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Abstract: This paper presents the synchronization between the master and slave Lorenz 
chaotic systems by slide mode controller (SMC)-based technique. A proportional-integral 
(PI) switching surface is proposed to simplify the task of assigning the performance of the 
closed-loop error system in sliding mode. Then, extending the concept of equivalent control 
and using some basic electronic components, a secure communication system is constructed. 
Experimental results show the feasibility of synchronizing two Lorenz circuits via the 
proposed SMC. 
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1. Introduction 

Chaos theory is a branch of nonlinear system theory and has been intensively studied in the past four 
decades. In 1963, E. N. Lorenz presented the first well-known chaotic system, which was a third-order 
autonomous system with only two multiplication-type quadratic terms but which displayed very 
complex dynamic behaviors [1]. The control problems of chaos phonemes have been extensively studied 
over the past two decades based on its particular properties, such as broadband noise-like waveforms, 
difficult predictability, and sensitivity to initial condition variations, etc. Until now, many control 
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methods under the assumptions of knowing the structure of nonlinearity or matching condition, have 
been extensively considered for the subject of chaos synchronization [2–8].  

Recently, the chaos synchronization between master (transmitter) and slave (receiver) chaotic 
systems has been an attractive topic for its potential applications in secure communication [9–13]. 
Several control schemes have been developed for the synchronization of chaotic systems. Sliding mode 
control is a characteristic kind of variable structure system which has been a useful and distinctive robust 
control strategy for many kinds of engineering systems in these past two decades. By designing a 
switching surface and using a discontinuous control law, the trajectories of dynamic systems can be 
forced to slide along the fixed sliding manifold. The sliding mode control technique has been successfully 
applied to synchronization of chaotic system [5,6,11]. Work [14] proposed a proportional-integral (PI) 
control scheme based on SMC technique-based to solve the synchronization problem of unified chaotic 
systems. The proposed PI controller is used to guarantee the synchronization between the transmitter and 
the receiver in secure communication systems. 

To verify the above systems performance, in this paper a SMC-based chaotic secure communication 
system, which includes two chaotic Lorenz circuits (transmitter and receiver) and a sliding mode 
controller, is realized by using some electronic components containing operational amplifiers (OPAs), 
resistors and capacitors. 

2. Problem Formulation and Main Results 

The aim of this paper was to utilize the unpredictable characteristics of chaos signals, such as 
broadband noise-like waveform, prediction difficulty and sensitivity to initial condition variations, to 
construct a secure communication system. Now we consider the following Lorenz circuits, which are 
typical chaotic systems that have been thoroughly studied [14].  

Master Lorenz chaotic circuit:  

 

(1)

Slave Lorenz chaotic circuit: 

 

(2)

Obviously, Equations (1) and (2) becomes the original Lorenz system for α = 0, where ݔሶ௠ and ݔሶ௦ 
denote the derivative of xm and xs with respect to time t, u(t) is the controller output used to synchronize 
the master and slave systems Equations (1) and (2), and p(t) is the embedded message bounded by: 

,  (3)

The control goal is for the two Lorenz chaotic systems Equations (1) and (2) to be synchronized such 
that the resulting error vector satisfies: 
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 (4)

The error vectors and error dynamics are defined as: 

 
(5)

and: 

 
(6)

Then, the following error dynamics are obtained: 

 

(7)

To stabilize the error dynamics Equations (7) and achieve synchronization, two basic steps are used: 
first, an appropriate switching surface is selected such that the sliding motion on the sliding manifold is 
stable and ensures lim௧՜ஶԡ݁ሺݐሻԡ ൌ 0; second, a SMC law which guarantees the existence of the sliding 
mode s(t) = 0 is established. To guarantee the asymptotic stability of the sliding mode, the PI switching 
surface s(t) is defined as: 

 (8)

where β > 0 is given.  
Having established the appropriate switching surface Equations (8), as described above, the next 

step is to design a SMC scheme to drive the system trajectories onto the sliding mode s(t) = 0. This 
study proposes the following SMC: 

 (9)

where u1(t) = (38 + 10α)e1(t) + (29α − 1 + β)e2(t). 
After design the control to ensure lim௧՜ஶԡܧሺݐሻԡ ൌ lim௧՜ஶԡሾ݁ଵሺݐሻ݁ଶሺݐሻ݁ଷሺݐሻሿԡ ൌ 0. We have the 

following fact: 
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Then, we can infer that:  

 (11)
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which means that the message p(t) can be approximated by the control u(t). From the works [15,16], 
the control input u(t) can be approximated by the following continuous equivalent control ueq(t): 

 
(12)

where σ is an arbitrarily small positive constant. When we choose a small enough σ, then Equation (12) 
will arbitrarily approach to Equations (9) and input message p(t) can be recovered by Equation (12).  

3. Experimental Results 

The preceding SMC scheme of synchronization is applied to establish chaotic secure communication 
systems. Figure 1 illustrates the proposed communication system that consists of a transmitter and a 
receiver [master and slave Lorenz circuits (for α = 0), respectively]. The input message p(t) is embedded 
into the chaotic transmitter and the state of the master Lorenz system is simultaneously transmitted to the 
receiver. The equivalent SMC synchronization scheme of Equation (12) is given in the receiver. From 
the discussion in the section above, it ensures that the input message p(t) can be completely recovered on 
the receiver side using the equivalent controller Equation (12), if the synchronization between the 
transmitter and the receiver can be achieved. 

Figure 1. Block diagram of SMC-based scheme secure communication system. 

 

In the following, we use simple electronic components: OPAs, resistors and capacitors to 
implement the presented secure communication system. In order to speed up the dynamic response of 
chaotic Lorenz circuit, we rescale the systems Equations (1) and (2) by a new time scale ߬ ൌ ௧௞, and then 

we have the following systems, respectively: 
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where ݔሶ௠ and ݔሶ௦ denote the derivative of xm and xs with respect to time τ, respectively. k and k1 is a 
scaling factor. Practical circuits of the chaotic master and slave Lorenz systems with k = 20 and k1 = 10 
and supplied voltages ±15 V are shown in Figures 2 and 3, respectively.  

Figure 2. Electronic implementation of the master Lorenz circuit. 
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Figure 3. Electronic implementation of the slave Lorenz circuit. 

 



Sensors 2013, 13 2500 
 

The circuit of error dynamics e(t) and the switch surface s(t) circuit are shown in Figure 4. The 
circuits of the continuous equivalent control ueq(t) Equations (12) is shown in Figures 5 and 6. In order 
to demonstrate the chaotic secure communication, the embedded message p(t) is specified as a sine wave 
(1 V, 5 Hz) in the transmitter. 

Figure 4. Electronic implementation of the error dynamics e(t) and the switch surface  
s(t) circuit. 

 

Figure 5. Electronic implementation of ueq(t) circuit.  
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Figure 6. Electronic implementation of ߰ߟ ቂ ௦ሺ௧ሻ|௦ሺ௧ሻ|ାఙቃ circuit. 

 

In the following, the commercial electronic circuit simulation software Orcad/PSpice 9.0 is used. 
Figure 7 shows the trajectories of the Lorenz system. Figure 8 shows the experimental results of 
synchronization between state xm and state xs. Figure 9 shows the experimental results of errors between 
state xm and state xs. Figure 10 shows the experimental result of switch surface s(t). From these figures, 
we can observe that the switching surface s(t) approaches zero within 0.5 s and the synchronization 
errors approach zero after 0.5 s, and then both the master and slave are synchronous. Figure 11 shows the 
experimental results of the continuous equivalent control ueq(t) and input message p(t). From this figure, 
we can observe that the input message p(t) (sine wave: 1 V, 5 Hz) can be successful recovered. 
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Figure 7. The trajectories of the Lorenz system. 
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Figure 8. Experimental results of synchronization between state xm and state xs. 

 

Figure 9. Experimental results of errors between state xm and state xs. 
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Figure 10. Experimental result of switch surface s(t). 

 

Figure 11. Experimental results of control input ueq(t) and input message p(t). 

 

4. Conclusions 

This study has been proposed to ensure the synchronization between the master and the controlled 
slave Lorenz chaotic systems via a sliding mode controller. Furthermore, the proposed scheme has been 
also successfully applied to a secure communication system. Some basic electronic circuits are used to 
implement the SMC-based secure communication system. The experimental results verify that the 
methods are correct and practical. 
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