-Scale BCWe-Integer Iris Wine
Sizes (Instances) 625 699 150 178
Attributes () 4 9 4 13
Classesi) 3 2 3 3
Class Names L,B,R Benign, Setosa, 1,2,3
Malignant Versicolor,
Virginica

The classification success rate (CSR) is used to measureiioepance of classification techniques.
The CSR is defined as the number of input patterns that aressfodly classified divided by the total
number of input patterns. From TaBfleit can be observed that the proposed RBF network has highest
CSRs for the datasets Iris and Wine. In addition, it has CRRRgparable to those of the best classifiers
for the datasets Balance-Scale and BCW-Integer. The RBFonlethas superior performance because
the centers and the connecting weights of the network carfféetieely found by FCM and recursive
LMS, respectively.

Next we compare FCM with the algorithm i@ J] for selection of centers in RBF design for texture
classification. The textures considered in the experimargsshown in Figurd8 The textures are
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labelled T1, T2, T3, T4 and T5 in the figure, respectively. @ireension of input vectors is = 4 x 4.
The comparisons are based on CSRs for 2-, 3- and 4-classdelassificationi(e., b = 2,3 and 4).

To achieve meaningful comparisons, all RBF networks aredbas recursive LMS algorithms for the
training of connecting weights. They only have differenbteg selection algorithms. Tabkshows
the results of the comparison. For each texture classiicaxperiment, the table reveals the largest
CSR for each center selection algorithm. Because diffarantber of centers may result in the same
CSR, the lowest number of centerg( ¢) yielding the CSR is also shown in the table. The RBF network
with lowestc has the smallest hidden layer size, which is beneficial foseguent training of connecting
weights at the output layer. It can be observed from Talkeat both center selection algorithms produce
the same minimum number of centers for each experimentheaxperiment witth = 2, both methods
also attain 100% CSR. Nevertheless, wihea 4, the FCM has superior CSR. Therefore, FCM is an
effective alternative for RBF design.

Table 4. The CSRs of various classifiers for datasets from the UChda&repository[l].

Data Proposed RBF Kotsiantis Webb  Zheng De Falco Friedman
Sets Network etal. [22] [23 etal. [24] etal. [25 etal. [26]
Balance-Scale 87.04% 91.19% 75.80% 69.80% 86.88% 69.70%
BCW-Integer  97.00% 96.18% 94.86% 97.00% 97.36% 95.00%
Iris 98.00% 94.87% 97.37% 94.20% 94.74% 94.40%
Wine 98.31% 98.14% 82.23% 96.00% 97.12% 94.70%

Figure 18. The textures considered in the experiments.
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Table 5. The highest CSR of the RBF networks for 2-, 3- and 4-classitextaining.

Texture Classification Proposed RBF RBF Network in [L1]

2-class 100%d=4) 100% ¢ = 4)
(TL&T2)

3-class 99.23%(=8) 99.29% ¢ = 8)
(TL& T3 & T4)

4-class 96.87%(=18) 92.47% ¢ = 8)
(TL&T3& T4 &TH)

We then evaluate the area complexities and latency of theogem architecture. The area
complexities are separated into four categories: the numibadders, the number of multipliers, the
number of dividers and the number of registers. The lateadhe training time. Tablé shows the
area complexities and latency of the proposed architectiutan be observed from Tabéethat the area
complexities of FCM mainly grows linearly with the vectontgnsion.. In addition, when the-stage
(¢ > 1) shift register is used, the area costs can be reduced. Gatitbehand, the area complexities of
the recursive LMS increases with both the vector dimensiand the number of neurons in the hidden
layer c. Moreover, the area costs grow inversely wjthThe training time of FCM and recursive LMS
increase withe andg. It also grows linearly with the number of training vectors

Table 6. The area complexities and latency of the proposed archrect

FCM Recursive LMS Entire RBF

Adders  O(n/g) Olc+(n/a)  Olc+ (n/a))

Multipliers O(n/q)  O(c+ (n/q)) O(c+ (n/q))
Dividers  O(n/q) O(1) O(n/q)
Registers O(nc)  O((n/q)+c*)  O(nc+ (n/q) + )
Latency  O(qct) O(qt + ct) O((gqc+q+c)t)

To further evaluate the area complexities, the physicalempentation of the proposed architecture
is considered. The design platform is Altera Quartu2¥ with SOPC Builder and NIOS Il IDE. The
target FPGA device for the hardware design is Altera CycldrieP3C120. Table/ show the hardware
resource consumption of the proposed architecture folovetinensions: = 4 x 4 and the number
of neuronsc = 8 in the hidden