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Abstract: The gas chromatography-olfactometry (GC-O) technique couples traditional gas 

chromatographic analysis with sensory detection in order to study complex mixtures of 

odorous substances and to identify odor active compounds. The GC-O technique is already 

widely used for the evaluation of food aromas and its application in environmental fields is 

increasing, thus moving the odor emission assessment from the solely olfactometric 

evaluations to the characterization of the volatile components responsible for odor nuisance. 

The aim of this paper is to describe the state of the art of gas chromatography-olfactometry 

methodology, considering the different approaches regarding the operational conditions 

and the different methods for evaluating the olfactometric detection of odor compounds. 

The potentials of GC-O are described highlighting the improvements in this methodology 

relative to other conventional approaches used for odor detection, such as sensoristic, 

sensorial and the traditional gas chromatographic methods. The paper also provides an 

examination of the different fields of application of the GC-O, principally related to 

fragrances and food aromas, odor nuisance produced by anthropic activities and odorous 

compounds emitted by materials and medical applications. 
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1. Introduction 

Odors have a direct effect on human behaviors and can significantly affect the quality of life. 

Evolutionary history has demonstrated the importance of a good sense of smell as it protected our 

primitive ancestors from predators and helped them to find food. Nowadays, it may not have the same 

connotation for human survival, but it can most certainly play an important role in human attractions, 

memories, and emotions. People associate odors with past experiences and, from those experiences, 

they will involuntarily assess the odor as likable, dislikable or indifferent. These responses are 

individual and may vary from person to person. Through breathing, humans are continuously testing 

air quality to obtain relevant information such as potential dangers (e.g., smoke), the presence of food, 

another individual, and so on. In order to detect an odor, several factors and properties can contribute 

to generate an olfactory perception [1]: 

- Odor threshold (OT). This is the minimum concentration at which 50% of a human panel can 

detect the presence of an odor or odorant without characterizing the stimulus. This is different 

from the recognition threshold which is the concentration that 50% of a human panel is able to 

detect and describe qualitatively. 

- Physical and chemical properties. These include the appreciable volatility of a substance at 

ordinary temperatures (less than 300–400 relative molecular mass) to permeate the air near the 

sensory area, as well as the slight water-solubility which allows an odor to pass through the 

mucous layer to the olfactory cells and the lipid-solubility which is necessary since olfactory 

cilia are composed primarily of lipid material. 

- Intensity. This is the relative strength of the odor above the recognition threshold. It is 

logarithmically related to odorant concentration (Stevens’ law or the power law) which can be 

calculated with the following equation [2]: 

I = K logC (1)  

where I is the intensity, C is the concentration and K is a constant. 

- Hedonic tone. This is a measure of the pleasantness or unpleasantness of an odor mixture. 

- Quality. This property identifies an odor and differentiates it from another odor of equal intensity. 

- Molecular structure. Molecular geometry, in particular, the composition and structure of the 

functional groups within a molecule, can deeply affect the quality and features of an odor [3]. 

It should be noted that odors are complex mixtures of many volatile chemicals which are present  

in different concentrations. These chemicals can interact synergistically or additively in the mixtures 

according to unpredictable rules [4–6], and are at the basis of the overall sensation of smell. 

In the recent years, various research activities have been developed in different scientific disciplines 

to investigate odors and odor perception with the aim of producing direct applications in industry. 

Some applications focus on improving the quality of scented products such as perfumes [7] and food 
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products through the use of natural or synthetic odorous compounds. For example, the results of an 

aroma food analysis can help assess the quality of foods and make them more pleasing and desirable [8]. 

Others examine the impact of odorous compounds on the quality of human life and the environment.  

In this case, odors may derive from industrial activities [9–13] (landfills, wastewater treatment plants, 

refineries, tanneries, and so on) or be emitted from materials that people frequently use [14,15]. 

The main purpose of odor research is to identify the odor active compounds and to relate them  

to human perception. Instrumental approaches to the characterization of odorants using Gas 

Chromatography coupled with Mass Spectrometry (GC/MS) have been widely used to produce lists of 

the substances present and their concentrations [16,17]. The main limitation of this technique is 

connected to the complexity of the odor under investigation. Since many volatile chemicals are often 

present at concentrations lower than the instrumental detection limit and since information about 

human perception is not provided, a linear correlation between a quantified substance and an olfactory 

stimulus cannot be made [18]. Notwithstanding the usefulness of GC/MS analyses, the mammalian 

olfactory system is the most sensitive and inclusive odor detector. Hence, the sensory evaluation of 

smells by panels of sensory trained evaluators represents a valid approach to odor assessment. 

A notable improvement in odor identification consists of coupling GC-MS with olfactometric 

detection (GC-MS/O). The gas chromatographic separation of an odorous air sample can be useful for 

identifying specific odorant components. GC-MS/O, thus, allows a better understanding of odorant 

composition through the identification and quantification of its compounds while offering a partial 

correlation between the chemical nature of an odorant and its perceived smell [19,20]. 

This paper will examine the state of the art of the gas chromatography-olfactometry methodology 

(GC-O), different approaches regarding operational conditions, and different methods for evaluating 

the olfactometric detection of odor compounds. The potentials of GC-O will be described and its 

different fields of application such as fragrance and food aromas, industrial and material emissions, 

and medical applications will be examined. 

2. GC-O Analysis  

2.1. GC-O Configuration and Parameters Affecting the Analysis 

GC-Olfactometry (GC-O) is a valuable method for the selection of odor components from a 

complex mixture. A properly trained human assessor or a team of them is employed as a detector and 

can sniff the eluate in order to detect the presence of odor—active compounds via a specifically 

designed odor port (ODP) connected in parallel to conventional detectors [21] (thermal conductivity, 

photo-ionization or flame-ionization), as shown in Figure 1. 

Each separated compound, eluted by the GC, can be detected by a human assessor (odor present or 

not), who is able to measure the duration of the odor activity (start to end), to describe the quality of 

the odor perceived and to quantify its intensity. GC-O in combination with a mass spectrometer  

(GC-O/MS) not only enables the evaluation of odor compounds, but also their identification with mass 

spectral information. 
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Figure 1. Scheme of the gas chromatograph equipped with an olfactometric detector 

(reprinted from [22] with permission from Elsevier). 

 

In particular, the flow of the eluate is split so that the analytes reach both detectors simultaneously, 

permitting a comparison of both signals. The retention times of the analytes might differ for the two 

detectors (typically shorter for the mass spectrometer), due to the fact that the mass spectrometer 

works under vacuum conditions while the olfactometric detector works under atmospheric pressure 

conditions. This difficulty can be overcome by installing a restrictor, a narrow bore capillary, before 

the mass spectrometer to increase the pressure drop between the interface and the flow splitter, as well 

as through careful selection of the flows of the carrier and auxiliary gases [23]. 

The design of all commercially available olfactometric ports is very similar. The eluate reaches the 

port through an uncoated transfer line (deactivated silica capillaries) and is sniffed in a glass or a PTFE 

conical port, fitted to the shape of a nose. The transfer line is heated to prevent the condensation of 

semi volatile analytes on the walls of the capillary. Auxiliary gas (moist air) is added to the eluate to 

prevent the drying of the assessors’ nose mucous membranes, which could cause discomfort especially 

in longer analyses. The transfer line length can vary, but it must be long enough to ensure a 

comfortable sitting position and to avoid discomfort due to the vicinity of hot chromatograph 

components during detection. Each port is also equipped with an electric push-button to generate a 

signal of 1 V when pressed. If the extract analyzed is sufficiently concentrated, the eluate stream can 

sometimes be separated into several streams and delivered to more olfactometric ports, for the 

simultaneous detection by several assessors (Figure 2). This approach can yield more representative 

results since different sniffers simultaneously smell the sample providing an average value for each 

analysis [24,25]. 

A multi-gas chromatography-olfactometry device (eight way gas chromatography olfactometry  

8W-GC-O) has recently been developed [26]. This device consists of a chromatograph coupled with a 

divider that synchronously distributes the volatile component outflow to eight transfer lines which are 

connected to eight sniffing ports located in separate booths. Flow rates can be set to ensure the best 

compromise between chromatographic resolution and sufficient effluent at the sniffing ports so that the 

odorous fractions can be adequately sensed. 
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Figure 2. Scheme of the GC/MS-O multi-sniffing system (reprinted from [25] with 

permission from Elsevier). 

. 

There are several factors that determine the quality of the data collected by GC-O. The method used 

to extract volatile compounds from the samples determines the composition of the extract, and 

therefore the quality of the eluate available for perception. The set-up of the GC instrument and of the 

separation conditions affects the quality of chromatography and the response of the human detector. 

The peak shape affects the perception of odor intensity and the calculation of detection thresholds. 

Chromatographic behavior of odor substances varies with the compounds and the stationary phases of 

the GC column. Non polar stationary phases enable the elution of odor-active volatiles at the lowest 

possible temperature [21]. However, very polar molecules, such as fatty acids, result in poor peak 

shapes using nonpolar phases. Polar phases demonstrate greater selectivity, although the overall 

quality of the separation will depend upon the composition of the sample [27]. 

Moreover, it should be noted that some volatile compounds are labile and will readily decompose in 

heated injector blocks, forming artifacts; for example, sulfur compounds are particularly susceptible  

to heat-induced decomposition. The odor character of some compounds depends strongly on  

their concentration which can become important in the case of poor chromatography or poor 

chromatographic separation (co-elution). Many key odor compounds often occur at very low 

concentrations in complex matrixes. Therefore, the identification of odor compounds remains a  

hard task even with GC-O/MS because some compounds co-elute with other analytes making the 

correlation between the detected aroma and the correct compound difficult. 

Comprehensive two-dimensional gas chromatography (GC × GC) appears to be the most 

appropriate choice to meet the need for enhanced separation and better sensitivity. This technique is 
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based on the continuous collection of an effluent from a GC column and the periodic reinjection of 

small portions of the effluent to a second column of different polarity. This novel technique, which 

associates the resolution power of GC × GC with the selectivity and sensitivity of the human olfactory 

system, can enable the olfactive analysis of congested chromatographic areas [28–30]. However,  

GC × GC coupled with ODP is an extremely demanding technique for the operator because peaks are 

eluted very quickly and the panelist may not have enough time to both recognize odors and provide 

their descriptors. Respiratory rate can also be critical and an analysis time of more than ten minutes is 

difficult to achieve. 

A direct gas chromatography–olfactometry (D-GC-O) method can be used to perform a 

representativeness test on the global odor of a sample and select the best conditions for analysis. This 

recent technique consists of connecting a deactivated capillary column between the GC injector and 

the sniffing port to avoid chromatographic separation. In this way, the aroma compounds arrive 

simultaneously at the ODP, where the assessor perceives, evaluates and compares the resulting odor of 

the starting sample [31,32]. 

The behavior of the human detector should also be considered during the assessment of the data 

quality collected when using GC-O. There are very significant differences in olfactory ability between 

humans; odor thresholds can vary significantly among individuals and some people, with an otherwise 

normal sense of smell, are unable to detect families of similar smelling compounds (anosmia) [21]. In 

addition, the olfactory response of an individual is known to vary over time, even during the course of 

a single day, and with the speed of breathing [33,34]. Sensitivity may also fluctuate due to health status 

and mood. 

In order to obtain reproducible data, potential assessors should be screened for sensitivity, 

motivation, ability to concentrate, and ability to recall and recognize odor qualities [21]. They should 

be asked to refrain from smoking and eating/drinking strongly flavored foods for 1 h prior to 

performing GC-O. They also should not to wear aftershave, perfume or strong deodorants on the day 

of assessment [21,35]. Moreover, the assessor’s comfort and ability to sniff free of distraction should 

be considered. GC-O instrument should be located in a dedicated laboratory with temperature and 

pressure control. Finally, a maximum sniff time of 25–30 min is recommended since GC-O sniff 

duration can impact human detector performance [21]. 

2.2. GC-O Olfactometric Detection Methods 

In recent decades, several techniques have been developed to collect and process GC-O data and to 

estimate the sensory contribution of a single odor active compound, rated as intensity, in order to evaluate 

the relative influence on the total odor of the sample [36]. These methods can be categorized into three 

groups: frequency detection methods, dilution to threshold methods, and direct intensity methods. 

2.2.1. Frequency Detection Methods 

The frequency detection method involves a team of 6–12 people who analyze the same sample  

in order to provide the percentage of people who sensed the odor compound at a given retention  

time [37,38]. Each odor can be evaluated using Nasal Impact Frequency (NIF) or Surface of Nasal 

Impact Frequency (SNIF) values. The NIF value is set at a value of one when each of the evaluators 
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sensed a given odor, and zero when no-one sensed any odor at a given retention time [39]. Therefore, 

the NIF value corresponds to the peak height of the olfactometric signal. The SNIF values describes 

the peak areas obtained multiplying the frequency percentage by duration, and enables the production of 

an aromagram (see Figure 3) [24,38,40]. Simplicity is the main advantage of detection frequency-based 

methods which do not necessitate qualified evaluators. The methods are repeatable and the results 

reflect the differences in sensitivity between the evaluators, which can also be related to differences 

within a given population. Hence, the impact of inattention, specific anosmia, etc. on the aromagram is 

minimized. However, as the detection frequency is related to the intensity of the odor perceived by the 

assessors, the correlation of the peak height with the real concentration of the odor compound in the 

sample cannot be obtained. In particular, odorous compounds present in different concentrations, all 

above the detection threshold, will produce an aromagram with peaks of equal intensity [21,22,41]. 

Figure 3. Scheme of an aromagram obtained using detection frequency methods, with four 

evaluators (reprinted from [22] with permission from Elsevier). 

 

2.2.2. Dilution to Threshold Methods 

Dilution to threshold methods provide a quantitative description of the odor potential of a given 

compound based on the ratio between its concentration in the sample and its sensory threshold in  

air [21]. These methods consist of preparing a dilution series of an extract, usually using twofold, 

threefold, fivefold or 10-fold dilution levels (R) and then analyzing them with GC-O [42].  

The assessors state under which dilution the compound analyzed can still be sensed, and usually 

describe the type of smell. Odor potency is equivalent to the concept of ―aroma values‖, ―odor values‖, 

―odor units‖, ―flavor units‖, and ―odor activity values‖ (OAV) [21]. OAV is the most commonly used 

index and represents the ratio of the concentration of a given compound on its sensory detection 

threshold [43–46]. 

The most frequently reported dilution methods are ―Aroma Extract Dilution Analysis‖ (AEDA)  

and ―Combined Hedonic Aroma Response Measurement‖ (CharmAnalysis
TM

) [24,47–57]. AEDA 

measures the highest sample dilution at which the odor of the analyzed compound is still detectable 

and reports this as the flavor dilution factor (FD) [36]. If the last dilution under which the analyte is 

still detectable is equal to p (p = 0, 1, 2, 3, ...), then its dilution factor is R
P
, where R is the dilution 
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level [42]. The overall results obtained with this method are reported in an aromagram presenting the 

FD value, or its logarithm, against the retention index (RI) [58,59]. CharmAnalysis
TM

 records the 

duration of odors (start and end) and generates chromatographic peaks. The assessors record the start 

and the end of each detected odor, hence the aromagram is obtained by plotting the duration of the 

odor sensation against the dilution value. The peak areas are expressed in dimensionless ―Charm‖ 

values (C), which are proportional to the amount of the analyte in the sample, and inversely 

proportional to the sensory detection threshold [22]. Charm value can be calculated with the formula: 

       (2)  

where n is the number of coincident odor responses detected at a single retention index and R is the 

dilution level [60]. CharmAnalysis
TM

 considers both the peak width and the peak shape, thus a short 

and broad peak may have the same Charm value as a tall and narrow peak that is perceived at a higher 

dilution. This gives CharmAnalysis
TM

 more discriminating power than AEDA, but it also results in 

greater variation than AEDA [21]. 

A drawback of the dilution methods is the length of the total analysis due to the large number of 

dilutions for each extract and evaluator. Therefore, these methods are normally performed by only one 

or two evaluators. For example, in a series of 10 dilutions, 30 GC injections are needed, which  

requires about 2 weeks [61]. Dilution to threshold methods are also criticized for the underlying false 

assumption that the odor intensity increases in parallel with the concentration for all odor components 

in a sample [62]. In order to attain a complete analysis of key odorants, recombination models and 

omission experiments can be performed. In the former, the aroma model system for a specific sample 

is prepared based on the combination of previously achieved AEDA or CHARM values, and/or OAVs. 

Odorants showing higher values are used to formulate a recombined model, which is then compared to 

the real sample for similarity or difference [25]. The omission experiments, on the other hand, deal 

with the preparation of an aroma model for a specific sample in which one or more odorants are 

omitted. In this experiment, the panelists are asked to perform duo and triangle tests to compare the 

reduced model with the complete one and indicate the perceived sensorial differences [25,31,63]. 

2.2.3. Direct Intensity Methods 

The odor intensity and its duration can be measured with direct intensity methods using different 

kinds of quantitative scales: category scales or unstructured line scales [21]. These methods include a 

single time-averaged measurement registered after the elution of the analyte (posterior intensity 

evaluation methods) or a dynamic measurement, where the appearance of an odor, its maximum 

intensity and decline are registered in a continuous manner (OSME, the Greek word for odor,  

and Finger span method) [64–66]. In the first case, the assessor assigns an appropriate value, from  

a previously defined intensity scale, to each detected compound while in the second case, the 

olfactogram obtained is similar to conventional chromatograms in which the height of the peak 

corresponds to the maximum odor intensity and the width corresponds to odor duration. Depending on 

the method, the measurement can be performed in different ways, best results will be obtained if a 

panel of assessors is used, and the average panel result is treated as one signal. There is a correlation 

between the logarithm of the odor intensity obtained using the OSME method and the logarithm of  
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the analyte concentration, as described by Steven’s Law [29,62]. The intensity is recorded as a 

function of time by moving the cursor of a variable resistor [25,66]. In the finger span method, the  

olfactograms are built moving the potentiometer slider using the thumb and the index or middle finger 

(195 mm) [21,34,67]. The distance between the two is proportional to the intensity of the odor, and  

the time of sliding corresponds to the duration of the odor in the olfactometric port. Some studies 

demonstrated that even a completely unprepared team of evaluators is able to repeatedly perform 

olfactometric measurements [22]. Another device, based on the use of a spring-loaded button can be 

used to build the aromagram. This device can relate a perceived odor intensity to the physical stimulus 

of hand pressure, thereby improving the reliability of recorded odor intensity data [41,68]. Using a  

3- or 7-point category scale with half values, the data are processed using the modified frequency MF (%), 

that can determine the most important odorous compounds present in the sample. It can be calculated 

with the following formula: 

                 (3)  

where F (%) is the detection frequency of an aromatic attribute expressed as percentage and I (%) is 

the average intensity expressed as a percentage of the maximum intensity. Usually, odorous stimuli 

detected with a MF (%) higher than 50 represent the most important compounds present in each 

sample [31,69]. This group of methods requires expert evaluators in order to obtain fast, repeatable and 

generally consistent results even in a single run [21]. 

2.3. Sample Preparation Methods 

The choice of an appropriate sample preparation method is crucial in GC-O analyses. The flavor 

profile is closely related to the isolation procedure which should prevent decomposition of labile 

compounds, loss of highly volatile compounds and heat-induced artifact formation. Therefore, the 

selected method should yield a product which is as representative as possible of the sample. According 

to the properties of the investigated sample, the preparation may include mincing, homogenization, 

centrifugation, steam distillation (SD), solvent extraction (SE), simultaneous distillation-extraction 

(SDE), solid phase extraction (SPE), supercritical fluid extraction (SFE), Soxhlet extraction, solvent 

assisted flavor evaporation (SAFE), microwave-assisted hydrodistillation (MAHD), headspace (HS) 

techniques, solid-phase microextraction (SPME), matrix solid-phase dispersion (MSPD) and/or 

methylation, direct thermal desorption (DTD), among others. Conventional solvent extraction and/or 

distillation methods are widely used to isolate volatile organic compounds present in food, beverages 

and materials [32,49,51,52,59,70–72]. However, these procedures yield extracts of a sample that do 

not always reflect the composition of the odor that is perceived by a subject when smelling or eating 

the sample. In particular, highly volatile compounds that most contribute to the original odor of foods, 

plants, flowers or materials can be lost during these procedures [73]. 

Solid phase extraction is carried out by shaking the sample with resin particles or more simply by 

eluting the sample in SPE columns [45,46]. The SPE resins are usually washed and conditioned with 

different solvents before sample extraction or clean up [28,74]. Another very popular method is SAFE, 

which may be applied after SE techniques or be used as an individual extraction method for aqueous 

samples such as milk, fruit and urine [49]. The technique removes volatile compounds under low 
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temperature and high vacuum conditions. Headspace techniques are used for the sampling of volatiles, 

using either static or dynamic methods. Sorption traps with porous polymers such as Tenax
®

 TA  

or Porapak™ Q, and resins such as Lichrolut
®

 EN, are most often used to concentrate collected  

volatiles [63,66,75,76]. The volatile components are then chemically or thermally desorbed from the 

trap and analyzed with GC-O [66,75]. Compared to conventional extraction techniques, headspace 

methods have the benefit of usually not causing the loss of the most volatile compounds and enable 

chromatographic analysis of these compounds without interferences due to the solvent peak. Headspace 

volatiles can be also concentrated exposing SPME fibers coated with specific extraction phases such  

as Carboxen
®

/PDMS or divinylbenzene/carboxen/polydimethylsiloxane [30,31,47,48,50,77–82]. The 

chemical profile of the collected volatiles depends upon the type, thickness and length of the fiber, as 

well as on the sampling time and temperature.  

Another technique, worthy of note is the direct thermal desorption (DTD), a widely applied  

solvent-free method [83–87]. For this method, volatile compounds are collected onto adsorption tubes 

filled with specific resins by using an air pump. The resins are selected according to the type of matrix 

(Tenax
®

 GR, Carbograph™, Carboxen
®

 GR). Sampled tubes are then thermally desorbed and then 

analyzed with GC-O [84–87]. Alternately, bags made of inert materials (Nalophan
®

, Tedlar
®

,) are used 

to collect air samples for analysis with TD-GC-O [83]. 

3. Applications 

Because of the its unique features, GC-O is already well established in areas involving fragrance 

and food aromas and is becoming more and more common in areas related to the environment, 

medicine and materials. In this section, these principal areas of application are explored and a sampling 

of results are presented in order to highlight the potentials of this technique. 

3.1. Food Application 

Consumers select and consume food based on three principal properties: flavor, appearance (color) 

and texture. Flavor is usually divided into the subsets of taste and smell, which are perceived in the 

mouth and the nose, respectively [60]. It is also defined as the sensation arising from the integration or 

interplay of signals produced as a consequence of sensing smell, taste, and irritating stimuli from food 

or beverage [88]. Instead, odor usually refers to the smell of food before it is put into the mouth (nasal 

perception) while aroma is the retronasal smell of food in the mouth. 

The application of GC-MS in this area has marked a real turning point for flavor research. Indeed, 

the number of known flavors has increased to over 7,000 compounds [89], however, there is no 

information about odor active components. Gas chromatography in combination with olfactometric 

techniques (GC-O) can help to detect potent odorants, without knowing their chemical structures, even 

at very low concentrations and this makes it the only viable method for the selection of aroma-active 

components from a complex mixture. 

GC-O studies on food products focus essentially on three main issues: 

(1). The ―aroma profile‖ of various foods and beverages and the dependence between the odor and 

the chemical composition of the volatile fraction on these products; 
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(2). The odor changes in food due to processing techniques (fermentation, cooking, the addition of 

preservatives and flavorings); 

(3). The discrimination among a family of foodstuffs (cheese types, coffee). 

3.1.1. The Study of ―Aroma Profiles‖ 

In recent years, intensive food ―aroma profiles‖ studies have been carried out with the aim of 

characterizing the substances responsible for odor. In particular, the characterization of the odor-active 

compounds in different kinds of fruit has been the topic of many papers reported in literature [90–97]. 

In several studies, Pino et al. have investigated the odor-active compounds in fruits such as banana, 

guava and pineapple [47,98,99]. In these investigations, volatile compounds were extracted from the 

fresh fruit homogenate headspace using SPME fiber coatings and then introduced in successive 

sequences into the GC port [100–106]. Moreover, the volatile compounds were examined by isolating 

the volatile compounds using Simultaneous Distillation-Extraction (SDE) [107–109]. A trained panel 

of three assessors perceived and evaluated the global odor of the fruits by performing SPME direct gas 

chromatography (GC-O). The combination of SPME-GC-O and SDE-GC-O detected thirty-one  

odor-active compounds; eleven of which were reported for the first time as important odorants of 

banana fruit. Guava fruit volatiles included more than 100 compounds that had been reported in 

previous studies [110–115], as well as ethyl acetate which had not been previously reported as a major 

compound. Pineapple fruit volatiles included esters (51), aldehydes (7), alcohols (5), acids (3), terpenes (2), 

furans (2) and miscellaneous compounds (9) which had all been reported in previous studies, with the 

exception of methyl 2-methylbutanoate [116–120]. 

This work reveals two emerging tendencies in GC-O applications: the improvement of repeatability 

and reliability of the obtained results. These developments were achieved by unifying, simplifying and 

shortening procedures, especially those involving sample preparation (SPME avoids the use of 

solvents and the resulting artifacts) and the integration with other extracting techniques, such as SDE. 

SPME allows the isolation of high and medium volatile compounds whereas SDE can cause their 

losses and, consequently, an underestimation of their aroma contribution. Hence, the combination of 

SPME-GC-O and SDE-GC-O can be a way of overcoming this discrepancy in the evaluation of the 

contributions of volatiles. 

Camembert cheese has been studied using aroma extract concentration analysis (AECA) and 

headspace gas chromatography-olfactometry (HGC-O). This approach revealed the complexity of an 

odorant matrix in which the most potent odorants are 2,3-butanedione, 3-methylbutanal, methional,  

1-octen-3-ol, 1-octen-3-one, phenethyl acetate, 2-undecanone, decalactone, butyric acid and isovaleric 

acid [121]. The work identified the neutral odorants with the highest OAVs as methanethiol, methional 

and dimethyl sulphide which contributed to the garlic-like sensory attribute in the odor profile of 

Camembert. Instead, 1-octen-3-ol and the corresponding ketone were found to be responsible for the 

mushroom-like sensory attribute while acetic, butyric and capric acid were associated with the acidic 

sensory attribute. 

Using two strategies, a recent work [122] has applied GC-O to the characterization of the aroma 

active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum). The 

first approach used aroma extract dilution analysis (AEDA), while the second involved a GC-O 
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technique combining measurements of both intensity and modified detection frequency [123–125]. 

Eighteen different odor zones, with a MF higher than 15%, were detected in the GC-O experiments. 

The newly identified components were relevant compounds in the aroma composition of the two 

truffles, particularly in the case of the summer truffles. In fact, 1-hexen-3-one was amongst the five 

most important aroma compounds. The olfactogram obtained from black truffle was more intense and 

complex than that of the summer truffle. In addition, the results suggested that there were relevant 

differences between the aroma profiles of both varieties. In particular, while DMS, DMDS and  

3-methyl-1-butanol were among the five most important aroma compounds in both cases, black truffle 

aroma was rich in 2,3-butanedione and ethyl butyrate while summer truffle aroma contained 

methional. The comparison between the GC-O profiles of both varieties is shown in Figure 4 where a 

spider web diagram of the data (normalized so that the maximum = 100%) reveals that the most 

important differences are related to methional (c.11) and 3-ethylphenol (c.17) which were much  

richer in the GC-O profile of summer truffle, and 2,3-butanedione (c.3), ethyl butyrate (c.4),  

ethyl 3-methylbutyrate (c.5) and 3-ethyl-5-methylphenol (c.12), which were particularly important in 

the aroma profile of black truffle. 

Figure 4. Spider web diagram comparing the GC-O olfactometric profiles (normalized so 

that the odorant showing maximum MF (%) = 100) obtained from black and summer 

truffles (reprinted from [122] with permission from Elsevier). 

 

Black truffle was particularly rich in phenols (3-ethyl-5-methylphenol, 5-methyl-2-propylphenol, 

given as mass of 3-propylphenol and 3-ethylphenol, respectively) and in -phenylethanol, while the 

emissions of summer truffle was mostly a product of -phenylethanol, DMS and 3-ethylphenol. 

The characterization of aroma-impact compounds in yerba mate (YM) using GC-O and GC-MS 

was carried out to clarify consumer preferences of major commercial brands of YM sold in Uruguay 

and its neighboring countries (Argentina, Brazil and Paraguay) [69,126]. For this purpose, all the 

samples studied were extracted with an identical extraction system and experiments were performed 

with a system that represented an ―artificial mouth‖. Approximately 50 odorants were detected  

during the GC-O experiments but, for simplicity, those not reaching a maximum GC-O modified  

detection frequency (MF) of 50%, were considered as noise. Sixteen odor-active compounds 

presenting MF ≥ 50 [127] were detected (Table 1). 
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Table 1. Odor-active compounds in yerba mate detected by GC–O with MF ≥ 50 

(reprinted from [69] with permission from Elsevier). 

LRI 
a
 %MF 

b
 Descriptor Compound 

1154 53 Herbaceous, sweet Myrcene 

1278 76 Citrus Octanal 

1294 53 Mushroom 1-Octen-3-one 

1340 74 Moss 6-Methyl-5-hepten-2-one 

1450 68 Flower (Z)-linalool oxide (furanoid) 

1478 76 Nuts (E,Z)-2,4-heptadienal 

1490 68 Nuts (E,E)-2,4-heptadienal 

1510 84 Mushroom (E,Z)-3,5-octadien-2-one 

1528 66 Mushroom (E,E)-3,5-octadien-2-one 

1540 65 Flower Linalool 

1745 61 Flower Geranial 

1798 76 Sweet Nerol 

1832 71 Apple β-Damascenone 

1843 76 Flower α-Ionone 

1936 79 Sweet β-Ionone 

1987 53 Oxidized, metallic (E)-4,5-epoxy-(E)-2-decenal 
a LRI in Carbowax™; b MF, modified frequency. 

Intensive studies have been carried out using gas chromatography with olfactometric detection  

(GC-O) to evaluate the sensory activity of the individual odorous components of different alcoholic 

beverages. In these cases, sample preparation represents a critical step since exhaustive extraction 

methods, such as solvent extraction and distillation, are time consuming, involve many steps and do 

not always reflect the composition of the odor reaching the receptors during their actual consumption. 

Moreover, during the concentration step, oxidation of volatiles may occur without the use of 

antioxidants. Isolation methods are the most used, as static and dynamic headspace with purge and trap 

(on Tenax
®

 TA or Porapak™ Q, as well as resins, such as Lichrolut
®

 EN), followed by thermal 

desorption or solvent elution, or Solid Phase Microextraction (SPME) [22]. In alcoholic beverages, 

GC-O is most commonly used to investigate odor compounds in order to reconstruct alcoholic 

beverage odors, check the quality of the raw materials used in the production processes and identify 

the compounds responsible for the aftertaste [128]. 

3.1.2. The Study of Odor Changes in Food after Technological Treatments 

Another interesting area of research concerns the generation of different aroma compounds in foods 

as the result of technological treatment and the consequent changes of sensory characteristics. In one 

study, Feng et al. set out to evaluate the crucial impact of fermentation on soy sauce aroma [77]. An 

aroma extract obtained with SPME of a harvested koji sample was subject to GC-O analysis. The results 

detected 2-phenylpropenal and di-epi--cedrene for the first time and concurred with previous findings 

that had noted the presence of volatile [129–131] or aromatic compounds [132–134] as well as. 

GC-O combined with the aroma extract dilution analysis (AEDA) approach [59,135] was used to 

determine key odorants after 1 and 5 days of fermentation and the subsequent frying of soy tempeh. 
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The volatile compounds isolated from the tempeh represented different chemical classes, mainly 

aldehydes and ketones, hydrocarbons, mono and sesquiterpenes, sulfur containing compounds, 

nitrogen containing compounds, alcohols, and furans. 

A recent study has investigated a new alternative antioxidant in meat originating from a natural plant 

source [48]. In this work, Kim et al. studied the effects of the addition of two commercial rosemary 

extracts (RE), namely RMD (oil-soluble type) and RMP (water-soluble type), on potent odorants  

in cooked beef extracts (BE) using solid-phase-micro-extraction-gas chromatography-olfactometry  

(SPME-GC-O) [136]. The sensory evaluation results indicated that the addition of RE influenced  

the odor character of cooked BE and thus analysis using SPME-GC-O coupled with AEDA was 

subsequently conducted to identify the odorants responsible for this trend. A combined total of  

57 odorants including 10 unknowns were detected in the treatments. Kim et al. concluded that two 

effects, namely odor-supplementation and odor-suppression, were triggered by the addition of RE. The 

odor-supplementation consisted in an addition of sweet and floral notes to BE; these odorants were 

mainly esters, terpenes and phenolic compounds which had originated from the RE, and most notably 

from the RMD. This effect was thought to have either caused pleasant flavors or masked certain  

off-flavors in the cooked beef. Instead, the odor suppression effect was mainly observed for the 

odorants generated from lipid oxidation or the Maillard reaction [137–143]. The study highlighted that 

CG-O could be a useful tool to monitor and optimize some treatments. 

Another interesting study addressing the use of GC-O in evaluating the effect of technological 

treatments on odor characteristics was carried out on cooked pork products [75]. This study set out to 

obtain new knowledge about how nitrite helps to develop aroma in cooked pork products and to  

describe the reaction mechanisms involved [144–151]. For this purpose, two complementary GC-MS/O 

instruments were used to identify odorant compounds (GC-MS/8O and GC  GC-MS/O) [26,152]. 

Using GC-MS/8O, the authors identified 22 odorant zones that subsequently were explored in detail 

with GC  GC-MS/O for a reliable identification of odorant compounds in the nitrited or nitrite-free 

cooked ham headspaces. Among the detected compounds, several oxidation products were identified. 

Indeed, meat fatty acid oxidation explained the presence of the numerous saturated or unsaturated 

aldehydes with 6–10 atoms of carbon, ketones and alcohols [153,154]. In addition, the authors 

revealed sulfur compounds resulting from the breakdown of sulfur-containing precursors during 

cooking [155]. A comparison of the aromagrams of nitrite-free (Figure 5a) and nitrite-cured cooked 

hams (Figure 5b) is reported, showing that the odor intensity of most of the olfactory peaks was 

weakened by the added nitrite. Moreover, the authors concluded that an analysis of the differences 

observed indicates that the zones of the aromagrams most significantly changed (p < 0.01) by nitrite 

correspond to fatty acid oxidation products (green peaks in Figure 5).  

In conclusion, the authors demonstrated that the addition of nitrited salt in ham production is not 

directly involved in the production of the odorous substances that give nitrite cured pork products their 

specific aroma. Indeed, the absence of nitrite simply promotes the oxidation of fatty acids and, in 

particular, the production of aldehydes which will mask the odor of the sulfur-containing compounds 

responsible for the aromatic note typical of nitrite-cured pork products. Thus, the odor of nitrite-cured 

pork products is merely the outcome of a balanced perception of certain sulfur-containing compounds 

and fatty acid oxidation products, important among which are aldehydes. 
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Figure 5. GC-MS/8O aromagrams of cooked hams without (a) and with (b) nitrite 

expressed in mean intensities of perception, each calculated from 16 individual sniffing 

sessions (one type of ham × 8 sniffers × 2 repeats). The breakdown of the signal into three 

classes of chemical origin shows the odorant zones originating from: lipid oxidation  

(in green), sulfur compound degradation (in red) and unspecified origins (in grey). 

(reprinted from [75] with permission from Elsevier). 

 

GC-O analysis, based on a detection frequency method has also been used to describe the aroma 

attributes of beef like flavors (BFs). This has been carried out to determine aroma-active compounds 

and identify volatile compounds in oxidized tallow samples [156] as well as to clarify the influence of 

enzymatic hydrolysis-mild thermal oxidation on the odor produced to obtain oxidized tallow. GC-MS 

profiles of oxidized tallow were analyzed together with quantitative descriptive sensory data and GC-O 

responses of BFs to understand which compounds had significant effects on aroma-active compounds 

and sensory attributes of BFs. Through the analyses, the characteristic flavor precursors from enzymatic 

hydrolysis thermal oxidation tallow were identified and the main differences between enzymatic 

hydrolysis-thermal oxidation tallow and simple thermal oxidation tallow were elucidated. Compounds 

with detection frequencies greater than 50% were considered characteristic flavor components; a total of 

34 aroma-active compounds were identified, mainly consisting of heterocyclic sulphur or nitrogen 

compounds and aldehydes. Among these compounds, the most potent odorants were acetic acid, 

nonanal, 3-(methylthio)propionaldehyde, 2-methyl-3-furanthiol and bis(2-methyl-3-furyl)disulphide.  

The study also identified bis(2-methyl-3-furyl)disulphide and 2-methyl-3-furanthiol, the latter which is 

responsible for beef like aroma had also been detected in previous studies [154,157–164]. 

A similar study was carried out for the evaluation of the changes in the aroma characteristics of 

mutton process flavors (MPFs) prepared from sheep bone protein hydrolysates (SBPHs) with different 

DHs (degrees of hydrolysis) using descriptive sensory analysis (DSA) and analyzing the corresponding 

volatile odor-active compounds with GC-MS/O [165]. The results showed 58 odor-active compounds 

while on the basis of the detection frequency method only 36 of these possessed an odor activity in the 

MPFs. The developed odorous compounds varied according to the starting sample and depending on 

the degree of hydrolysis. DH was an important index in the preparation of meat flavors; in particular, 
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compounds with a DH range of 25.92%–30.89% produced a wider range of odor-active compounds 

through thermal reaction. 

GC-O analysis was also used to discriminate between fresh and frozen lamb meat in a study 

attempting not only to evaluate the chemical basis of the aroma of grilled lamb but also to determine 

the major aroma changes linked to meat freezing [166]. Experiments were performed using a 

multidimensional gas chromatography–olfactometry–mass spectrometry (GC  GC-O/MS). The 

experimental design included the GC-O analysis of nine different extracts: two blanks, two samples of 

fresh grilled meat, two of fresh grilled muscle, two of previously frozen grilled meat and one of fresh 

grilled fat. The main advantage of this methodology compared with others presented in recent  

years [167] is that it was performed in vivo with the help of volunteers; therefore, the relevant 

processes occurring inside the mouth such as chewing and enzyme action from saliva were taken into 

account. This work was able to detect the most important compounds in the aroma of lamb during 

grilling and consumption and for the first time 2-isopropyl-3-methoxypyrazine, 2-methylbenzaldehyde 

and vanillin were detected in lamb. 

GC-O with statistical analysis was applied to aromatic caramel which is widely used in the food 

industry especially as a food flavoring. Caramel can be liquid or solid and brown to dark brown. It is 

soluble in water and obtained by the controlled action of heat on sugars [168,169]. Products resulting 

from the thermal degradation of sugars, like coffee, and odorant properties are closely linked to the 

volatile fraction which represent 5%–10% of their total mass; GC-O and GC-MS could be used to 

identify and structurally characterize those compounds. The relationship between physicochemical and 

sensory data sets was studied by means of multivariate statistical tools such as Partial Least Square 

(PLS) regression. The odorant compounds detected belonged to several chemical classes: oxygenated 

heterocycles, carbocyclic compounds, carboxylic acids, phenolic compounds, esters, aldehydes  

and carbonyled compounds. Among them, 13 odor zones were related to oxygenated heterocycles, 

carbocyclic compounds and carboxylic acids. These results suggested the importance of these three 

chemical classes to the odorant properties of burnt sugars. 

Extensive reviews dealing with the application of GC-O on dairy products, including tables of 

classified odorants according to their chemical classes are present in literature [25,170]. In one study, 

the change in aroma composition of cow’s milk during heating and fermentation was investigated [19]. 

Seven common odorants were found in four different types of raw milk: dimethylsulfone, ethyl 

butanoate, ethyl hexanoate, heptanal, indole, nonanal, and 1-octen-3-ol. Heating brought about  

the formation of four common odor-potent compounds: hexanal, 2-nonanone, benzothiazole, and  

δ-decalactone. Instead, fermentation resulted in the formation of 1-octen-3-one, methional,  

3-methylbutanal, and butyric acid. 

3.1.3. GC-O as a Discrimination Tool among a Family of Foodstuffs 

Discriminant analysis between foods and among varieties of the same class of foods is another of 

the applications for GC-O. Several studies have used GC-O to verify odorant compounds in coffee and 

to compare the highly volatile odorants of the powders and brews prepared from roasted Arabica and 

Robusta coffees. A brew was also obtained from a soluble coffee powder to detect odorants with a 

boiling point lower than that of the extraction solvent [171]. Furthermore, GC-O was successfully  
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used for the aroma analysis of coffee flavor by evaluating defects in green coffee beans due to 

microorganisms responsible for the formation of off-flavors [172]. In this study, the authors compared 

green Arabica coffee beans from Mexico, obtained by a dry post-harvest treatment, with a coffee bean 

of identical origin having no noticeable organoleptic defect and then a moldy/earthy character defined. 

A frequency detection method was applied for obtaining the olfactogram. GC sniffing profiles made it 

possible to locate zones with a typical moldy/earthy character and to attribute moldy/earthy off-flavor 

to six substances. 

In another study, GC  GC-O was extensively used to check odor compounds in complex samples 

such as brewed coffee. This led to the detection of numerous odor compounds which could be well 

resolved and identified in both roasted and brewed coffee [28]. The authors clearly demonstrated  

that certain odor regions correspond to several overlapping compounds in 1D GC, however, these  

co-eluting peaks were well resolved in the 2D axis of GC  GC analysis. Moreover, it was found that a 

short 15 m 1D column could exacerbate the resolution problem in 1D analysis and a better resolution 

could be obtained on a longer column. However, the latter would add time and aggravate the problems 

of assessor’s fatigue when an olfactometric port is used. 

An interesting study has recently been carried out [173] on 7 different semi-hard French cheeses. 

The work investigated the relationship between physicochemical and sensory data sets using 

multivariate statistical tools. It began by identifying thirteen odor attributes. A characterization was 

made using a conventional AFNOR sensory profile to correlate the perceived orthonasal aroma 

compounds with those extracted from the headspace and analyzed with GC-O [174,175]. Only 9 of  

the 13 odor attributes showed any significant difference among the seven cheeses (analyzed with 

ANOVA). As illustrated in Figure 6, the ―Smoked‖, ―Dairy‖, ―Nutty‖ and ―Melted Cheese‖ attributes 

did not have enough discriminant power to differentiate the 7 cheeses. 

In the second phase, the odor-active compounds were detected using 8-way gas  

chromatography-olfactometry (GC-O/8). The single-port GC-MS/O chromatogram and the GC-O/8 

aromagrams were aligned, by means of standards, and processed with AcquiSniff software [26,173,176]. 

It was found that some odor zones were present in all of the cheeses while some were specific to only 

one or a few cheeses. ANOVA was carried out on the intensity ratings from the eight judges for each 

odor-active compound and it was noted that a total of 15 compounds significantly discriminated the 

cheeses. Evaluation of the correlations between the sensory profile and GC-O was performed using 

PLS with a nonlinear iterative partial least squares (NIPALS) algorithm to explain sensory ratings 

from the GC-O intensities. The total intensity of GC-O data was considered as the X matrix and the 

mean sensory scores as the Y matrix. The optimal number of dimensions for model prediction was 

determined by cross-validation. The results of the bi-plot correlation between the sensory profile and 

the GC-O data are reported in Figure 7. The sensory attributes, ―Buttery‖, ―Cream‖, ―La vache qui rit‖ 

(cheese type), and ―Raw Milk‖, were correlated with odorant compounds having green (E-2-nonenal 

and 1-nonen-3-one) and roasted (2,3-dimethylpyrazine) characteristics. The attributes, ―Musty‖, 

―Animal‖, ―Sweaty‖ and ―Acidic‖, were mostly correlated with odorant compounds having cheesy, 

sulphury, rancid and chocolate characteristics as butanoic acid and 3-methyl-1-butanol. 
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Figure 6. Mean ratings of the 13 odor attributes for the seven (C1–C7) semi-hard cheeses 

(13 judges; 3 repetitions). Significant differences are shown: * significant at p < 5%;  

** significant at p < 1%; *** significant at p < 0.1% (reprinted from [173] with permission 

from Elsevier). 

 

Figure 7. Bi-plot of the two first components as a result of PLS analysis of the sensory 

profiles (Y matrix, black) and the GC-O intensity measurements for the odor-active 

compounds (X matrix, grey) (reprinted from [173] with permission from Elsevier). 

 

The work underlines that the use of a simultaneous multi-sniffing detection system aims to 

overcome a well-known drawback of the GC-O technique, that is the lack of repeatability and 

reliability of some measurements with respect to instrumental ones, especially when only one assessor 

is employed. 
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3.2. Fragrance Applications 

Chemical characterization methods coupled with olfactometric detection can be a powerful tool for 

the sensorial characterization of odor. In the field of fragrances, this method can be used for research 

purposes or for improving industrial manufacturing processes. The use of fragrance materials dates 

back to antiquity, when spices and resins from animal and plant sources were used in perfumery. 

Today, perfumers work with several thousand natural or synthetically manufactured ingredients to 

create different fragrance compositions [177]. The combination of commercial demands with the 

development of monodimensional gas chromatography (GC), GC/mass spectrometry (GC/MS), and 

GC-olfactometry (GC-O) has produced an explosive acceleration of the evolution of flavor and 

fragrance materials [29]. Essential oils, extracted from the source array, or perfumes used as such, are 

subject to quality control as well as chemical and odorous characterization in industry where the main 

goal is to make these products as pleasant as possible and to confer a characteristic odor. Hence, GC-O 

can be readily used because of its ability to efficiently separate and characterize the principal 

molecules constituting these matrix such as terpenes, aldehydes and alcohols. 

For fragrance recognition, innovative FFNSC (flavor and fragrance natural and synthetic 

compounds) libraries are used; the best matche can be found between an investigated compound and 

the target one based on similarities in fragmentation and the closeness of the RI values [25,178]. In the 

case of particularly complex mixtures or when compounds are present at trace-level concentrations, 

multidimensional gas chromatography techniques (GC × GC) are preferred in order to obtain a better 

separation of the different compounds. The main advantage of using GC × GC-O is shown in Figure 8. 

Indeed, the comparison of a GC-O chromatogram and a GC × GC-O 2D plot of a commercial perfume 

has revealed that these type of matrixes are very complex and that conventional GC-O analyses cannot 

adequately record the presence of all constituents [29].  

Using GC-O analysis, detailed reports of the chemical and aroma components of some essential  

oils have been compiled. For example, GC-O analyses revealed several compounds related to the 

camphoraceous, herbaceous and fresh odor that characterizes the essential oil of Tarchonanthus 

camphoratus L. It is notable that the majority of the compounds having the highest intensity score 

belonged to the class of oxygenated monoterpenes which are considered the most expressive class  

of terpenes used in perfumery [179]. 

While studying P. mirifica, a commercially available Thai leguminosae plant considered to be a 

rejuvenating drug, α-necrodol, a terpene having anti-insect activity in the Pueraria genus, was detected 

for the first time by Yagi et al. [57,180,181]. Moreover, odor analysis allowed to distinguish green 

odor (C9 aldehydes group, such as phenylacetaldehyde and (2E)-nonenal) and sweet odor 

(monoterpene alcohols, such as geraniol). Hence, the main advantage of GC-O analysis lies in the 

possibility of assigning a characteristic odor to the various compounds present in the same species of 

plants, in order to obtain information for a possible use of these aromatic samples in food products or 

in medicinal or cosmetic applications [182]. 
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Figure 8. GC-O chromatogram (A) and GC × GC-O 2D plot (B) of a commercial perfume 

achieved without (A) and with (B) cryogenic modulation (reprinted from [29] with 

permission from Elsevier). 

 

AEDA analysis has been performed for odor characterization in essential oils. Relevant AEDA 

results were found in the GC-O characterization of Scutellaria laeteviolacea essential oil: relative flavor 

activity (RFA) was calculated using the equation reported by Song et al., starting with the FD-factor: 

       
        

    
 (4) 

In the formula reported above, the FD-factor is the dilution factor while S is the weight percentage 

of the component present in the mixture [183–185]. In GC and GC-MS analyses, 100 compounds were 

characterized and seventeen peaks were confirmed by sniffing with GC-O. The work demostrated that 

the compound germacrene D and Scutellaria laeteviolacea essential oil had the most similar smell, 

even if the latter was characterized by a relatively low (0.5) flavor activity and by the highest  

FD-factor (7). These findings suggest that the relative flavor activity, defined as a new odor unit, and 

the FD-factor often have no relation to the aroma character of a compound. In other words, even if the 

RFA of one compound is not comparatively high, it often contributes significantly to the original odor 

and can be used when considering flavor activity [55]. 
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Clinopodium tomentosum (Kunth) Govaerts essential oil was studied with GC-O in order to 

calculate threshold odor concentration (TOC) values of the main odorants in a mixture [53]. As 

displayed in Table 2, Benzo et al. found a good agreement between the calculated and measured TOC 

values of a few odorants in the essential oil. They established a relationship between the odorant 

concentration at the sniffing port and that in the injected solution using the TOC value of limonene as a 

reference compound. 

Table 2. TOC values calculated using AEDA method in GC-O technique and measured by 

dynamic dilution olfactometry (reprinted from [53] with permission from Elsevier). 

No. Compound 
Calculated TOC 

(µg/m
3
) 

Measured TOC 

(µg/m
3
) 

Descriptor 

1 1-Octen-3-ol + 6-methyl-5-hepten-3one 0.223 2.36 and 18.89 Mushrooms 

2 1,8-Cineole 2.67 5.08 Balsamic 

3 Isomenthone 40.451 n.d. Wine bottle stopper 

4 Isopulegone 0.076 n.d. Minty 

5 Pulegone 0.884 1.87 Minty 

6 cis-Piperitone oxide 22.427 n.d. Minty 

3.3. Environmental Odor Applications 

Odors produced by anthropic sources are a complex issue because they directly affect both the 

environment and the human quality of life. Industrial plants and farms are often a source of bad odor, 

hence, their close proximity to residential zones can lead to complaints by local residents [4,186,187]. 

Furthermore, odors can strongly affect people’s daily life and wellbeing since they may provoke both 

physiological symptoms (respiratory problems, nausea, headaches) and psychological stress [188,189]. 

The official methodology for odor emissions assessment is dynamic olfactometry, a sensorial 

technique standardized by international technical laws [190,191]. It is based on the use of a dilution 

instrument, called an olfactometer. This device releases the odor sample diluted with odor-free air at 

precise ratios to a panel of human assessors who have been selected according to their perception 

threshold for a reference gas. The odor concentration, usually expressed in odor units (ou/m
3
), is 

numerically equal to the dilution factor required to reach an odor threshold, which is the minimum 

concentration perceived by 50% of the population [190,191]. However, it is not sufficient to 

completely evaluate a case of olfactory nuisances for various reasons [192]: 

- Continuous and field measurements, which are useful for monitoring industrial processes 

causing odor emissions, cannot be performed; 

- Odor concentration refers to the whole odor sample, without discriminating between single 

chemical compounds and their contribution to that concentration; 

- Odor samples require rapid analysis since they are instable and difficult to store; 

- Olfactometry can be quite time-consuming and expensive, and the frequency and duration of the 

analyses are limited. 

In order to overcome these limitations, sensoristic and analytical methodologies as well as others 

are widely employed and their information are often integrated to achieve a more complete 
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understanding of olfactory nuisance cases. The use of a hybrid instrumentation such as GC-O has been 

shown to provide interesting information in the environmental field due to the coupling of the chemical 

characterization with sensorial perception related to the single compounds eluted by the column. 

A considerable number of scientific works dealing with the use of GC-O have focused on odor 

assessment produced by different types of animal farms. The activities connected with high density 

livestock operations can produce several hundred volatile organic compounds (acids, alcohols, 

aldehydes, amines, volatile fatty acids, hydrocarbons, ketones, indoles, phenols, nitrogen and sulfur 

compounds) yet relatively few of them are responsible for the typical odor of these environments. 

Hence, the aim is to the extract compounds that are actually responsible for the primary odor impacting 

livestock environments. Several factors can complicate this task; for instance, the variability among 

species, manure management systems and animal production practices [193]. 

Figure 9. Aromagram for 4 h SPME fiber collection 20 m downwind (―near‖ site) from 

commercial beef cattle feed yard (reprinted from [193] with permission from Elsevier). 

 

Figure 10. Aromagram for 4 h SPME fiber collection 2,000 m downwind (―distant‖ site) 

from commercial beef cattle feed yard (reprinted from [193] with permission from Elsevier). 
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Using GC-O to profile odor is a functional approach for defining, prioritizing and tracking livestock 

odorants. Wright et al. [193] have studied the odor profiles produced by swine and beef cattle 

operations by optimizing the collection time and/or increasing the distance from the odor source. The 

increased distance showed a significant reduction in the total number of detectable odors, as shown in 

Figures 9, 10. The authors found that p-cresol was the only significant olfactory response even 2,000 m 

away from the odor site, meaning that it could be considered as a surrogate parameter correlated to odor. 

A lot of studies have reported that most of the odor produced by swine barns is carried on  

dust [194–196] and that its reduction is possible using dust filters for Particulate Matter  

(PM) [197,198]. To further understand this aspect, GC-MS/O was used to identify odorous VOCs 

adsorbed/absorbed on different size swine barn dust (PM1, PM2,5, PM10 and TSP). The study of the 

aromagrams of the VOCs extracted from TSP filters at different SPME sampling times allowed  

Cai et al. [81] to identify the key odorants for the different granulometric fractions of the particulate 

matter as well as identify what is actually carrying the odorous compounds. 

GC-MS/O is also widely employed for determining the efficiency of different treatment systems for 

odor emission reduction and for developing a suitable and cost effective strategy for implementation. 

In particular, the sensorial data associated to each single compound are able to indicate what 

compounds, among those that really contribute to odor, have to be mitigated in order to reduce odor 

emissions. This aspect has a practical implication in the development of opportune abatement systems 

specific for the compounds causing odor emissions [78,83]. For example, GC-MS/O was used to 

evaluate the effectiveness of topical zeolite applications to mitigate VOCs and odor from simulated 

poultry manure storage [199]. It was also used to characterize the odorants either before and after the 

application of abatement products (activated carbon, silica gel and zeolite) in order to reduce odor 

compounds emitted by broiler litter materials [200] or prior to and after waste gas treatment from a  

fat refinery [80], as shown in Figure 11. An analogous approach was used by Chen et al. [78] for 

examining two types of wood chip-based biofilters as common abatement systems. 

In the same way, Agus et al. [74,201] set up a noteworthy application of GC-O in environmental 

matrixes. Their study identified trace amounts of odorous organic compounds in drinking water that 

was obtained from highly treated wastewater during the different phases of the treatment. 

Some authors have tried to combine the GC-O results with those acquired from other approaches. 

The goal of this integration may be to discover useful correlations in order to obtain a better 

understanding of a case study or to test the effectiveness of GC-O in determining the principal 

odorants in a mixture. The work of Sohn et al. [202] can exemplify the former objective. Their study 

combines GC-O with a real time monitoring system (an artificial olfaction system) to measure in shed 

odor concentrations at two different poultry farms. The results were combined with ventilation rates 

and weather data to calculate the odor emission rate (OER) throughout the batches, observing that 

OERs varied significantly between farms. This variation was linked to changes in ventilation rates, 

bird activity and other management and environmental factors. Similarly, GC-MS/O results showed 

different chemical profiles during the poultry production cycle. The matrix was first dominated by 

terpenes originating from the bedding material of young birds while later it became populated by 

aldehydes, ketones and sulphides as the bedding became soiled with manure. 
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Figure 11. FID/O-chromatograms of waste gas from a fat refinery obtained prior to and 

after waste gas treatment: (a) untreated waste gas; (b) after bioscrubber; (c) after biofilter; 

a–p odor signals (reprinted from [80] with permission from Elsevier). 

 

In other studies, the results of GC-O were integrated with the odor concentrations measured by 

dynamic olfactometry. In these cases, correlations between the concentrations of odorous VOCs and 

measured odor units were investigated in order to define the main compounds contributing to the entire 

perception of odorous VOCs [83,84]. In another case, Zhang et al. [87] characterized the odor 

emissions produced at swine and dairy sites and associated odor intensity and hedonic tone to 

compounds. They were also able to demonstrate that concentrations of odorous compounds correlated 

well with the measured log stimulus intensity. 

For the purpose of demonstrating the effectiveness of GC-O in identifying the principal odorants in 

a mixture, Trabue et al. [86] compared the results of GC-O with odor activity values (OAV) obtained 

in open cattle feedlots. Here, the sampling was carried out at the source and far from it. Based on 

OAVs, the chemical characterization of the source revealed that Volatile Fatty Acids (VFA) were the 

principal contributors to odor, followed by phenols and indoles. At 250 m downwind from the source, 

the total OAV declined by almost 95% while at 3.2 km downwind it decreased to a value of less than 

one, meaning that no odor should be present, unlike to what was described. On the other hand, GC-O 

results revealed that, at 250 m downwind of the feedlot, a panelist could not perceive pentanoic acid 

odor, despite its concentration was above its OT while perceived 4-ethylphenol with an OAV less than 

one. These results indicate that an approach based solely on OAVs is not sufficient to describe odor 

characteristics because of the OT value uncertainty, as revealed in literature. 
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3.4. Material Applications 

The GC/MS-O method has proven to be a useful and reliable tool for the detection and 

identification of odor active VOCs responsible for off-flavors coming from a wide range of materials. 

Material applications have two main goals. One is to inform industry of manufacturing processes and 

any possible improvements in that practice. The other is to find replacements for raw materials that 

generate odorous compounds with other odorless compounds in order to avoid or, at least, reduce odor 

nuisance. This research is important for food packaging materials since it can search for ways of 

avoiding the possible migration of materials into food or other susceptible products where they may 

cause unexpected and unsightly changes. Tyapkova et al. used the GC-O approach to characterize the 

volatile chemicals that forms in sterilization processes, with 60Co γ-irradiation in the presence of 

oxygen, of polypropylene (PP) packaging materials, used in food, pharmaceutical or cosmetic  

fields [52]. The authors compared VOCs emission from irradiated (rays at 10 and 20 kGy) and not 

irradiated polypropylene, including a sensory evaluation with a panelist. Besides compositional 

changes in volatile odorous substances from PP during treatment, the results showed a shift towards a 

different odor descriptor (fatty, sweet, sour, burnt, stinging, metallic, wax-like, plastic) depending  

on the γ-irradiation condition. The experimental results are reported in Figure 12 as orthonasal 

comparative Flavor Profile Analyses (cFPA). 

Figure 12. Orthonasal comparative flavor profile analysis (cFPA) of three powdered PP 

samples. The data are displayed as mean numerical values of the sensory evaluations (three 

sessions with six panelists each) (Reprinted from [52] with permission from Elsevier). 

 

Nowadays, GC-O methodology is widely applied to evaluate VOCs and odor emissions from 

waste-recycled innovative materials, employed both in the automotive industry and for construction, 

furniture and consumer products. Although the recycling of waste materials is well established and 

widely applied, it has to satisfy chemical requirements in order to obtain safety certification. 

Felix et al. applied HS-SPME extraction and GC-O/MS analysis to wood-plastic composites (WPC) 

produced with landfill derived plastic and sawdust in order to characterize VOC emissions and to 

assess the impact of the odor on the end-users [82]. This study found that the WPC prototype had a 

characteristic odor profile and that many of the compounds observed are related to reprocessed 

materials, confirming the hypothesis that repeated recycling can generate thermo-oxidative degradation 
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(Table 3). In addition to the findings reported by a previous study [203], Felix et al. stressed that the 

degradation of a polymeric matrix produces a characteristic odor associated with aldehydes, ketones 

and carboxylic acids, whereas the degradation of the lignocellulosic component releases acetic acid, 

formaldehyde, formic acids, aldehydes and other acids [82]. 

Table 3. Olfactory description, chemical identity and modified frequency percentage  

MF (%) for each odorant identified in WPC prototype (Adapted from [82] with permission 

from Elsevier). 

RT (min) KIexp 
a
 KIref 

b
 Odor Descriptor MF (%) Compound 

7.268 1011 970 Diacetyl, cream, sweet, yogurt, curd, wood, fruity 83 Diacetyl (2,3-Butanedione) 

9.188 1120 1084 
Grass, herb, green, flower,  

solvent, chemical 
76 Hexanal 

10.468 1177 1150 
Fruity, ester, candies, jelly,  

plastic, varnish 
53 m-Xylene 

13.849 1321 1280 
Aldehyde, medicine, chemical, herb, flower,  

field, lemon, grapefruit, orange 
82 Octanal 

16.314 1424 1385 
Aldehyde, bleach or  

lemon cleaner, unpleasant 
77 Nonanal 

17.668 1481 1450 
Acid, unpleasant, solvent, glue, sweat,  

sunflower seeds 
79 Acetic acid 

18.732 1527 1484 Aldehyde, powdered sugar, acid 51 Decanal 

19.029 1540 1490 
Gas, burnt, green shield bug, fresh wood,  

fried, oily 
71 Acetylfuran 

19.316 1553 1491 Dry fruit, nut, almond, mold, dense 58 Camphor 

21.655 1658 - Cheese, rancid cheese, butiric or propanoic acid 77 Unknown 

22.611 1702 - Acid, cheese, butiric acid 76 Unknown 

23.080 1724 1720 Bug, nail polish remover, naphthalene balls 53 α-Terpineol 

26.123 1872 1829 
Acid, trash, waste, foot, wood,  

hair removal wax, licorice 
74 

Hexanoic acid  

(caproic acid) 

26.508 1891 1859 
Phenol, shoeshine, medicine, sweat,  

bug, vanilla 
65 

2-Methoxyphenol  

(Guaiacol) 

28.105 1973 - 
Phenol, aromatic, sweet, zinc oxide adhesive 

plaster, opium, hospital 
74 Unknown 

30.857 2075 - Unpleasant, acid, wood, manure 65 Terpin hydrate 

32.727 2130 2198 Lactone, burnt, car tire, rubber 35 c 
2-Methoxy-4-vinylphenol  

(4-Vinylguaiacol) 

35.655 2204 2358 d Flower, salt water, hair removal wax 38 c Diethyl phthalate (DEP) 

39.374 2270 2569 Car tire, vanilla, soluble chocolate powder, burnt 53 Vanillin 

a Kovats retention index calculated from BP-20, 30 m column; b Kovats retention index reported in the 

Flavornet Database (Carbowax™ 20 m column); c Compounds with MF < 50% but relevant to the sample; d 

Kovats retention index calculated from DB-Wax 60 m column. 

The applied combination of sensory assessment and GC/MS analysis also seems to be a useful 

approach in the effort to eliminate unwanted odors from building products. In this regard, Knudsen et al. 

focused attention on VOCs and odor emissions derived from environmentally friendly products with 
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linseed oil (e.g., linoleum, wall paint) that influence the perceived air quality more negatively than 

similar synthetic products and for a longer period of time [204]. The primary goal of this work was to 

test if the odor of linseed oil influenced the odor of the final building product. Experimental data 

obtained indicated that the undesirable odor-active VOCs, having low odor thresholds, had probably 

originated from the degradation of the linseed oil, due to ozone-oxidation processes. As a result, the 

authors suggested the use of less odorous linseed oils and gave useful instruction to manufacturers to 

improve the acceptability of odorous emissions from these building products. Hence, once the 

objective perception of an odor, for example, by conducting a preliminary olfactometry analysis, is 

verified, the identification of the principal volatile compounds contributing to the perceived overall 

odor derived from the object of investigation can be obtained with the application of GC-O/MS. 

Another interesting application of GC-O/MS investigation has evidenced the link between  

the physical and chemical properties of oak wood with the chemical composition, olfactory and 

gustatory qualities of wines fermented and/or aged in oak barrels. The aim of a study carried out by  

Díaz-Maroto et al. was to investigate the sensory importance of oak wood VOCs in order to evaluate 

the contribution of wood-derived volatile compounds to the overall aroma of oak-aged wines [51]. 

This study demonstrated that oak wood treatments such as seasoning and toasting, as well as other 

factors like tree species and geographic location, can modify both the physical and chemical qualities 

of the wood, resulting in the characteristic aromas (fruity, fresh/green/grassy and floral) of wines. 

Moreover, trans-2-nonenal and decanal which can transmit unpleasant aromas to wine were detected in  

non-toasted oak woods suggesting that the toasting treatment of the wood could reduce the problem. 

Taking into account the aforementioned applications of GC-O/MS methodology for the 

optimization of production processes and the improvement of the quality and odor acceptability of a 

final product, it can be stated that GC-O/MS methodology has revealed potentials not associated to 

other analytical techniques. 

3.5. Medical Applications 

One of the more recent and promising applications of GC-O is in medical research where the study 

of volatile and odorous profiles of biological matrixes is mainly used to aid in the diagnoses of 

diseases and dysfunctions. In this area, interesting results have been obtained from the characterization 

of volatile and odorous profiles in human urine. Indeed, the study of urine could yield a wealth of 

physiological information and increase the understanding of metabolization and excretion processes of 

low molecular weight compounds originating from dietary or endogenous sources. Moreover, changes 

in individual profiles can be potential indicators and mechanistic clues of deviations or even 

misbalances in physiological conditions induced by diseases or hormonal changes. However, since the 

application of modern analytical tools in volatile analysis in urine has been limited, the diagnostic 

potential of urinary volatile fraction is not yet fully understood. 

Recently, Wagenstaller and Buettner [49] have applied GC-O methods to evaluate a combination of 

comprehensive chemo-analytical and human-sensory methods for the characterization of human urine 

odorants. A total of 14 odorants were detected in most of the untreated urine samples and 24 odorants 

in the glucuronidase-treated samples. Most of these potent odor compounds had not previously been 

detected in human urine when traditional methodologies were used. The study highlighted the high 
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analytical potential of the combined approach in elucidating the fate of volatile/odorous food 

constituents or substances originating from other origins (e.g., pharmaceuticals) and in characterizing 

the excretion of endogenous substances. This approach may very well pave the way for a better 

understanding of the diagnostic potentials of the odorous and volatile fraction in human urine. 

GC-O was also used to study the influence of thermal reaction and microbial transformation on the 

odor of human urine after being boiled or fermented [72]. The headspace of the samples was analyzed 

to isolate and identify the malodor-generating bacteria present in the urine of healthy people. The study 

showed that urine composition may certainly influence pH, bacterial composition and urine odors. 

Incubation of freshly collected urine revealed that the maximum concentration of total bacterial counts 

was reached after 4 days at room temperature (20–25 °C) and after 1 day at 37 °C. Indeed, most of the 

volatile compounds were generated during the first hours of incubation. Analytical comparisons 

between boiled and fermented urine revealed that the incubation of sterile urine with a bacterial 

mixture of E. fergusonii, Enterococcus faecalis, Citrobacter koseri, S. agalactiae and M. morganii 

produced a characteristic aged urine odor. 

Shirasu et al. identified dimethyl trisulfide (DMTS) as the main odorant responsible for  

severe malodors in some advanced cancer patients by performing gas chromatography-mass 

spectrometry-olfactometry analysis of volatiles from fungating cancer wounds [205]. The intensity and 

quality of the body odors emitted from the fungating wounds of three female patients with breast 

cancer and of two male patients with head and neck cancer were examined. In particular, sterile gauze 

pads were placed on the wounds for 6–12 h and headspace volatiles were extracted using SPME fiber 

and then analyzed with GC-O. The study produced useful data for the development of a strategy to 

prevent or reduce the DMTS odor which helped to improve the quality of life of the patients. 

In another study, the strong ―maple-syrup‖ odor which accompanies fenugreek ingestion was 

investigated by Mebazaa et al. [206]. The odor active compounds present in HS-SPME armpit sweat 

extracts collected before and during fenugreek ingestion periods were analyzed with GC-O and 

evaluated by a panel of eight experienced assessors. Collected data were treated using the frequency of 

detection methodology. Among the 44 compounds identified, 10 were detected by assessors before  

and during fenugreek ingestion such as a-pinene, 6-methyl-5-hepten-2-one, nonanal, 1-octen-3-ol,  

2-phenylethyl alcohol and benzenemethanol. Although these compounds had already been identified in 

human armpit sweat collected from different male and female subjects, this is the first study of their 

effect in the overall odor of human armpit sweat. 

4. Conclusions 

In recent years, researchers involved in the study of odorous substances have recognized the great 

potential of gas-chromatography/olfactometry in their work as it can simultaneously provide analytical 

and sensorial information about an odor mixture. However, the complexity of this matter has limited 

the application of GC-O whose first application dates back to 1964. The many factors linked with 

chromatographic parameters as well as the variables related to human perception and panel assessment 

represent a challenge for researchers. The goal is to find the best use of these components in order to 

improve both the practical experimental use of GC-O and the quality of the data obtained. 



Sensors 2013, 13 16787 

 

 

GC-O has been extensively employed in food aromas and fragrance studies. This application has 

been primarily industrial and driven by commercial desires to improve of the quality of products in 

order to make them more pleasing and desirable to consumers. In the recent years, researchers have 

also begun exploring GC-O applications in environmental, material and medical areas. One remarkable 

application of GC-O is in the medical field where the characterization of volatile and odorous  

profiles of biological matrixes could be useful for carrying out screening analyses of human diseases  

and dysfunctions. 

GC-O is becoming a reliable and reproducible method for characterizing the odor footprint of 

complex mixtures of chemicals of diverse origin. Noteworthy application improvements include the 

introduction of new and efficient interfaces between the GC and olfactometric port, the reduction of 

subjective error perception and anosmia by increasing the number of simultaneous panelists (up to 8), 

and the use of bi-dimensional GC techniques and sophisticated statistical programs for data processing 

and interpretation. In conclusion, GC-O may be considered one of the most valuable methods in odor 

research today. Future improvements in the effectiveness of GC-O application should include a 

standardization of the different approaches being used. This would be valuable in order to estimate  

the sensory contribution of a single odor active compound in a complex mixture as well as in the 

resulting aromagrams. 
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