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Abstract: This study demonstrated the feasibility of utilizing electrokinesis in an 

electrodeless dielectrophoresis chip to separate and concentrate microparticles such as 

biosamples. Numerical simulations and experimental observations were facilitated to 

investigate the phenomena of electrokinetics, i.e., electroosmosis, dielectrophoresis, and 

electrothermosis. Moreover, the proposed operating mode can be used to simultaneously 

convey microparticles through a microfluidic device by using electroosmotic flow, 

eliminating the need for an additional micropump. These results not only revealed that the 

directions of fluids could be controlled with a forward/backward electroosmotic flow but 

also categorized the optimum separating parameters for various microparticle sizes  

(0.5, 1.0 and 2.0 μm). Separation of microparticles can be achieved by tuning driving 

frequencies at a specific electric potential (90 Vpp·cm
−1

). Certainly, the device can be 

designed as a single automated device that carries out multiple functions such as 

transportation, separation, and detection for the realization of the envisioned  

Lab-on-a-Chip idea. 
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1. Introduction 

In recent decades, cell or microparticle separation has attracted significant attention in sample 

preparation for biological and chemical applications, especially in microfluidic systems. Several 

particle manipulation approaches have been employed, including dielectrical [1], magnetic [2], and 

optical [3] manipulations. Each of these methods has its advantages and disadvantages. For example, 

electrode-embedded array dielectrophoresis (DEP) [4,5] provides many advantages such as flexibility, 

controllability and ease of application, and it has been proven to be an efficient non-invasive method for 

separating various cell types without any need for labeling. However, the inherent characteristics of the 

electrode-embedded array DEP not only lead to fast decays of field gradient but also hardly allow the 

ability of electroosmotic (EO) transport for conveying particles unless more complicated microdevice 

designs are involved [6], thus significantly reducing the trapping efficiency and the microparticle 

separation throughput. Magnetic manipulation can be used to separate microparticles; however, particles 

with slight size variations and magnetization are difficult to separate. Meanwhile, applying a higher 

magnetic force could result in a higher device temperature, which in turn could destroy biosamples. 

Although optical manipulation is non-contact and contamination-free, the complicated optical setup, 

complex operation, and expensive instrumentation further limit its application in microfluidics. 

Currently, one concept of the DEP method is insulator-based (electrodeless) DEP (iDEP or EDEP), in 

which a high field gradient is generated at an insulating constriction in a conducting solution, avoiding 

problems in some of the electrode-embedded array DEP [7,8]. EDEP can be performed using different 

geometries and configurations of insulating structures, such as triangular constricted structures [8–10], 

circular posts [7,11,12], rectangular barriers [13,14], nanopipettes [15,16], and oil drops [17]. Among 

these configurations, the triangular constricted structure is more attractive because the field gradient can 

be preserved over the entire cross section of the trap [8–10]. This feature is crucial for efficient particle 

trapping and quantitative determination of the concentrated particles for trace analysis. Although an 

increasing number of studies exploit EDEP, it does not allow effective manipulation of particles in a 

microfluidic channel without a full understanding of their electrokinetic behaviors. Numerous EDEP 

parameters including the geometry of the insulating structure, material properties, applied electric field 

and driving frequency must be evaluated. These factors simultaneously affect the physics phenomena  

of electrokinesis (EK). 

Electrokinesis phenomena commonly occur in microfluidic applications, in which particles  

and liquids are separated, transported, and especially concentrated. Concentration is a critical 

sample-processing step for clinical and environmental sample analysis [9,18,19]. Basically, EK involves 

two important microfluidic mechanisms. One is called dielectrophoresis, which is the migration of 

particles with an induced dipole moment in a non-uniform electric field caused by an electric field 

gradient. The DEP force has been exploited for trapping, fusing, sorting, and lysing biological  

samples [9,12,20]. The other is electroosmosis flow (EOF), which is a fluid flow that is caused by a net 

momentum transfer of charges to the fluid within an electric double layer (EDL). The EOF drag force is 

typically utilized to convey both particles and liquids [7,21]. Recently, biomolecules or particles were 

continuously trapped and collected in a world-nano-micro interface using an EOF transport  

mechanism [22,23]. Both EOF and DEP are established by applying an electrostatic field to a conductive 

fluid, and they coexist in a microchannel. The magnitudes of the EOF and DEP effects on particles and 
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liquids depend on numerous physical and chemical properties of the solid surface, the particles, the 

medium, and even the geometry of the microchannel [7,11,24]. Based on these properties, various 

derivative applications of particle manipulations and liquid conveyance using DEP or EOF have been 

developed. In EDEP applications, the transport of a fluid generated by EOF is eliminated or minimized 

by increasing the fluid viscosity or modifying the surface properties of the channel [8]. However, EDEP 

applications have seldom been adopted to analyze how DEP can concentrate particles when EOF occurs 

in a microchannel. Although EDEP is ideal for trapping particles, the region affected by DEP is 

restricted to the area of high field gradient close to the constricting gap, resulting in lower efficiency of 

sample concentration. 

In this study, an EDEP microfluidic chip is demonstrated to successfully separate three groups of 

microparticles. Microparticles of different sizes can be easily separated at different locations in the 

EDEP microfluidic chip. The investigation of EK behaviors with numerical simulations and 

experimental observations reveals that microparticle separation is significantly dominated by driving 

frequencies. Tuning driving frequency allows the separation of microparticles of various sizes in 

consecutive order without an external transport system. 

2. Theory 

2.1. Dielectrophoresis 

For spherically polarized particles transported in a conductive medium under a non-uniform electric 

field, the DEP force exerted on the particles is expressed by the following equation [25]: 

23 ]Re[ 2 ECMaF mDEP    (1) 

where a is the radius of the particle; εm is the permittivity of the medium; and E is the amplitude of the 

electric field. Re[CM] is the real part of the complex Clausius-Mossotti factor. Basically, the DEP force, 

FDEP, is proportional to the gradient of the square of the applied electric field and to the third power of 

the particle radius. Here, the complex Clausius-Mossotti factor (CM) was obtained by: 
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where, ε
*
 is the complex permittivity; σ is the conductivity; w is the angular frequency of the electric 

field; and j is the imaginary unit. The subscripts p and m refer to the particle and the medium, 

respectively. In principle, the real part of Re[CM] is bounded between 1.0 and −0.5. In this study, the 

Re[CM] factor was calculated to be approximately −0.49, as the frequency ranged from 10 Hz to 10 MHz. 

2.2. Electroosmosis 

An external tangential potential was applied to the conductive medium to establish localized zeta 

potential variations within the electrical double layer (EDL). Accordingly, excess ions inside the diffuse 

double layer experience a Stokes drag force that, on average over time, acts on the fluids to move them 
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forward or backward. Assuming that spherical particles travel into the viscous medium, the Stokes drag 

force (Fst) is given by the following equation:  

)(6 pEOFst uuaF    (4) 

where uEOF and up denote the electroosmotic flow velocities of the medium and the microparticle, 

respectively. The Stokes force is linearly proportional to the velocity and the particle radius. The 

electroosmotic flow velocity (uEOF) can be represented as:  


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where η is the medium viscosity; ζ is the zeta potential of the microchannel wall; Ex is the x-directional 

electric field strength and is also strongly a function of the applied voltage as well as the driving 

frequency. Zeta potential (ζ) can be expressed as shown below [26]: 
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Here, kb is the Boltzmann constant; T is the absolute temperature; e is the electronic charge; z is the 

ionic valence; n° is the ion concentration; λD is the inverse Debye length; εs is the permittivity of the 

PDMS (polydimethylsiloxane); Ey is the component of the electric field in the y direction; and Eyo is the 

virtual electric field that yields the initial value of the zeta potential arising from the initial charge density 

on the PDMS channel surface. The value of Eyo was then calculated to be 1.5 × 10
5
 V/m in this study. 

2.3. Electrothermosis 

A numerical simulation and an experimental evaluation were conducted to investigate the distribution 

of the temperature field inside the EDEP chip. Because the fluid flow rate of the liquid in the EDEP 

channel was slightly faster, particularly in the constricted gap, it was reasonable to assume that the heat 

transfer was dominated by heat conduction and convection. Therefore, in this study, heat radiation was 

neglected, and heat conduction and convection within the liquid sample, the solid PDMS channel wall, 

and the glass substrate was included. Here, a 3-D heat conduction and convection model was used to 

describe the thermal phenomena. The governing equation is given by:  

 
2

ETkTV
t

T
C

P
 













 

(7) 

Where, ρ is the mass density of the fluid; k is the thermal conductivity; Cp is the specific heat; V is the 

fluidic velocity; and σE
2
 is the Joule heating term. 

A three-dimensional (3-D) numerical simulation was then conducted to investigate and characterize 

the distributions of temperature effects and the DEP force under the non-uniform AC electric fields. 

The electromagnetic physical properties of an EDEP microfluidic chip were numerically calculated 

using the commercial computational fluidic dynamics (CFD) software (CFD-ACEU, CFD-RC, 

Huntsville, AL, USA). A multi-physics coupled analysis (i.e., flow-, thermal-, spray-, and 

electric-module) were conducted into this simulation. Table 1 lists the physical properties of the 

materials that were assumed in the numerical simulations. 
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Table 1. Physics properties of different materials. 

 

ρ 

(kg·m
−3

) 
εr 

Σ (S/m) 

κ (W/m
2
K) c (J/KgK) 

Medium 1000 80 0.07 0.613 4186 

Particle 1009 2.5 0.0009 0.15 1460 

PDMS 970 2.5  0.15 1460 

Glass 2250 7.4  1.4 840 

3. Materials and Methods 

3.1. Design and Fabrication 

The scheme of the proposed EDEP microfluidic device comprising a pair of triangular insulating 

structures, a microfluidic channel, and a pair of driving electrodes is shown in Figure 1. Two 

60°-triangular insulating structures constructed a constricting gap and squeezed the electric field in a 

conductive solution to produce a high electric field gradient for trapping particles.  

Figure 1. Schematic EDEP-based microfluidic device, comprising a pair of triangular 

insulating structures, a microchannel, and a pair of driving electrodes. Additionally, 

boundary conditions of the 3-D numerical simulation described in a triangular insulating 

structure are shown. 

 

In a highly non-uniform electric field caused by a constricted gap, polarized particles experience a 

force in the direction along (positive DEP, pDEP) or against (negative DEP, nDEP) the electric field 

gradient, depending on the dielectric properties of the particles. A pair of driving electrodes separated by 

2 mm was adopted to produce the required electric field in the microchannel. The microchannel was 

1,000 μm wide and 5 μm deep. The 5 μm constriction gap was operated at a low flow resistance to 

examine the interdependence between the EO and DEP effects. 

Bottom: free convection 
Surrounding : insulation  

Top: insulation 
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The EDEP microfluidic chip was fabricated using the Micro-electromechanical Systems (MEMS) 

technology. Two layers of Ti/Pt (200 Å/2,000 Å) were deposited on a glass substrate to form a pair of 

electrodes by using the lift-off process. A silicon wafer was patterned using standard photolithography, 

reactive ion etching (RIE) was employed to produce a 5 μm-deep mold, and the mold was cast with a 

pair of triangular insulating structures and a microfluidic channel. Accordingly, the inverse structures 

with patterned features were cast using PDMS materials and the Si mold. Finally, the replicated PDMS 

structures and the glass substrate with Pt electrodes were bonded to each other with oxygen plasma 

treatment to yield a complete EDEP microfluidic chip. Figure 2(a) shows the assembly of the EDEP 

chip. Figure 2(b) displays the scanning electron microscope (SEM) image of the Si mold of the 5 μm 

constriction gap. 

Figure 2. (a) A photograph of an assembly of an EDEP-based chip. (b) An optical 

microscope image of the triangular insulating structures with a 5 μm constriction gap. 

  

(a) (b) 

3.2. Experiment 

The experimental setup involved a signal generator (33220A, Agilent Technologies, Santa Clara, CA 

USA) and an oscilloscope (TDS 1002B, Tektronix, Beaverton, Oregon, OR, USA). A power amplifier 

(LPA 400, Newtons4th Ltd, Mountsorrel, Charnwood, UK) was employed for the investigation of the 

EDEP microfluidic chip. The EDEP microfluidic chip was mounted on top of an inverted microscope 

(DMI 4000B, Leica, Germany) for microparticle visualization. The polystyrene microparticles 

(excitation 580 nm/emission 605 nm, Invitrogen, Carlsbad, CA, USA) were used to experimentally 

investigate the electrokinesis effect. Fluorescence images of the microparticles were captured using a 

10 or 20 objective lens and a cool Charge-coupled Device (CCD, Cool SNAP HQ
2
, Photometrics, 

Huntington Beach, CA, USA). Moreover, the solution viscosity was adjusted to 1 cP with a buffer 

solution of 10 mM Tris-HCl (pH 8.0) having a fixed conductivity of 730 μS·cm
−1

. In all experiments, the 

electric field was fixed at 90 Vpp·cm
−1

, and the driving frequencies were in the range of 10 Hz to 5 MHz. 

4. Results and Discussion 

4.1. Numerical Characterization 

To test the functions of the EDEP microfluidic chip, a simple insulating-based cell, defined in a 

microfluidic channel, as shown in Figure 1(b), was considered. In an electric field of 90 Vpp·cm
−1

, 

PDMS chip

electrode

glass substrate



Sensors 2013, 13 2769 

 

driving frequencies ranging from 10 Hz to 5 MHz were applied as a sinusoidal wave across the 

microchannel through a constriction gap. The contours of the x-directional electric field (Ex) were 

non-uniform as presented in Figure 3(a). The electric field in the ionic solution was squeezed in the 

constricted region. Hence, the electric field gradients were highly non-uniform around the two 

constricted regions, especially at the walls of the constriction gap. Figure 3(b) explores the distribution 

of the DEP force between the triangular insulators. The blue color indicates the n-DEP force, and the red 

color represents the p-DEP force. Certainly, these values can only be influenced by varying driving 

frequencies and particle sizes. The numerical results can explain the semicircular shapes of 

microparticle trapping contours and that particle trapping begins in the constriction wall. The applied 

field of 90 Vpp·cm
−1

 and the driving frequency of 1 kHz were used in the numerical simulation.  

Figure 3(c,d) shows numerical velocity contours at a forward and backward EOF, respectively. The EOF 

effect occurred between a pair of triangular insulating constructions, and higher velocities occurred in 

the constriction gap. The simulated results were in agreement with the experimental observations. 

Figure 3. Numerical contours of the (a) Ex and (b) DEP force at the applied field of  

90 Vpp·cm
−1

 with a driving frequency of 1 kHz. Numerical results of (c) forward EOF at a 

driving frequency of 1 kHz and (d) backward EOF at a driving frequency of 5 MHz. 

  

(a) (b) 

  

(c) (d) 

The temperature effect is another important issue for biosamples, as elevated temperature can damage 

biosamples. Here, a highly temperature-sensitive fluorescent dye (rhodamine B) was used to determine 

the fluid temperature in a microchannel [27]. A rhodamine B solution (50 μM) was used to calibrate the 

temperature measurement by averaging the intensity values (after background subtraction) of all the 

pixels of the corresponding image (Figure 4(a)). Once the calibration curve had been determined, it was 

0    0.2            0.4 0.6             0.8            1.0    ×106 (V/m) -10   - 7.5     -5.0     -2.5 0        2.5      5.0     7.5      10  (pN)

 

 

-8      -6     -4     -2      0      2      4      6      8   

1.0  

(fN) 

 

-1.0   -0.75    -0.5   -0.25      0     0.25    0.5    0.75    1.0 

5.0x10
-03

4.5x10
-03

4.0x10
-03

3.5x10
-03

3.0x10
-03

2.5x10
-03

2.0x10
-03

1.5x10
-03

1.0x10
-03

5.0x10
-04

0-50-100 50 100

0

-50

-100

50

100

( m)

U(cm/s) 
-6.0x10

-04

-1.2x10
-03

-1.8x10
-03

-2.4x10
-03

-3.0x10
-03

-3.6x10
-03

-4.2x10
-03

-4.8x10
-03

-5.4x10
-03

-6.0x10
-03

-50-100 50 100 ( m)

0

-50

-100

50

100
U(cm/s) 



Sensors 2013, 13 2770 

 

used to measure the temperature of the solution inside a microchannel by comparing the fluorescence 

intensity at an unknown temperature to the intensity at room temperature (25 °C). To confirm whether 

the applied voltage might cause increased temperature in the microchannel, a time series of temperature 

distributions in the microchannel under the fixed voltage was measured (Figure 4(b)). The results 

showed that the fluid in the triangular insulators could be maintained at 25 °C even 30 minutes after 

switching the voltage on, as shown in Figure 4(b). However, it was difficult to make experimental 

observations at the gap of the triangular insulators because the gap region was too small. To investigate 

the temperature field distribution inside the EDEP chip, a numerical simulation was carried out. A 

3-dimensional (3-D) thermal model was used to describe the phenomena. The area of the surrounding 

surface (i.e., EDEP thickness) was much less than that of the top or bottom surface. Certainly, the heat 

was mainly dissipated from the top (solid PDMS wall) or bottom (glass). Additionally, the thermal 

conduction of a solid PDMS cover was also much lower than that of a glass substrate. Therefore, the 

natural free convection condition was imposed on the bottom glass surface and insulated on the top solid 

PDMS wall and the surrounding surfaces of the EDEP chip. Notably, the heat convection was taken into 

account in this simulation. The boundary condition is depicted in Figure 1. 

Figure 4. (a) Normalized fluorescence intensity is plotted as a function of temperature and is 

used to calibrate the fluorescence-based temperature measurement. (b) False color image of 

the buffer temperature for electroosmotic flow through a microchannel with an applied 

voltage V = 90 Vpp·cm
−1

 and a frequency f = 1 kHz. Temperature distribution images (i-iv) 

were taken 3, 10, 20, and 30 min after switching on the device. 

  

(a) (b) 

Free convection effects are difficult to determine due to their complexity. The convection heat 

transfer coefficient (h) is a function of the surface geometry, the nature of fluid motion, the properties of 

the fluids, and the bulk fluid velocity. In this simulation, the value of h was set to 7.5 Wm
−2

·K
−1

 [28] to 

evaluate the convective heat transfer. An assumed heat generation rate was applied to the AC  

potential (σE
2
). Figure 5(a) shows the temperature contours of a paired triangular insulator. Basically, 

the temperature is proportional to the square of the electric field. Certainly, the higher the electric field, 

the higher the temperature gets. The temperature distribution demonstrated a slight difference (~0.4 °C) 

from the surrounding temperature. Conversely, the temperature of the gap was slightly lower than the 

other region, resulting in a higher EOF velocity due to the heat convection as shown in Figure 5(c). 
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Figure 5. Numerical calculations of the (a) top and (b) bottom temperature contours of 

insulators and (c) the central x-axial temperature, as well as velocity profiles at the applied 

potential V=90 Vpp·cm
−1

 and the frequency f = 1 kHz. 

  

(a) (b) 

 

(c) 

4.2. EOF Characterization 

Theoretically, two balanced forces are exerted on the trapped particles. The first force is the DEP 

force (FDEP), which acts as a holding force to stop the particles from moving. The other force is Stokes 

force (Fst), which acts on the particles through EO fluid and aids transport. Therefore, the net motion of 

particles is determined by both the EO and DEP effects. Figure 6(a) shows that the fluorescent 0.2 μm 

particle passed through the constriction when a field with a frequency from 10 Hz to 5 MHz was 

continuously driven at the constant voltage of 90 Vpp·cm
−1

. The microparticles flowed forward through 

the constriction gap by EO conveyance and were not trapped by the DEP effect when the driving 

frequency was lower than 810 kHz. Conversely, the flow direction reversed (backward flow) when the 

driving frequency was higher than 810 kHz. The EOF effect also occurred between a pair of triangular 

insulating constructions. Higher velocities were also shown near the constriction walls because of the 

zeta potential effect. Interestingly, a reciprocating motion was observed at a frequency of 810 kHz. 

Summarily, the numerical and experimental relationship of the EOF velocity and the driving 

frequencies was plotted as Figure 6(b). It was clearly observed that the EOF velocity initially increases 
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with the operating frequency, and then, EOF velocity reaches a maximum value and subsequently 

decreases to become negative as the operation frequency is increased further. The numerical results 

were also revealed to be reasonably in agreement with the experimental measurements. The numerical 

simulation is a powerful tool for the investigation of the electrokinetic effect. 

Figure 6. (a) Conveyance of 0.2-μm particles under electroosmosis. The red arrow indicated 

the flow direction, and a 1.0-μm microparticle (marked with a red circle) referred to the 

forward/backward flow direction. (b) The numerical and experimental relations between 

EOF velocities and different frequencies. Notably, the two red dashed-line regions shown in 

Figure 6(b) indicate the numerical and experimental mean EOF velocities. 

 

(a) 

  

frequencies was plotted as Figure 6(b). It was clearly observed that the EOF velocity initially increases 

with the operating frequency, and then, EOF velocity reaches a maximum value and subsequently 

decreases to become negative as the operation frequency is increased further. The numerical results 

were also revealed to be reasonably in agreement with the experimental measurements. The numerical 

simulation is a powerful tool for the investigation of the electrokinetic effect. 

Figure 6. (a) Conveyance of 0.2-μm particles under electroosmosis. The red arrow indicated the flow direction, and a 

1.0-μm microparticle (marked with a red circle) referred to the forward/backward flow direction. (b) The numerical and 

experimental relations between EOF velocities and different frequencies. Notably, the two red dashed-line regions shown 

in Figure 6 (b) indicate the numerical and experimental mean EOF velocities. 

 

(a) 

(i) (ii) 

(iii) (iv) 
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Figure 6. Cont. 

 

(b) 

4.3. DEP Characterization 

Next, 0.2-, 0.5-, 1.0- and 2.0 μm particles were independently operated to evaluate the trapping effect 

in the proposed EDEP microfluidic chip at a given field of 90 Vpp·cm
−1

 with the frequencies of  

10–5 MHz. Table 2 shows the different microparticle sizes whether trapped or not. ‘○’ indicates that the 

microparticles can be trapped, and ‘×’ indicates that they cannot be trapped. It was clear that 0.5-μm 

particles can be trapped with frequencies of 400–3,000 Hz, and 1.0- and 2.0-μm particles can be trapped 

with 100–810,000 Hz. In contrast, 0.2-μm particles cannot be trapped. Particle sizes of  

0.2, 0.5, 1.0 and 2.0 μm can be easily separated by adjusting the driving frequencies. 

Table 2. Driving frequency versus different microparticle sizes. 

Hz 

μm 

10 100 400 1 k 3 k 10 k 100 k 810 k 1 M 5 M 

0.2 × × × × × × × × × × 

0.5 × × ○ ○ ○ × × × × × 

1.0 × ○ ○ ○ ○ ○ ○ ○ × × 

2.0 × ○ ○ ○ ○ ○ ○ ○ × × 

Finally, a solution mixed with 0.5- and 1.0 μm particles was pipetted into the reservoir, and a field of 

90 Vpp with 400 Hz was applied to the electrodes. The microparticles continuously flowed in the 

presence of the EOF through the triangular insulators and were then separated in the DEP-affected area, 

which was close to the constricting gap, as shown in Figure 7(a). Clearly, the n-DEP force acted locally 

on the 0.5-μm particles approximately 10 μm from the constriction. Similarly, the DEP force acted 

locally on the 1.0-μm particles approximately 20~30 μm from the constriction. Notably, the 

microparticles were trapped dielectrophoretically at one side of the gap, and the particle-trapped 
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contours demonstrated the semi-circle shape in Figure 7(a). Figure 7(b) also demonstrated the separation 

of three different particle sizes, i.e., 0.5, 1.0 and 2.0 μm, in a pair of triangular insulators. The trapped 

sizes of microparticles were quantitatively analyzed by ImageJ software. 

Figure 7. (a) A series of images for the trapping of 0.5- and 1.0-μm particles at the driving 

frequency of 400 Hz. (b) Separation performance of 0.5-, 1.0- and 2.0-μm particles at the 

driving frequency of 400 Hz. The applied potential is kept at 90 Vpp·cm
−1

. 

  

(a) (b) 

5. Conclusions 

This work has demonstrated the feasibility of utilizing electrokinesis within an EDEP microfluidic 

chip for microparticle separation. The separating effect depended on whether EO or DEF dominates the 

driving frequencies at a constant electric field of 90 Vpp·cm
−1

. In this study, the flow produced a forward 

EOF when the frequencies were less than 810,000 Hz. Conversely, it produced a backward EOF when 

the driving frequency was beyond 810,000 Hz. Interestingly, an unstable flow, similar to a reciprocating 

motion, was experimentally observed at a frequency of 810,000 Hz. Experiments reveal that the 

optimum trapping frequencies for continuous flow are in the range of 400–3,000 Hz for 0.5 μm and 

100–810,000 Hz for 1.0 and 2.0 μm particles. Furthermore, this approach can be used with continuous 

flow for the separation of microparticles. 
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