
Sensors 2013, 13, 16281-16291; doi:10.3390/s131216281 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Defect Inspection of Flip Chip Solder Bumps Using  

an Ultrasonic Transducer 

Lei Su 
1
, Tielin Shi 

1
, Zhensong Xu 

1
, Xiangning Lu 

2
 and Guanglan Liao 

1,
* 

1
 State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University 

of Science and Technology, Wuhan 430074, China; E-Mails: lei_su2009@hust.edu.cn (L.S.); 

tlshi@hust.edu.cn (T.S.); zhensongxu@gmail.com (Z.X.) 
2 

Jiangsu Normal University, Xuzhou 221116, China; E-Mail: lxnam89@163.com 

* Author to whom correspondence should be addressed; E-Mail: guanglan.liao@hust.edu.cn;  

Tel.: +86-27-8779-3103; Fax: +86-27-8779-2413.  

Received: 30 August 2013; in revised form: 4 November 2013 / Accepted: 20 November 2013 /  

Published: 27 November 2013 

 

Abstract: Surface mount technology has spurred a rapid decrease in the size of electronic 

packages, where solder bump inspection of surface mount packages is crucial in the 

electronics manufacturing industry. In this study we demonstrate the feasibility of using a 

230 MHz ultrasonic transducer for nondestructive flip chip testing. The reflected time 

domain signal was captured when the transducer scanning the flip chip, and the image of 

the flip chip was generated by scanning acoustic microscopy. Normalized cross-correlation 

was used to locate the center of solder bumps for segmenting the flip chip image. Then five 

features were extracted from the signals and images. The support vector machine was 

adopted to process the five features for classification and recognition. The results show  

the feasibility of this approach with high recognition rate, proving that defect inspection of 

flip chip solder bumps using the ultrasonic transducer has high potential in 

microelectronics packaging. 
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1. Introduction 

Flip chip technology combined with solder bumps interconnections is applied widely in electronic 

device manufacturing. With the tendency of flip chips toward ultra-fine pitch and high density together 
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with the new requirements of packaging materials such as lead free and low-K, defects and failures 

happen more easily in flip chips [1–3], and the inspection becomes more critical and difficult. 

Traditional approaches for flip chip solder bump assessment include electrical testing, visual 

inspection, X-ray inspection, infrared thermography, and laser-ultrasound interferometer techniques. 

They are often insufficient due to their particular disadvantages. For instance, electrical testing inspects 

the solder bumps by measuring changes in electrical resistance and impedance [4]. Probes are 

contacted with the pre-designed test pads and a small electrical current passes through the chips to 

check each solder bump. This test is time consuming and expensive for complex boards, and any type 

of mechanical contact may make the defective bumps pass this testing [5]. Automated optical 

inspection (AOI) cannot detect solder bump defects hidden in the packaging directly, although it 

performs well in inspecting the solder bumps located on the edge of the die [6–8]. The laser ultrasound 

and interferometer techniques are developed to monitor the transient out-of-plane displacement 

response of the electronic package under pulsed laser excitation [9]. This is effective to detect solder 

bumps with large diameter and pitch. Infrared thermography is also used for solder bump  

inspection [10]. Chai et al. [11] utilized the hot spots in thermography to detect solder bumps when an 

electrical current passed through daisy chained chips. It is suitable for voids and partial cracks 

detection. X-ray radiography applies transmission of X-rays through the chips and substrates to 

perform defect inspection. The internal material has distinctly different X-ray absorbency [12], thus the 

variances in the shape and thickness of solder bumps can be revealed by X-ray images, and a fuzzy 

rule-based system was proposed to inspect the short circuits and defective solder bumps by use of the 

X-ray images [13]. However, the harmful radiation of X-ray equipment is unavoidable. Ultrasonic 

inspection is used extensively now [14], and scanning acoustic microscopy (SAM) has gained wide 

acceptance. It employs an ultrasonic source to scan across the sample surface, and uses the reflected 

waves to indicate the internal conditions of the components [15]. Semmens et al. utilized high 

frequency acoustic microscopy to analyze flip chip failures [16,17]. Zhang et al. [18,19] applied a 

sparse signal representation method to improve scanning acoustic microscopy and evaluate 

microelectronic packages. Normally the SAM results are dependent on the operators’ experience, 

which makes it unreliable for inspecting flip chips with fine pitch and high density because of the 

inevitable visual fatigue. 

Artificial neural network (ANN) is a system that consists of an interconnected group of artificial 

neurons that adaptively changes its structure through a training process [20,21]. It has predictive 

capability able to learn patterns from real data, together with some drawbacks such as slow 

convergence speed, poor stability and easily falling into local extrema. The support vector machine 

(SVM) learning method, which can overcome the problem of the local extremum existing in ANN and 

deal with small sample data with good generalization performance, has been promulgated as effective 

for pattern recognition [22]. Yun et al. [23] inspected solder bumps using a tiered circular illumination 

technique and SVM. Zhang et al. [24] carried on the image analysis based on the non-linear  

Mumford-Shah model and utilized the SVM for flip chip defect recognition.  

In this paper, ultrasonic inspection of flip chips using a 230 MHz transducer was carried out. The 

time-domain signals and the images of flip chip solder bumps were captured by SAM, normalized 

cross-correlation (NCC) was used to locate the center of solder bumps for segmenting the flip chip 
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images, and SVM was introduced for flip chip defects inspection. The results demonstrate the 

feasibility of this approach. 

2. Theoretical Background 

2.1. Ultrasonic Inspection 

Ultrasound is an elastic disturbance that propagates through materials (mainly solids and liquids) at 

frequencies above 20 kHz [25]. Figure 1 shows the schematic propagation of the ultrasound through 

materials with different defects. When an ultrasonic wave impinges upon a boundary between different 

materials with the acoustic impedances denoted by z2 and z1, some of the energy is reflected and the 

rest is transmitted. The reflection coefficient R and the transmission coefficient T are calculated by: 

  
         

        
 

     

     
 (1)  

  
           

        
 

   

     
 (2)  

In this work the reflection mode was adopted to detect the defects of the flip chip solder bumps. 

According to Equation (1), the higher the acoustic impedance mismatch, the stronger the signal reflects.  

Figure 1. Schematic propagation of the ultrasound through materials with different defects. 

 

2.2. Principle of NCC 

NCC is a fast and efficient method for many machine vision applications. It is used to compute the 

normalized cross-correlation of the template and the scene by the formula [26]: 

       
           

                      

            
    

 
                           

 (3)  

where f is the image, and the sum is over x, y under the window containing the feature t positioned at 

(u,v),    is the mean of the feature and   
    is the mean of f(x,y) in the region under the feature.  

The advantage of the NCC is that it is less sensitive to linear changes in the amplitude of 

illumination in the two compared images. Furthermore, the cross-correlation coefficient is confined in 

the range between −1 and 1, leading to easier setting of the threshold than the cross-correlation. 
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2.3. Principle of SVM 

SVM is an important learning method of statistical learning theory, powerful for pattern recognition 

based on the structural risk minimum principle, in which an optimal separating hyperplane (OSH) is 

defined to separate two classes. The vectors from the same class fall on the same side of the OSH. The 

distance from the closest vectors to the OSH is the maximum among all the separating hyperplanes [27]. 

These vectors are called support vectors. Figure 2a shows a linear SVM. The left side of the OSH is 

the class labeled by y = 1 and the other class on the right side is labeled by y = −1. Generally,  

non-linear problems exist in engineering practices, in which linear SVM is incapable of dealing with 

them. Then non-linear SVM is introduced to change the linearly inseparable problems into separable 

ones through mapping the input vectors into a high-dimensional feature space, and new OSH is 

constructed in the feature space as shown in Figure 2b. 

Figure 2. Geometric illustration of SVM. (a) Linear SVM; (b) Non-linear SVM. 

 

3. Flip Chip Defects Inspection  

3.1. Experimental Procedure 

The two flip chip samples obtained from Practical Component are daisy-chain flip chips  

(FA10-200 × 200, Dummy Components) and non-underfilled for testing. There are 317 solder bumps 

arranged in 18 rows and 18 columns at 254 µm pitch in each chip. To introduce the defects of missing 

solder bumps, some solder bumps are removed manually from the flip chips. Figure 3 shows the optical 

images of the flip chips before bonding captured using an imaging instrument (MC001-YR2010), where 

the white circles show the distribution of the missing solder bumps in the flip chips. 

The flip chips were bonded by use of a flexible sub-micron die bonder (FINEPLACER
®

 lambda). 

After that, an image acquisition system, SAM (Sonoscan D9500) as shown in Figure 4, was used to 

inspect the flip chips. The flip chip was fixed on the wafer stage and immersed in the de-ionized water 

which acted as the coupling medium for the acoustic wave propagation. The transducer transmitted 

signals and scanned the entire flip chip. Then the computer processed the received signals and 

generated the image of the flip chip. Fifty MHz, 100 MHz and 230 MHz transducers were used to scan 

the flip chips in our laboratory, and we obtained the optimal ultrasound signals and flip chip images 

under 230 MHz, because the resolution rises with the increase of the ultrasound frequency. The spot 

size of the 230 MHz transducer is 0.0318 mm.  
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Figure 3. The optical images of the flip chip specimens. 

 

Figure 4. The Scanning Acoustic Microscopy equipment (Sonoscan D9500). 

 

Figure 5. (a and b) SAM images of the flip chips I and II; (c) The typical time-domain 

signals of good and missing solder bumps. 
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Figure 5. Cont. 

 

The SAM images of the flip chips are shown in Figure 5a,b, where the darkness on the brim of the 

flip chip is caused by the edge effect, making it more difficult to diagnose the solder bumps located on 

the edges. Here edge bumps were marked by green dash-dotted squares. In order to display the 

ultrasound features, the typical time-domain signals of the good and missing solder bumps are 

extracted as shown in Figure 5c. It can be found that as the mismatch of the acoustic impedances under 

the good bumps is low, and both the die-bump interface and the bump-substrate interface have relatively 

obvious reflected signals. However, the mismatch under the missing bump is high, so that the die-bump 

interface has a strong reflected signal as the bump-substrate interface almost has no reflected signal. 

3.2. Feature Extraction and Pattern Recognition for Flip Chip Diagnosis 

The flip chip contains a large number of solder bumps, which correspond to the regions of interest 

(ROIs) in the SAM images. The ROIs were segmented and one of the good solder bump images was 

selected manually as the referenced bump image. NCC was employed to obtain the correlation 

coefficients matrix of the flip chip SAM images and the referenced solder bump image. The peak 

values in the matrix are located at the center of the solder bump images. Then we obtained all the 

solder bump images from the flip chip SAM images, got the corresponding time-domain signals, and 

extracted five features for further classification and recognition. 

Let S denotes the p  q matrix associated with the solder bump image and S(i,j) is the ij-th gray 

entry of S. The gray value Gdb of the solder-bump image Sdb in the die-bump interface is defined by: 

             
   

   
 (4)  

The gray value Gbs of the solder-bump image Sbs in the bump-substrate interface is defined by: 

             
   

   
 (5)  

The interfaces can be recognized based on the analysis of the time-domain signals. In order to 

calculate the maximum amplitude in each interface, we determine the time range of the die-bump 

interface from 0.146 s to 0.196 s and the time range of the bump-substrate interface from 0.225 s to 
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0.252 s, as shown in Figure 5c. The maximum amplitude Adb of the time-domain signals in the  

die-bump interface is defined by: 

       
             

     (6)  

The maximum amplitude Abs of the time-domain signals in the bump-substrate interface is defined by: 

       
             

     (7)  

We define contrast C by: 

  
   

   
 (8)  

Thus, we can represent every solder bump by a vector F as defined by:  

                      (9)  

Next, LIBSVM, developed by Chih-Jen Lin based on the SVM principle [28], is employed for 

missing bumps classification. Considering the non-linear effects in flip chip defect diagnosis, we 

choose the RBF kernel function and adopt cross-validation method to determine the parameters c and 

g. Other parameters are set to the default values.  

4. Results and Discussion 

The NCC output matrices of the SAM images and the referenced solder bump image are figured out 

as shown in Figure 6, where the peak values correspond to the centers of the solder bumps.  

Figure 6. The NCC output matrices of the referenced solder bump image to the SAM 

images of flip chips I (a) and II (b).  

 

Then we calculated the pitch of two adjacent solder bumps, segmented the solder bumps images, 

obtained 634 (317  2) solder bump images, and acquired the corresponding time-domain signals. Five 

features were extracted from each solder bump, and we obtained 634 feature data for further analysis. 

80 feature data selected randomly from chip-I were normalized for SVM training, and the other dataset 

(237 feature data from chip-I and 317 feature data from chip-II) were normalized and input to the 

trained SVM for classification and recognition. 

The classified results are shown in Figure 7 and listed in Table 1, where the solid black spots denote 

the defect-free solder bumps, the white spots denote the missing solder bumps, and the solder bumps 
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detected incorrectly are marked by red squares. Edge bumps are marked by blue dash-dotted squares. It 

can be found that there are 18 solder bumps detected incorrectly in total and the averaged error rate is 

2.84%. There are eight solder bumps detected incorrectly with the error rate 2.52% in the flip chip I 

and 10 solder bumps detected incorrectly with the error rate 3.15% in the flip chip II. These results are 

better than those reported in [21] (the corresponding error rates are 5.99% and 5.68%, and the averaged 

error rate is 5.84%), all reduced to about the half. Especially, the influences of the edge effect on the 

recognition become weaker, as only seven solder bumps were detected incorrectly in this work 

compared with 19 solder bumps detected incorrectly in [21]. Thus, the five characteristics extracted 

from the solder bump images and the time-domain signals are more reasonable and the classification 

method using SVM is more effective. 

Figure 7. The recognized results of the flip chips. 

 

Table 1. The classified results of the solder bumps in the flip chips. 

The Flip Chip The Solder Bumps Detected Incorrectly The Error Rate (%) 

I 8 2.52 

II 10 3.15 

Total 18 2.84 

5. Conclusions 

The robust learning method, SVM, is introduced for ultrasonic inspection of flip chip solder bumps. 

The diagnosis approach is performed in a sequence of three steps: flip chip SAM imaging and  

time-domain signal acquisition, feature extraction, and solder bump defect classification and 

recognition. Experimental investigations have been conducted. The flip chips were bonded by use of a 

flexible sub-micron die bonder. The SAM images of the flip chips and the time-domain signals were 

captured using a 230 MHz transducer. Then NCC was adopted to locate the center of every solder 

bump for segmenting the flip chip images, and five features were extracted. After that, the SVM was 

used for defects classification and recognition. Two flip chip specimens with 634 solder bumps were 

detected. There were eight solder bumps detected incorrectly with an error rate of 2.52% in flip chip I 
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and 10 solder bumps detected incorrectly with an error rate 3.15% in flip chip II. Eighteen solder 

bumps are detected incorrectly in total and the average error rate is 2.84%. The results demonstrate a 

high recognition rate for missing solder bump inspection. Compared with the work reported in  

reference [21], the error rates are reduced and the influences of the edge effect on the recognition 

become weak by using this method. Thus, this diagnosis approach is more effective and can be used 

for the solder bump inspection in high density packaging. Next, the SAM image capturing needs to be 

enhanced and more feature extraction methods need to be studied in order to decrease the error rate in 

classification and recognition.  
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