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Abstract: In this paper, we consider the problem of autonomous exploration of unknown
environments with single and multiple robots. This is a challenging task, with several
potential applications. We propose a simple yet effective approach that combines a
behavior-based navigation with an efficient data structure to store previously visited
regions. This allows robots to safely navigate, disperse and efficiently explore the
environment. A series of experiments performed using a realistic robotic simulator and a
real testbed scenario demonstrate that our technique effectively distributes the robots over
the environment and allows them to quickly accomplish their mission in large open spaces,

narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.
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1. Introduction

In recent years, the use of Multi-Robot Systems (MRS) has become popular for several application

domains such as exploration, surveillance, and even search and rescue. The main reason for using
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these MRS is that they are a convenient solution in terms of costs, performance, efficiency, reliability,
and reduced human exposure. Most of the time, robots are intended to cooperate so as to accomplish
tasks faster than a single robot, to include redundancy and thus robustness, and to compensate sensor
uncertainty by combining information [1].

However, the cooperation of MRS has involved additional state-of-the-art problems such as the
coordination to achieve efficient navigation while avoiding interferences, resource management and
information sharing so as to enhance cognition for task allocation and mapping, and suitable
communication systems [2]. Research has witnessed a large body of significant advances in the control
of single mobile robots, dramatically improving the feasibility and suitability of cooperative approaches,
turning the particular domain of efficient exploration of unknown environments a fundamental problem
in mobile robotics.

The main goal in robotic exploration is to minimize the overall time for covering an unknown
environment. It has been widely accepted that the key for efficient exploration is to carefully assign
robots to sequential targets until the environment is covered, the so-called next-best-view (NBV)
problem [3]. Typically, those targets are called frontiers, which are boundaries between open and
unknown space that are gathered from range sensors and sophisticated mapping techniques [4].

Allocating those targets among a pool of robots has been addressed from a range of
different deliberative perspectives, including economy-based negotiation [5-8], particular costs and
utilities [1,2,9-13], learning structures in the environment [11,14], and even by selecting the less
compromising targets in terms of sensor errors and communication ranges [15-18]. It is worth
mentioning that there are also few reactive exploration approaches that have worked by randomly
navigating or even wall-following [19,20], but are less efficient and easily compromised.

Furthermore, highly uncertain and unstructured environments hinder the possibilities for
implementing deliberative exploration algorithms, and compromises purely reactive techniques. In
addition, these environments make it hard for robots to even keep their footing, thus a good localization
and mapping becomes even a bigger challenge. For these cases, literature advises that with no specific
strategy or plan but with simple emergence of efficient local behaviors, complex global exploration can
be achieved [21]. The algorithm proposed herein is able to deal with this kind of environments.

In this paper, we present an algorithm for single and multi-robot efficient autonomous exploration.
Rather than using typical target assignment we focus on gathering new locations by enhancing reactive
solutions with a local spatial information memory. The used memory data structure allows for a reduced
search complexity of O(1), which combined with a Finite State Automata (FSA) allows us to demonstrate
that our technique effectively distributes the robots over the environment and allows them to quickly
accomplish their mission. This results in a hybrid approach capable of fast, simple and computational
efficient exploration. A series of simulated experiments were performed and analyzed, demonstrating
the successful exploration of a 200 m? area in about a minute with a team of three Pioneer-3DX robots
at moderate driving and steering speeds and equipped essentially with a laser scanner. Additionally,
successful results were demonstrated in real experiments with a team of two Jaguar V2 robots, also
equipped with laser scanners, in a 20 m? area geometrically similar to the simulation scenario. One of the

most interesting observations is that we achieved qualitatively similar navigation and robot distribution
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as in the literature but with a way simpler approach, using less computational power, and without any
negotiation or mapping technique, at the only cost of sufficient localization so as to handle 1 m? error.
This paper is structured as follows: first, autonomous exploration approaches are detailed in Section 2;
next we present our behaviors and FSA design in Section 3; Section 4 follows with the implemented
experiments and results; and finally, we present in Section 5 a summary of contributions and conclusions,

as well as our future directions.

2. Related Work

Many approaches have been proposed for exploring unknown environments with single and multiple
robots. A deep comparison on several autonomous exploration approaches has been reported in [22]
including their main pros and cons. In most of these, the essence is to allow the robots to autonomously
navigate to the best unexplored area. Area representation makes the main difference among different
techniques. Nevertheless, a popular basis is the frontier-based exploration algorithm introduced by
Yamauchi in [4].

Main advantages of frontier exploration reside in that there is no world structure required, and that
it is useful in cluttered environments and acceptable in large open spaces [23]. On the other hand, the
necessity for robust localization and mapping impacts directly on algorithm complexity and the need
for world representation. Basically, the exploration cycle requires to: gather sensor data, share/merge
evidence grids (maps), extract edges and match locations, allocate frontiers, and reliably navigate
towards the allocated frontier.

Concerning frontiers’ allocation, significant works have been proposed using market-based
techniques. In [5] a successful multi-robot exploration is achieved with a bidding process. Nevertheless,
the need for a central bid-evaluator agent is an undesired compromise. Moreover, in [7], sequences
of potential target locations for each robot are traded between the robots using single-item first-price
sealed-bid auctions. Other auction-based techniques have also been applied in [6]. Such methods are
likely to show similar performance to the most popular and efficient utilities approach.

The utilities approach was introduced by Burgard et al. in [9]. The essence is to compute a distance
cost towards each frontier and then update the utilities of neighboring frontiers according to greedy
assignments of the teammates. This work has been enhanced by using machine learning such as
clustering frontiers [11] and learning typical indoor environments [2,14] for more certain mapping and
better goal point assignment. The best work in terms of efficient exploration and algorithm complexity

reports an O(n?T) for greedy frontier allocation for n robots and T frontiers, and optimal allocation with

up to O( (Tfln)! ), without considering any additional processing [1].

On the other hand, some works have focused on determining costs that try to minimize the uncertainty
of the process. In [16] the idea is to keep the robots in line of sight so that they can help each other to
accurately localize while each one navigates in a round-robin process. If robots tend to go out of range,
then a rendezvous is scheduled. In [15], the goal is to assign targets that are estimated to reduce the
odometry error. Balch and Arkin in [19] propose an anchored random exploration such that every robot
remains inside communication range. Nevertheless, even when these works have similar results to the

utilities technique and have the advantage of improving the overall accuracy of the map, they have



Sensors 2012, 12 12775

the disadvantage of keeping the robots in close proximity, which can increase the exploration time by
preventing the robots from efficiently spreading.

Other works include [8,24] in which they leverage the work in [9] by including communication
limits in the cost function and allocating frontiers within a bidding process. Also, in [17], an
inside-communication technique demonstrates similar results to the work in [19]. Moreover, with the
same rendezvous idea of [16], researchers propose in [18] a role-based technique for allowing robots to
explore distant areas while communicating with a relay robot so as to return all attained knowledge to a
particular location.

The last approach worth to mention is the so-called multi-objective or multi-criteria exploration.
In this kind of exploration authors use multiple utility functions so as to allocate locations either
among single or multiple robots. In [13], authors focused on the development of strategies by using
a multi-criteria decision making process for the robot to decide where to go next. The main idea is
to determine the best location by taking into account several criteria such as the open area beyond the
target location, the probability of being able to communicate the gathered information once the target has
been reached, and the distance from the current position to the target location. Other examples of this
kind of exploration are presented in [10,12] in which authors define multiple strategies for exploration
in search and rescue missions. The main idea is to determine the best location by considering predefined
plans such as victims first or fire first according to the current scenario. Both ideas have demonstrated
interesting results, showing good performance and flexibility for defining multiple exploration strategies.
Nevertheless, in [13] it is difficult to define the appropriate weights for each included criteria; while
in [10,12] there is the necessity of well characterized scenarios so that predefined plans can apply.

As can be seen, every autonomous exploration approach has its pros and cons. More sophisticated
works try to coordinate robots such that they do not tend to move toward the same unknown area while
having a balanced target location assignment with less interferences between robots. Furthermore, recent
works tend to include communications as well as other strategies for better MRS functionality into the
target allocation process. Nevertheless, the reality is that most of these NBV-based approaches still fall
short of presenting an MRS that is reliable and efficient in exploring highly uncertain and unstructured
environments, robust to robot failures and sensor uncertainty, and effective in exploiting the benefits of
using a multi-robot platform.

Hence, the main contribution here is an algorithm that, without explicit target locations and
with a much simpler operations cycle, is able to do efficient exploration of unknown environments.
Furthermore, we observed territorial exploration (coverage) emergent behavior as a consequence of
our exploration approach. It is worth referring that we do not rely on any specific robot so that even
at robot failure, mission is not compromised. Additionally, our algorithm has been developed in a
service-oriented approach, thus leveraging code re-use, among other important advantages such as
the inherent capability of dynamic disconnection/connection for robots that leave the communication
ranges [25].
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3. Methodology

Having presented some relevant works, this section describes our particular approach. We focus
on the very basis of robotic exploration according to Yamauchi: “Given what you know about the
world, where should you move to gain as much new information as possible?” [4]. In this way, we
propose a behavior-based approach for multi-robot exploration that puts together the simplicity and good
performance of purely reactive control with some of the benefits of deliberative approaches, regarding
the ability of reasoning about the environment.

Besides the careful assignment of targets, we consider other relevant literature advices such as to avoid
travelling unnecessary long distances, doing redundant work, interfering with other teammates, wasting
time, and depending on individual robots [14]. Also, we consider essential that the robots keep track of
which areas of the environment have already been explored [1], concerning about the explicit need of
an adequate balance in computational cost, response time and coherence towards the goal. Moreover,
our solution addresses issues such as modularity, code reuse, integration and hardware abstraction for
which we implemented service-oriented robotics design. A complete description on its benefits can be
found at [25].

The proposed solution makes use of four different robotic behaviors and a resultant emergent
behavior. It is important to mention that according to pioneer works, one of the essential sensors for
an autonomous robot is a laser range finder [26]. This sensor and approximate 1-meter localization are
key in our behaviors development. For the simulated and real robots we use a laser sensor with a field of
view of 180° and 130° respectively, and a maximum distance of 2 m. In respect to robots’ localization,
we use the simulation engine to provide us with these values, while for real implementations we use
an external vision-based tracking device communicating each robot’s pose to a central station to which
robots were always able to communicate (direct communication between the robots was disabled). These
simplifies our tests by providing a minimal error in localization including a same reference frame for all
robots, while enabling us to focus in the particular advantages of our proposed solution. The description
of each behavior is presented below.

3.1. Avoid Obstacles

The first behavior is the Avoid Obstacles. This protective behavior considers 3 particular conditions
for maintaining the robot’s integrity. The first condition is to check for possible corners in order to
avoid getting stuck or spending unnecessary time there because of the avoiding the past effect. The
methodology for detecting the corners is to check for the distance measurements of 6 fixed laser points
for each side (left, right, front) and according to their values determine if there is a high probability of
being a corner. There are multiple cases considering corners: (1) if the corner has been detected at the
left, then robot must turn right with an equivalent steering speed according to the angle where the corner
has been detected; (2) if it has been detected at the right, then robot must turn left with an equivalent
steering speed according to the angle where the corner has been detected; and (3) if the corner has been
detected at the front, then robot must turn randomly to right or left with an equivalent steering speed
according to the distance towards the corner. The next condition is to keep a safe distance to obstacles,
steering away from them if it is still possible to avoid collision, or translating a fixed safe distance if
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obstacles are already too close. The third and final condition is to avoid teammates so as not to interfere
or collide with them. Most of the times this is done by steering away from the robot nearby, but other
times we found it useful to translate a fixed distance. It is worth to refer that the main reason for
differentiating between teammates and moving obstacles resides in that we can control a teammate so as
to make a more efficient avoidance. Pseudocode referring to these operations is presented in Algorithm 1.

Algorithm 1. Avoid Obstacles Pseudocode.

AvoidingObstacle Angle = 0;
Check the distance measurements of 18 different laser points (6 for left, 6 for front, and 6 for right)
that imply a high probability of CornerDetected either in front, left or right;

if CornerDetected then
AvoidingObstacle Angle = an orthogonal angle towards the detected corner side;

else
Find nearest obstacle location and distance within laser scanner data;

if Nearest Obstacle Distance < Aware of Obstacles Distance then

if Nearest Obstacle Distance is too close then
do a fixed backwards translation to preserve the robot’s integrity;

else
AvordingObstacle Angle = an orthogonal angle towards the nearest obstacle location;

end
else

if Any Kins’ Distance < Aware of Kin Distance then
With 30% chance, do a fixed translation to preserve the robot’s integrity;

With 70% chance, AvoidingObstacle Angle = an orthogonal angle towards the nearby
kin’s location;

else
Do nothing;

end
end
end
return AvoidingObstacle Angle;

3.2. Avoid Past

The second behavior is for gathering the newest locations: the Avoid Past. This kind of explorative
behavior was introduced by Balch and Arkin in [27] as a mechanism for avoiding local minima when
navigating towards a goal. It was proposed also for autonomous exploration, but it lead to a constant
conflict of getting stuck in corners, therefore showing the importance of anticipating and avoiding corners
in the previous behavior. Additionally, the algorithm required a static discrete environment grid which
must be known at hand, which is not possible for unknown environments. Furthermore, the complexity in
order to compute the vector so as to derive the updated potential field goes up to O(n?) for a supposed n x

n grid world. Thus, the higher the resolution of the world (smaller grid-cell size), the more computational
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power required. Nevertheless, it is from them and from the experience presented in works such as in [20]
that we considered the idea of enhancing reactivity with local spatial memory so as to produce our own
algorithm.

Our Avoid Past does not get the aforementioned problems. First of all, because of the simple
recognition of corners provided within the Avoid Obstacles, we never get stuck nor spend unnecessary
time there. Next, we are using a hash table data structure for storing the robot traversed locations (the
past). Basically, concerning the size of the used robots, we consider an implicit 1 m grid discretization
in which the actual robot position (x,y) is rounded. We then use a fixed number of digits, for = and v,
to create the string “zy” as a key to the hash table, which is queried and updated whenever the robot
visits that location. Thus, each location has a unique key, turning the hash table to be able to look
up for an element with complexity O(1), which is a property of this data structure. It is important to
mention that this discretization can accommodate imperfect localization within the grid resolution and
we do not require any a-priori knowledge of the environment. To set the robot direction, a steering
speed reaction is computed by evaluating the number of visits of the 3-front neighbor (z,y) locations in
the hash table. These 3 neighbors depend on the robot orientation according to 8 possible 45° heading
cases (ABC, BCD, CDE, DEF, EFG, FGH, GHA, HAB) shown in Figure 1. It is important to notice
that evaluating 3 neighbors without a hash table data structure will turn our location search complexity
into O(n) for n locations, where n is an increasing number as exploration goes by, thus the hash table
is very helpful. Additionally, we keep all operations with the 3 neighbors within IF-THEN conditional
checks leveraging simplicity and reduced computational cost. Pseudocode referring to these operations
is presented in Algorithm 2.

Figure 1. 8 possible 45° heading cases with 3 neighbor waypoints to evaluate so as to define
a CCW, CW or ZERO angular acceleration command. For example, if heading in the —45°
case, the neighbors to evaluate are B, C and D, as left, center and right, respectively.
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Algorithm 2. Avoid Past Pseudocode.

AvoidingPast Angle = 0;
Evaluate the neighbor waypoints according to current heading angle;

if Neighbor Waypoint at the Center is Free and Unvisited then
AvoidingPast Angle = 0;

else

if Neighbor Waypoint at the Left is Free and Unvisited then
Avoiding PastAngle = 45;

else

if Neighbor Waypoint at the Right is Free and Unvisited then
AvoidingPast Angle = —45;

else
AvoidingPast Angle = an angle between —115 and 115 according to visit counts

proportions of the left, center and right neighbor waypoints;
end
end
end
return AvoidingPast Angle;

3.3. Locate Open Area

The third behavior, named Locate Open Area, is composed of an algorithm for locating the largest
open area in which the robot’s width fits. It consists of a wandering rate that represents the frequency
at which the robot must locate the open area, which is basically the biggest surface without obstacles
being perceived by the laser scanner. So, if this behavior is triggered, the robot stops moving and turns
towards the open area to continue its navigation. This behavior represents the wandering factor of our
exploration algorithm and is very important for the obtained performance. For example, when the robot
enters a small room, it tends to be trapped within its past and the corners of the room. If this happens,
there is still the chance of locating the exit as the largest open area and escape from this situation in

order to continue exploring. Pseudocode referring to these operations is presented in Algorithm 3.

Algorithm 3. Locate Open Area Pseudocode.

Find the best heading as the middle laser point of a set of consecutive laser points that fit a safe
width for the robot to traverse, and have the biggest distance measurements;

if DistanceToBestHeading > SafeDistance then
Do a turning action towards the determined best heading;

else
Do nothing;

end
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3.4. Disperse

The next operation is our cooperative behavior called Disperse. This behavior is inspired by the work
of Matari¢ [28]. It activates just in the case two or more robots get into a predefined comfort zone. Thus,
for m robots near in a pool of n robots, where m < n, we call for simple conditional checks so as to
derive an appropriate dispersion action. It must be stated that this operation serves as the coordination
mechanism for efficiently spreading the robots as well as for avoiding teammates interference. Even
though it is not active at all times, if (and only if) it is triggered, a temporal O(m?) complexity is added
to the model, which is finally dropped when the m involved robots have dispersed. The frequency of
activation depends on the number of robots and the relative physical dimensions between robots and
the environment, which is important before deployment decisions. Actions concerning this behavior
include steering away from the nearest robot if m = 1, or steer away from the centroid of the group of
m > 1; then a move forward action is triggered until reaching out the defined near area or comfort zone.
It is important to clarify that this behavior firstly checks for any possible obstacle avoidance action,
and if such action exists the dispersion effect is then overridden until the robot’s integrity is ensured.
Pseudocode referring to these operations is presented in Algorithm 4.

3.5. Explore

Last, with a Finite State Automata (FSA) we achieve our Explore emergent behavior. In this
emergent behavior, we fuse the outputs of the triggered behaviors with different strategies (either
subsumption [29] or weighted summation [27]) according to the current state. In Figure 2 there
are 2 states conforming the FSA that results in coordinated autonomous exploration: Dispersing and
ReadyToExplore. Initially, assuming that robots are deployed together, the <if m robots near> condition
is triggered so that the initial state comes to be Dispersing. During this state, the Disperse and Avoid
Obstacles behaviors take control of the outputs. As can be appreciated in the Algorithm 4, the Avoid
Obstacles behavior overrides (subsumes) any action from the Disperse behavior. This means that if any
obstacle is detected, main dispersion actions are suspended. An important thing to mention is that for
this particular state, we observed that immediately stopping and turning towards the AvoidObstacleAngle
(or translating to safety as the Avoid Obstacles behavior commands) was more efficient in order to get

all robots dispersed, than by returning a desired angle as the behavior is implemented.

Figure 2. Implemented 2-state Finite State Automata for autonomous exploration.

Dispersing ReadyToExplore

v
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Algorithm 4. Disperse Pseudocode.

if Any Avoid Obstacles condition is triggered then
Do the avoiding obstacle turning or translating action immediately (do not return an

AvoirdObstacle Angle, but stop and turn the robot in-situ).;
//Doing this operation immediately and not implementing a fusion with the disperse behavior
resulted in a more efficient dispersion effect, this is why it is not treated as the avoid obstacles

behavior is implemented.

else
Determine the number of kins inside the Comfort Zone distance parameter;

if Number of Kins inside Comfort Zone == 0 then
return Status = ReadyToFExplore;

else
Status = Dispersing;

if Number of Kins inside Comfort Zone > I then
Determine the centroid of all robots’ poses;

if Distance to Centroid < Dead Zone then
Set DrivingSpeed equal to 1.5 x Max DrivingSpeed, and do a turning action to an

orthogonal angle towards centroid location;
else
Set DrivingSpeed equal to Max DrivingSpeed, and do a turning action to an

orthogonal angle towards centroid location;
end
else

if Distance to Kin < Dead Zone then
Set DrivingSpeed equal to 1.5 x Max DrivingSpeed, and do a turning action to an

orthogonal angle towards kin location;
else
Set DrivingSpeed equal to M ax DrivingSpeed, and do a turning action to an

orthogonal angle towards kin location;
end
end
end

end

Then, once all the robots have been dispersed, the <if m robots dispersed> condition is triggered so
that the new state comes to be the ReadyToExplore. In this state, two main actions can happen. First, if
the wandering rate is triggered, the Locate Open Area behavior is activated, subsuming any other action
out of turning towards the determined best heading if it is appropriate, or holding the current driving and
steering speeds, which means to do/change nothing (refer to Algorithm 3). Second, if the wandering
rate is not triggered, we fuse outputs from the Avoid Obstacles and Avoid Past behaviors in a weighted
summation. This summation requires for a careful balance between behaviors gains for which the
most important is to establish an appropriate AvoidPastGain < AvoidObstaclesGain relation [27].

In this way, with this simple 2-state FSA, we ensure that robots are constantly commanded to spread
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and explore the environment. Thus, it can be referred that this FSA constitutes the deliberative part in

our algorithm since it decides which behaviors are the best according to a given situation, so that the

combination of this with the behaviors’ outputs lead us into a hybrid solution such as the one presented

in [30]. The main difference is that we do not calculate any forces, potential fields, nor have any

sequential targets, thus reducing complexity and avoiding typical local minima problems. Pseudocode

referring to these operations is presented in Algorithm 5.

Algorithm 5. Explore Pseudocode.

if Status = Dispersing then
Disperse;
else

if Wandering Rate triggers then
LocateOpenArea;

else
Get the current AvoidingPast Angle and AvoidingObstacle Angle;

//This is to do smoother turning reactions with larger distances towards obstacles;

if Distance to Nearest Obstacle in Front < Aware of Obstacles Distance then
DrivingSpeedFactor =

DistancetoN earestObstacleinFront /| Awareo f Obstacle Distance;
else

DrivingSpeedFactor =0 ;
end

DrivingSpeed = DrivingGain * M axDrivingSpeed * (1 — DrivingSpeedFactor);
//Here is the fusion (weighted summation) for simultaneous obstacles and past avoidance;
SteeringSpeed = SteeringGain x ((Avoiding Past Angle x Avoid PastGain +

AvoidingObstacle Angle * AvoidObstaclesGain)/2);
Ensure driving and steering velocities are within max and min possible values;

Set the driving and steering velocities;
end

if m robots near then
Status = Dispersing

end

end

Finally, before showing the gathered results, it is important to look at Figure 3 so as to understand the

biggest difference between our proposed solution and the popular ones over literature. As can be seen,

we require quite fewer steps and computational power since merging the evidence grids, identifying

frontiers and allocating them are actions way more complex than our behavioral fusion.
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Figure 3. Comparison between: (a) popular literature exploration process and (b) our
proposed exploration. Clear steps and complexity reduction can be appreciated between
sensing and acting.

Sensin Merge Robots Determine
: Evidence Grids Frontiers
a)
Acting Assignments Particular Frontier
ready Allocation Method
Avoid Obstacle
Avoid Past
b) |Sensing Acting

Locate Open Area

Disperse

4. Experiments

This section describes the experimental details and assumptions, and presents the obtained results.
For the ease of understanding it is divided in simulation tests and real implementations for both single
and multi robot exploration.

4.1. Simulation

For testing purposes, we used a set of Pioneer-3DX robots in their simulated version for Microsoft
Robotics Studio, which is a highly realistic simulator as demonstrated in [31]. The simulator provided
us with 3D environments and a reliable physics engine, as well as robots’ poses. For better appreciation
of our results, we implemented a 200 m? 3D simulated environment qualitatively equivalent to the used
in Burgard’s work [1], one of the most relevant in recent literature. Also, additional environments are
included to demonstrate the robustness of the proposed solution across different scenarios such as large
open areas, cluttered environments, dead-end corridors, and rooms with minimum exits. Robots are
equipped with laser range scanners limited to 2 m and 180° view, and have a maximum driving speed
of 0.5 m/s. As for metrics, we used the percentage of explored area over time as well as a exploration
quality metric proposed to measure the balance of individual exploration within multiple robots [7], refer

to Table 1. Other than these, qualitative appreciation of the robots’ traversed paths is presented.
4.1.1. Single Robot Exploration

Since depending on the robots’ proximity our algorithm can either do or not do a dispersion, we
decided to test it for an individual robots first. These tests first considered only Avoid Obstacles
and Locate-Open-Area operations, known as Safe Wander, so as to evaluate the importance of the
wandering factor [19]. Figure 4 shows representative results for multiple runs using different wander
rates. Since we are plotting the percentage of exploration over time, the flat zones in the curves indicate
exploration redundancy (i.e., there was a period of time in which the robot did not reach unexplored
areas). Consequently, in these results, we want to minimize the flat zones in the graph so as to refer to a
minimum exploration redundancy, while gathering the highest percentage in the shortest time. It is worth

to mention that by safe wandering we can not ensure total exploration so we defined a fixed 3 min period
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to compare achieved explorations. We observed higher redundancy for 15% and 5% wandering rates
as presented in Figure 4(a,c), and better results for 10% wandering rate presented in Figure 4(b). This
10% was latter used in combination with Avoid Past to produce over 96% exploration of the simulated
area in 3 minutes as can be seen in Figure 4(d). This fusion enhances the wandering so as to ensure
total coverage. Statistical analysis from 10 runs is presented in Table 2 for validating repeatability,
while typical navigation using this method is presented in Figure 5 as a visual validation of qualitative
results. It is important to observe that given the size of the environment and the robot’s dimension, one
environment is characterized by open spaces and the other provides more cluttered paths. Nevertheless,
this very simple algorithm is able to produce reliable and efficient exploration such as more complex

counterparts over literature in either open spaces or cluttered environments.

Table 1. Metrics used in the experiments.

METRIC DESCRIPTION EXAMPLE

EXPLORATION (%) For single and multiple robots, measures the In Figure 12, an average
percent of gathered locations from the total of 100% Exploration was
I-meter grid discrete environment. With this achieved in 36 s.
metric we know the total explored area in a
given time and the speed of exploration.

EXPLORATION For multiple robots only, measures how much In Figure 14(b), two robots

QUALITY (%) of the total team’s exploration has been reached 100% Exploration
contributed by each teammate. With this metric with approximately 50%
we know our performance in terms of resource Exploration Quality each.
management and robot utilization.

Figure 4. Single robot exploration simulation results: (a) 15% wandering rate and flat
zones indicating high redundancy; (b) Better average results with less redundancy using 10%
wandering rate; (¢) 5% wandering rate shows little improvements and higher redundancy; (d)
Avoiding the past with 10% wandering rate, resulting in over 96% completion of a 200 m?

area exploration for every run using one robot.
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Figure 4. Cont.
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Table 2. Average and Standard Deviation for full exploration time in 10 runs using Avoid
Past + 10% wandering rate with 1 robot.

RUNS AVERAGE STD.DEVIATION
10 177.33 s 6.8s
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Figure S. Typical navigation for qualitative appreciation: (a) The environment based upon
Burgard’s work in [1]; (b) A second more cluttered environment. Snapshots are taken
from the top view and the traversed paths are drawn in red. For both scenarios the robot
efficiently traverses the complete area using the same algorithm. Black circle with D

indicates deployment point.

(a) b)

4.1.2. Multi-Robot Exploration

In the literature-based environment, we tested an MRS using 3 robots starting inside the predefined
comfort zone (near area) such as in typical robot deployment in unknown environments. First tests
considered only Disperse and Safe Wander, which are worth to mention because results sometimes show
quite efficient exploration but at other times cannot ensure full exploration. So, this combination may be
appropriate in cases where it is preferable to get an initial rough model of the environment and then focus
on improving potentially interesting areas with more specific detail (e.g., planetary exploration) [7].

Nevertheless, more efficient results for cases where guaranteed total coverage is necessary (e.g.,
surveillance and reconnaissance, land mine detection [32]) were achieved using our exploration
algorithm. In our first approach, we intended to be less dependent on communications so that robots
avoid their own past only. Figure 6 shows the typical results for a single run with the total exploration on
Figure 6(a) and exploration quality on Figure 6(b). We seek for the least flat zones in robots’ exploration
as well as a reduced team redundancy, which represented locations visited by two or more robots. We
can see that for every experiment, full exploration is achieved averaging a time reduction to about 40%
of the required time for single robot exploration in the same environment, and even to about 30% without
counting the dispersion time. This is highly coherent to what is appreciated in the exploration quality,
which showed a trend towards a perfect balance just after dispersion occurred, meaning that with 3 robots
we can almost explore 3 times faster. Additionally, team redundancy holds around 10%, representing a
good resource management. It must be clear that, because of the wandering factor, not every run gives
the same results. However, even when atypical cases occurred, such as when one robot is trapped at
dispersion, the team delays exploration while being redundant in their attempt to disperse, then develops
a very efficient full exploration in about 50 s after dispersion, which results in a perfectly balanced
exploration quality. Table 3 presents the statistical analysis from 10 runs so as to validate repeatability.
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Table 3. Average and Standard Deviation for full exploration time in 10 runs using Avoid

Past + 10% wandering rate with 3 robots.

RUNS AVERAGE STD. DEVIATION

10 74.88 s

53s

Figure 6. Autonomous exploration showing representative results in a single run for 3 robots

avoiding their own past. Full exploration is completed at almost 3 times faster than using

a single robot, and the exploration quality shows a balanced result meaning an efficient

resources (robots) management.
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The next approach consider avoiding also teammates’ past. For this case, we assumed that every robot

can communicate its location hash table concurrently during exploration, which, as we know, can be a

difficult assumption in real implementations. Even though we were expecting a natural reduction in team

redundancy, we observed a higher impact of interference and no improvements in redundancy. These

virtual paths to be avoided tend to trap the robots, generating higher individuals’ redundancy (flat zones)

and thus producing an imbalanced exploration quality, which resulted in larger times for full exploration

in typical cases, refer to Figures 7(a) and 7(b). In these experiments, atypical cases such as where robots
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got dispersed the best they can resulted in exploration where individuals have practically just their own
past to avoid, thus giving similar results to avoiding their own past only. Table 4 presents the statistical
analysis from 10 runs running this algorithm.

Figure 7. Autonomous exploration showing representative results in a single run for 3 robots
avoiding their own and teammates’ past. Results show more interference and imbalance at
exploration quality when compared to avoiding their own past only.
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Table 4. Average and Standard Deviation for full exploration time in 10 runs using Avoid
Kins Past + 10% wandering rate with 3 robots.

RUNS AVERAGE STD. DEVIATION
10 92.71s 4.06 s

Having observed best results by avoiding robots own past and a 10% wandering rate, more
experiments were developed. First, in Figure 8 is presented a visual qualitative comparison between
Burgard’s results and our results. A high similarity can be observed with way different algorithms.
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Additionally, an interesting observation to exploration results is shown in Figure 9: an emergent behavior
that results from running the exploration algorithm for a long time, which can be described as territorial
exploration or as in-zone coverage for surveillance tasks [18,32].

Figure 8. Qualitative appreciation: (a) Navigation results from Burgard’s work [1]; (b) Our
gathered results. Path is drawn in red, green and blue for each robot. High similarity with a

much simpler algorithm can be appreciated. Black circle with D indicates deployment point.

(a) (b)

Figure 9. The emergent in-zone coverage behavior for long time running the exploration
algorithm. Each color (red, green and blue) shows an area explored by a different robot.

Black circle with D indicates deployment point.

To test the efficacy of the algorithm in different scenarios, in Figure 10 we present the navigation paths
of the same autonomous exploration algorithm in different environments including open areas, cluttered
areas, dead-end corridors and rooms with minimum exits, all of them with inherent characteristics
for challenging efficient exploration. It can be observed that even in adverse scenarios, appropriate
autonomous exploration is always achieved. Particularly, we observed that when dealing with large
open areas such as in Figure 10(a), robots fulfill a quick overall exploration of the whole environment,
but we noticed that it takes more time to achieve an in-zone coverage compared with other scenarios.
We found that this could be enhanced by avoiding also kins’ past, but it will imply full dependence
on communications, which are highly compromised in large areas. Another example is shown in
Figure 10(b) considering cluttered environments, these situations demand for more coordination at the
dispersion process as well as difficulties for exploring close gaps. Still, it can be observed that robots
were successfully distributed and practically achieved full exploration. Next, Figure 10(c) presents an
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environment that is particularly characterised because of compromising typical potential field solutions
because of reaching local minima or even being trapped within avoiding the past and a dead-end corridor.
With this experiment we observed that it took more time for the robots to get dispersed and to escape the
dead-end corridors in order to explore the rooms, nevertheless full exploration was not compromised and
robots successfully navigated autonomously through the complete environment. The final environment
shown in Figure 10(d) presents a scenario where the robots were constantly getting inside rooms with
minimum exits, thus complicating the efficient dispersion and spreading through the environment. In
spite of that, it can be appreciated how the robots efficiently explore the complete environment and
achieve in-zone coverage. We observed that the most relevant action for successfully exploring this kind
of environments is the dispersion that robots keep on doing each time they face each other.

Figure 10. Multi-robot exploration simulation results, appropriate autonomous exploration
within different environments including: (a) Open Areas; (b) Cluttered Environments;
(¢) Dead-end Corridors; (d) Minimum Exits. Black circle with D indicates deployment
point.
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Summarizing, we have successfully demonstrated that our algorithm works for single and multi-robot
autonomous exploration. What is more, we have demonstrated that even being way simpler, it achieves
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similar results compared with complex solutions in literature. Finally, we have tested its robustness
against different scenarios and still get successful results. So, the next step is to demonstrate how it
works with real robots.

4.2. Real Implementation

Taking advantage from the fast track method towards real implementations described in [31] and from
an already working instance of a service-oriented architecture described in [25], experiments with real
robots were performed. For the ease of focusing on the performance of our proposed algorithm and
taking into account that even the more sophisticated localization algorithms are not good enough for the
intended real scenarios, we used an external vision-based device to communicate each robot’s pose to a
central station, with which robots were always able to communicate. As for the robots, we used a set
of two Dr. Robot’s Jaguar V2, which are equipped with a laser scanner limited to 2 m and 130° field of
view, and a skid-steering mobility platform equivalent to the differential driving of the simulated robots.
Maximum driving speed was set to 0.25 m/s, half of the limit in the simulations. The environment
consisted in an approximate 1:10 scaled version of the simulation scenario, so that by using the same
metrics (refer to Table 1) expected results were available at hand.

4.2.1. Single Robot Exploration

For single robot exploration experiments, a Jaguar V2 was wirelessly connected to an external
computer, which was receiving the localization data and human operator commands for starting the
autonomous operations (refer to [25] subsystem and system elements). The robot was deployed inside
the exploration maze and once the communications link was ready, it started exploring autonomously.
Figure 11 shows a screenshot of the robot in the environment, including the tracking and homography
markers for localization, and a typical autonomous navigation pattern resulting from our exploration
algorithm.

Figure 11. Deployment of a Jaguar V2 for single robot autonomous exploration experiments.

The maximum speed was set to half the speed of the simulation experiments and the environment

area was reduced to approximately 10%. So, the expected results for over 96% explored area must
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be around 36 s (2 x 180 s / 10 = 36 s, refer to Figure 4(d)). Figure 12 demonstrates coherent results
for 3 representative runs, validating our proposed exploration algorithm functionality for single robot
operations. There are very few flat zones (redundancy) and close results can be observed among multiple
runs, which demonstrates the robustness of the exploration algorithm.

Figure 12. Autonomous exploration showing representative results implementing the
exploration algorithm in one Jaguar V2. An average of 36 s for full exploration demonstrates
coherent operations considering simulation results.
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4.2.2. Multi-Robot Exploration

For the case of multiple robots, a second robot was included as an additional subsystem element as
detailed in [25]. Figure 13 shows a screenshot of the typical deployment used during the experiments
including the tracking and homography markers for localization, and an example of navigational pattern
when the robots meet along the exploration task.

This time, considering the average results from the single robot real experiments, the ideal expected
result when using two robots must be around half of the time so as to validate the algorithm functionality.
Figure 14(a) shows the results from a representative run including robot’s exploration and team’s
redundancy. It can be appreciated that full exploration is achieved almost at half of the time of using
only one robot and that redundancy stays very close to 10%. What is more, Figure 14(b) presents an
adequate balance in the exploration quality for each robot. Thus, these results demonstrate the validity
of our proposed algorithm when implemented in a team of multiple robots.
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Figure 13. Deployment of two Jaguar V2 robots for multi-robot autonomous exploration
experiments.

Figure 14. Autonomous exploration showing representative results for a single run using
2 robots avoiding their own past. An almost half of the time for full exploration when
compared to single robot runs demonstrates efficient resource management. The resultant
exploration quality shows the trend towards perfect balancing between the two robots.
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5. Conclusions and Future Work

We have presented an efficient robotic exploration method using single and multiple robots in 3D
simulated environments and in a real testbed scenario. Our approach achieves similar navigational
behavior such as most relevant papers in literature including [1,2,11,14,17]. Since there are no standard
metrics and benchmarks, it is a little bit difficult to quantitatively compare our approach with others. In
spite of that, we can conclude that our approach presented very good results with the advantages of using
less computational power, coordinating without any bidding/negotiation process, and without requiring
any sophisticated targeting/mapping technique. Furthermore, we differ from similar reactive approaches
as [19,20,27], in that we use a reduced complexity algorithm because of hash table data structures with
no a-priori knowledge of the environment and without calculating explicit resultant forces or potential
fields, thus avoiding any possibility for local minima problems [30,33]. Additionally, we need neither
static roles nor relay robots, so that we are free of leaving line-of-sight, and we are not depending on
every robot’s functionality for task completion. Moreover, we need no specific world structure and
no significant deliberation process. In short, our algorithm decreases computational complexity from
O(n?T) (n robots, T frontiers) in deliberative systems and O(n?) (nxn grid world) in reactive systems,
to O(1) when robots are dispersed and O(m?) whenever m robots need to disperse, and still achieves
efficient exploration times, which is largely due to the fact that all operations are composed of simple
conditional if-then checks and no complex calculations are being done.

Therefore, we have demonstrated that the essence for efficient exploration is to appropriately
remember the traversed locations so as to avoid being redundant and time-wasting. Also, by observing
efficient robot dispersion and the effect of avoiding teammates past, we demonstrated that interference
is a key issue to be avoided. Hence, our critical need is a reliable localization, within the 1 m grid
discretization, that can enable the robots to appropriately allocate spatial information. In this way,
perhaps a mixed strategy of our algorithm with a periodic target allocation method presented in [15]
can give interesting result. What is more, the presented exploration strategy could be extended with
additional behaviors that can result in a more flexible and multi-objective autonomous exploration
strategy as authors suggest in [13]. The challenge here resides in defining the appropriate weights for
each action so that the emergent behavior performs efficiently.

Now, we are intending to include the service-oriented property of dynamic discoverability so as
to enhance far reaches exploration [18] by allowing the individual robots to connect and disconnect
automatically according to communication ranges and dynamically defined rendezvous/aggregation
points as in [16]. With this approach, we expect individual robots to leave communications range for
a certain time and then autonomously come back to connection with more data from the far reaches
in the unknown environment. These following steps include testing in different real environments so
as to evaluate the algorithm’s robustness. Also, we are looking forward to dispose of the vision-based
localization external device so as to give more precise quantitative evaluations such as map quality/utility
as referred in [34,35], as well as for enabling the robots to navigate in larger environments. In fact, we
are considering the possibility for replicating major literature contributions so as to obtain quantitative
evaluations that can enable us to recognize the real benefits that our proposed strategy provides against
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the more complex coordination techniques. We believe that this can also promote metrics standardization
and lead to more comparable contributions.

Furthermore, the long-term goal is to contribute to search and rescue missions, where time constraints
generally require to privilege the amount of explored area over the map quality, for which we think there
is still a long way in terms of mobility, uncertainty and 3D locations management. Nevertheless, we
believe it is by providing these alternative approaches that we can have a good resource for metrics and
evaluation purposes that will lead us to address complex problems and effectively resolve them the way
they are.
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