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Abstract: This paper presents an improved iterative nonlinear calibration method in the 
gravitational field for both low-grade and high-grade triaxial accelerometers. This 
calibration method assumes the probability density function of a Gaussian distribution for 
the raw outputs of triaxial accelerometers. A nonlinear criterion function is derived as the 
maximum likelihood estimation for the calibration parameters and inclination vectors, 
which is solved by the iterative estimation. First, the calibration parameters, including the 
scale factors, misalignments, biases and squared coefficients are estimated by the linear 
least squares method according to the multi-position raw outputs of triaxial accelerometers 
and the initial inclination vectors. Second, the sequence quadric program method is utilized 
to solve the nonlinear constrained optimization to update the inclination vectors according 
to the estimated calibration parameters and raw outputs of the triaxial accelerometers.  
The initial inclination vectors are supplied by normalizing raw outputs of triaxial 
accelerometers at different positions without any a priori knowledge. To overcome the 
imperfections of models, the optimal observation scheme is designed according to some 
maximum sensitivity principle. Simulation and experiments show good estimation 
accuracy for calibration parameters and inclination vectors. 

Keywords: triaxial accelerometers; maximum likelihood estimation; iterative calibration; 
nonlinear; optimization 
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1. Introduction 

Triaxial accelerometers have been used extensively in the fields of inertial navigation and 
gravimetry [1,2]. For accurate specific force measurements, calibration must be implemented to 
estimate some parameters which transform the raw outputs of accelerometers into linear acceleration. 
The calibration parameters contain the scale factors, misalignments, biases, nonlinear coefficients, 
temperature drifts and so on. Traditionally, the calibration relies on some precise inertial test setup to 
estimate the parameters according to the input and output reference information [2]. However, such an 
expensive setup is not suitable for low-cost MEMS accelerometers. Meanwhile, nowadays the calibration 
setup cannot provide enough accurate reference information for high-grade accelerometers due to the 
unmatched accuracy improvement. Thus an efficient calibration for both low-grade and high-grade 
triaxial accelerometers needs to be designed without the requirement of precise orientation information. 

In recent years, a promising multi-position calibration for triaxial accelerometers in the gravitational 
field has been proposed as an effective solution to relax the precise orientation supplied by the  
setup [3–14]. These calibration methods have been implemented based on the fact that the norm of the 
raw outputs of triaxial accelerometers ideally is equal to the gravity value. In most cases, a cost 
function, namely, the squared error between the magnitude of input specific force and the magnitude of 
raw outputs has been utilized to estimate the calibration parameters [3–12]. Different estimation 
methods have been utilized to attack the optimization problem. In [3] a Newton’s iterative method was 
used to minimize the cost function to get the calibration parameters. In [4] the minimization of the cost 
function was numerically performed using the lsqnonlin function of the Matlab optimization toolbox. 
In [5] the downhill simplex optimization method was used to minimize the cost function. In [6–11] the 
authors utilized the iterative least square estimation method to implement the cost function’s 
minimization. In particular, the authors in [10] argued the calibration improvement and alignment 
properties of the proposed algorithm. Interestingly, three different calibration strategies for two  
three-axis sensors are investigated for in-the-field calibration purposes in [11]. In [12] a Kalman filter 
was used to estimate the calibration parameters. Thus we see that iterative methods are mostly utilized 
to solve the optimal functions and achieve high estimation accuracy, but the need for an initial rough 
estimate makes them inconvenient. In [13] a simple non-iteration method without any initial guess has 
been proposed but the misalignments of triaxial accelerometers are not considered. In [14] the authors 
summarized the minimization of the cost function as a 3-D ellipsoid-fitting problem and proposed a 
minimum-volume enclosing ellipsoid optimization to solve the calibration procedure issue. The 
authors in [15] proposed an improved multi-position calibration for solving the unknown parameters 
including scale factors, misalignments and biases. However, nonlinear errors have not been considered 
in the above calibration methods. The authors in [16] solve the calibration problems using the 
maximum likelihood estimation (MLE) method and validate the asymptotically unbiased property by 
comparing the variance of estimated parameters with the Cramer-Rao bound. However, some 
problems are still not settled for the proposed MLE method. Firstly, the initial calibration parameters 
for the two-step iterative estimation have not been solved. Secondly, the Euler angles representation of 
the inclination vector is not perfect for the singularity of roll angles as pitch angles approach to  
90 degrees or −90 degrees. Thirdly, the optimal observation scheme for the estimation is not discussed. 
Finally, the nonlinear errors of triaxial accelerometers are not considered. 
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In view of the above disadvantages, this paper proposes an improved iterative calibration method 
for both linear and nonlinear models of triaxial accelerometers. For the inclination vector estimation, 
the second-column elements of direction cosine matrix have been chosen instead of Euler angles to 
overcome the singularity. Besides, the rough inclination vector estimation at different positions is 
derived by normalizing the raw outputs of triaxial accelerometers without any a priori knowledge. 
Thus a modified two-step iterative estimation has been designed compared with the estimation flow  
in [16]. Meanwhile the sequence quadric program (SQP) method is utilized to attack the nonlinear 
constrained optimal problem in the iterative estimation. For the optimal observation, a maximum 
sensitivity of some constant output as a function of calibration parameters is designed to make the 
measurement accuracy of triaxial accelerometers consistent in the whole gravitational field.  

This paper is organized as follows: Section 2 describes the linear and nonlinear models of triaxial 
accelerometers. Section 3 presents the improved iterative calibration method, including the two-step 
iterative estimation flow and the method to derive initial inclination vectors. The optimal observation 
in the gravitational field has been designed according to the maximum sensitivity principle in Section 4. 
Section 5 reports the error analysis by Monte Carlo simulations. Section 6 describes the calibration 
results for triaxial quartz accelerometers. Meanwhile, the experiment results validate the measurement 
accuracy improvement by the nonlinear model over the linear model. Conclusions are drawn in Section 7. 

2. Modeling of Triaxial Accelerometers  

2.1. Definition of Related Parameters 

Some related definitions including the frames and parameters are listed in Table 1. 

Table 1. Definition of the related parameters. 

Parameters Explanation 
a-frame The non-orthogonal frame denoted by the accelerometers’ sensitivity axes 
b-frame The orthogonal reference frame related to triaxial accelerometers 
n-frame The orthogonal local level frame 

b
nC  The direction cosine matrix from n-frame to b-frame 
a

bT  The non-orthogonal transformation from b-frame to a-frame 
ip  The raw output of the i-axis accelerometer 
,a ik  The scale factor of the i-axis accelerometer 
, , , ,yx yy zx zy zzτ τ τ τ τ  The misalignments of triaxial accelerometers 

0,ip  The bias of the i-axis accelerometer 
2,ik  The squared coefficient of the i-axis accelerometer 

,a iv  The measurement noise of the i-axis accelerometer 
bf  The representation of the specific force in b-frame 
2,bf  The squared representation of the specific force in b-frame 

b
kl  The representation of unit gravity vector in b-frame at the k-th position 
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2.2. Linear and Nonlinear Models for the Triaxial Accelerometers 

The imperfect installation makes the sensitivity axes of triaxial accelerometers non-orthogonal. For 
specific force measurements, an orthogonal frame needs to be defined according to some reference 
information. Here, we define the b-frame so that ݔ௕ coincides with the sensitivity axis ݔ௔, ݕ௕ lines in 
the ݔ௔ݕ௔  plane and ݖ௕  constitutes a right-handed orthogonal frame with ݔ௕  and ݕ௕ . Thus, the linear 
model of triaxial accelerometers can be derived as follows [3–16]:  

0
a b

a b ak T= + +p f p v  (1) 

and the corresponding parameters in Equation (1) take the following forms:  

0, ,,

, 0 0, ,

, 0, ,

0 0 1 0 0
, 0 0 , 0

0 0

b
x x a xx a x

a b b
y a a y b yx yy y y a a y

ba z zx zy zzz z a zz

f p vp k
p k k T f p v

kp p vf

τ τ
τ τ τ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥= = = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

， ， ，p f p v (2) 

For simple analysis, the measurement noise ࢜௔  is assumed to be the zero-mean Gaussian white 
noise with the variance of  σଶ. But the linear model cannot always fit in the precise specific force 
measurement because of such errors as nonlinearities and temperature drifts. So a nonlinear model 
including the squared coefficients is derived below [17,18]: 

2,
0 2

a b b
a b ak T k= + + +p f p f v  (3) 

where: 

( ) ( ) ( ) ( )2 2 22,
2 2, 2, 2,,

T
b b b b

x y z x y zf f f k diag k k k⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎢ ⎥⎣ ⎦
f  (4) 

The calibration for both linear and nonlinear models is implemented to estimate the scale factors, 
misalignments, biases and squared coefficients. At the same time, the specific force of ࢌ௕ can also be 
estimated. Especially, the observation information including only the raw outputs of triaxial 
accelerometers and gravity value makes the calibration procedure difficult. An improved iterative 
calibration method will be described in the following section.  

3. The Improved Iterative Calibration for the Triaxial Accelerometers  

Firstly, an improved two-step iterative calibration algorithm is designed. Secondly, the initial value 
is supplied according to the raw outputs of triaxial accelerometers. 

3.1. Improved Two-Step Iterative Estimation Scheme 

In the gravitational field, the specific force vector is equal to the minus gravity vector. We define 
the local level frame, n-frame, so that ݔ௡ points to north, ݕ௡ points to upward, and  ݖ௡ points to east. 
Then the gravity vector in n-frame can be denoted as  ܏௡ ൌ ሾ0 െg 0ሿT . The relative attitude 
between b-frame and n-frame can be represented by the direction cosine matrix of  ܥ௡௕ . The Euler 
rotation sequence from n-frame to b-frame is defined as follows: first around y-axis with ߰, then 
around z-axis with ߠ, and finally around with x-axis with ߶, or equivalently:  
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cos cos sin sin cos
cos sin cos sin sin cos cos sin sin cos cos sin
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In the static case, the specific force vector satisfies the following relationship: 
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(6) 

Suppose we have obtained the raw outputs of triaxial accelerometers at m positions. Substituting 
Equation (3) into Equation (6), the observation equation at the k-th position is derived as: 

2
2, 1,1, 0, ,,

2 2
, 2, 0, 2, 2, ,

23,, 0, ,2, 3,

,
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0 0 0

0 0

0 0

k
x kx k x a xa x

k
y a y yx yy k y y k a y

k ka z zx zy zz z a zz z k

a x

k cp c p vk
p g k c p g k c v

ck p vp k c

k
g

τ τ
τ τ τ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

=

2
2, 1,1, 0, ,

2 2
, , 2, 0, 2, 2, ,

23,, , , 0, ,2, 3,

0

0 0
0

x kk x a x

a y yx a y yy k y y k a y

ka z zx a z zy a z zz z a zz k

axx

ayx ayy

azx azy azz

k cc p v

k k c p g k c v

ck k k p vk c

ck
g k k

k k k

τ τ
τ τ τ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2
2, 1,1, 0, ,

2 2
2, 0, 2, 2, ,

23, 0, ,2, 3,

x kk x a x

k y y k a y

k z a zz k

k cp v

c p g k c v

c p vk c

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 
(7) 

We can define two sets of vectors from Equation (7), i.e., the parameter vector and inclination 
vector, as below: 

0, 2, 0, 2, 0, 2,
T

axx x x ayx ayy y y azx azy azz z zk p k k k p k k k k p k⎡ ⎤= ⎣ ⎦x  (8) 

1,1 2,1 3,1 1,2 2,2 3,2 1, 2, 3,
T

m m mc c c c c c c c c⎡ ⎤= ⎣ ⎦y  (9) 

Thus the nonlinear model of triaxial accelerometers at the k-th position can be represented as:  

( ),k k k a= +p x y vμ  (10) 

where  
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( )

2 2
1, 0, 2, 1,1,

2, 2 2
2, 0 2 1, 2, 0, 2, 2,

2 2
3, 1, 2, 3, 0, 2, 3,

,
axx k x x kk

a b n b
k k k a b n ayx k ayy k y y k
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μ
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μ x y f p f  (11) 

Then for m sets of positions, we have: 

( ) ( ) ( ) ( )1 2 1 1 2 2, , , , ,
T TT T T

m m m⎡ ⎤= = ⎡ ⎤⎣ ⎦⎣ ⎦p p p p x y x y x y x yμ μ μ μ  (12) 

For the zero-mean Gaussian white noise, the raw output of p is subjected to the Gaussian distribution. 
Thus the following nonlinear least square optimal function can be derived by the maximum likelihood 
estimation method [16]: 

( ) ( ) ( ) 2

1

ˆ ˆ arg min arg min ,
m

k k k
k

J
=

= = ∑x, y p, x, y p x y− μ  (13) 

Considering the nonlinear objection function in Equation (13), a two-step separation estimation 
method can be utilized below, as described below. 

3.1.1. Estimation of the Parameter Vector 

Given the inclination vector ݕො, the parameter vector x is estimated by the following optimal solution: 

( ) ( ) 2

1

ˆ ˆ ˆargmin argmin ,
m

k k k
k

J
=

= ∑x = p, x, y p x y− μ  (14) 

and the linear observation function can be easily derived from Equation (14) as follows [19,20]:  

2 2
1, 1,

2 2
1, 2, 2,

2 2
1, 2, 3, 3,

1 0 0 0 0 0 0 0 0 0
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F pgc gc g c

gc gc gc g c p
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⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

y x = x p =  (15) 

Thus the parameter vector can be easily estimated according to the multi-position observation. 

3.1.2. Estimation of the Combined Inclination Vector  

Given the parameter vector ݔො , the combined inclination vector y is estimated by solving the 
following optimal function: 

( ) ( ) 2

1

ˆ ˆ ˆargmin argmin ,
m

k k k
k

J
=

= ∑y = p, x, y p x y− μ  (16) 

As noises at different positions are independent, the solution of combined inclination vector is 
identical to solving the individual inclination vector. Utilizing the above estimated parameter vector, 
we can get the following observation equation at the k-th position: 
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2
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+ + =

 (17) 

Obviously, the above constrained problem is a nonlinear constrained estimation, which can be 
effectively solved by the sequence quadratic program (SQP) method [21]. Firstly, the standard 
constrained optimal presentation can be derived from Equation (17) as:  

( ) ( ) ( )
( )
( )

2 22 2 2 2
1, 0, 2, 1, 1, 2, 0, 2, 2,

22 2
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The Lagrange function can be constructed from Equation (18) below: 

( ) ( ) ( ),k k k k kL c u f c u h c= +  (19) 

Thus the Karush-Kuhn-Tucker (KKT) condition equation is derived as: 
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The first KKT equation in Equation (20) means ܮ׏ሺܿ௞, ௞ሻݑ ൌ 0 , which can be solved by the 
following Newton iterative method:  
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and the correction quantity of ܿߪ௞  and ݑߪ௞  in Equation (21) is the solution of the following linear 
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The corresponding parameters in Equation (22) can be denoted as: 
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Additionally, the initial Lagrange multiplier of ݑ௞,଴  can be chosen as a large integer such as 1,000. 

3.1.3. Flow of Two-Step Iterative Estimation 

Consequently, the flow of two-step iterative estimation can be described in Figure 1 below: 

Figure 1. Flow of the two-step iterative estimation. 
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The two-step iterative estimation method can also be used to estimate the parameters of the linear 
model of triaxial accelerometers. 

3.2. Initial Values Selection of Two-Step Iterative Estimation 

Refering to Figure 1, the initial values for the combined inclination vector in the two-step iterative 
estimation must be solved. Because the misalignments between b-frame and a-frame are small, the raw 
outputs of accelerometers in the gravitational field contain the rough inclination vector information. 
For example, the x-axis accelerometer attains the maximum raw output when the x-axis points upward, 
while the other two accelerometers approach the zero-value raw output. The raw output information 
coincides with the input specific force. The norm of raw outputs of triaxial accelerometers in the 
gravitational field is bounded by some lower bound and some upper bound. Thus an initial estimated 
inclination vector at the k-th position can be given as:  

1,

2,

3,

Tk k kk
x y zb a

k k k k Tk k k
x y zk

c
p p p

c
p p pc

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎣ ⎦= ≈ =⎢ ⎥
⎡ ⎤⎢ ⎥
⎣ ⎦⎣ ⎦

y = l l  (26) 

This initial value enables the two-step iterative algorithm and proves to be a very good candidate.  
It makes the parameters converge to the true values without exception in our simulations  
and experiments. 

4. Scheme of Optimal Observations 

Insufficient observations may degrade the calibration parameter accuracy. The optimal observation 
for estimating the calibration parameters should be analyzed. The fact that the norm of input specific 
force in the static case equals to the gravity value is a key to analyze the optimal observation scheme. 
As the sensitivity of the gravity value with respect to the calibration parameters depends on the 
observation positions, the maximum sensitivity principle can be utilized to get the optimal observation 
scheme, as done in [15]. According to Equations (3) and (6), the observation equation can be derived 
as follows: 
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 (27) 

Expanding Equation (27) results in the following equation:  
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The operator of mathematical expectation can be implemented on both sides of Equation (28)  
as below: 
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The symbol of  ̂݌௔,௜  in Equation (29) denotes the expectation of  ݌௔,௜  and Δ denotes the sum of 
measurement noise variance, i.e., ∆ൌ ஢మ௞ೌೣೣమ ൅ ஢మ௞ೌ೤೤మ ൅ ஢మ௞ೌ೥೥మ .  

Before the sensitivity analysis, the projection of the gravity vector in b-frame can be derived from 
Equation (6) as below: 
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 (30) 

According to Equations (29) and (30), we can get the sensitivity functions as shown in Appendix. 
By solving the maximum of the sensitivity functions, the optimal attitude angles can be obtained 
respectively as shown in Table 2. 

Table 2. The optimal observations for estimating calibration parameters. 
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In general, the optimal observations of the above 18 positions can be utilized to estimate the 
calibration parameters of triaxial accelerometers. 

5. Simulation and Data Analysis 

In the simulation settings, we assume that the measurement noise of accelerometers is 10 µg/√Hz 
(1σ). The raw outputs of triaxial accelerometers (sampled at 100 Hz) are collected for 1 minute at each 
position. To diminish the measurement noise, the averaged raw output at each position is utilized to 
estimate the calibration parameters and inclination vectors. A set of calibrated results is shown in 
Table 3, as compared with the true calibration parameters. It shows that, the calibration error are less 
than 1 ppm for scale factors, less than 0.2 arc-seconds for misalignments, less than 2 µg for biases and 
less than 3 × 10−6 g/g2 for squared coefficients. Meanwhile, the estimation error of inclination vector is 
less than 1 arc-sec for 18 positions and the residual gravity error is less than 1.5 µg as shown in  
Figure 2(a,b), respectively. 

Table 3. A set of simulation results for triaxial accelerometers. 

 
True parameters

(pulse/m/s2) 
Calibrated parameters 

(pulse/m/s2) 
Error  
(ppm) 

Scale factors 

,a xk  4,800 4,799.9992 −0.1601 
,a yk  4,900 4,899.9987 −0.2701 
,a zk  5,000 5,000.0051 1.0061 

 
True parameters 

(rad) 
Calibrated parameters  

(rad) 
Error 

(arc-sec) 

Misalignments 

yxτ  1.7453 × 10−4 1.7443 × 10−4 −0.0215 
zxτ  3.0229 × 10−4 3.0161 × 10−4 −0.1426 
zyτ  1.7453 × 10−4 1.7534 × 10−4 0.1672 
yyτ  0.99999998 0.99999998 3.7569 × 10−6

zzτ  0.99999993 0.99999994 1.3787 × 10−5

 
True parameters 

(m/s2) 
Calibrated parameters 

(m/s2) 
Error  
 (܏ૄ)

Biases 

0,xp  0.01 1.0016 × 10−2 1.6087 
0, yp  0.02 2.0002 × 10−2 0.3784 
0,zp  0.03 3.0007 × 10−2 1.4047 

 
True parameters 

(g/g2) 
Calibrated parameters 

(g/g2) 
Error 
(g/g2) 

Squared coefficients 

2,xk  1.0 × 10−5 1.0614 × 10−5 6.1459 × 10−7

2, yk  2.0 × 10−5 2.2634 × 10−5 2.6347 × 10−6

2,xk  3.0 × 10−5 3.0298 × 10−5 2.9839 × 10−7

The error distribution of calibration parameters in 500 Monte Carlo simulations are shown in  
Figure 3(a–e), associated with the standard deviation of inclination vector estimation error in  
Figure 3(f). The statistic errors of the calibration parameters are shown in Table 4.  
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Figure 2. (a) The inclination vector estimation error; (b) The residual gravity error. 

(a) (b) 

Figure 3. Error distributions: (a) scale factor errors. (b) the first set of misalignment errors. 
(c) the second set of misalignment errors. (d) bias errors. (e) squared coefficient errors.  
(f) inclination vector estimation errors. 
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Figure 3. Cont. 

(e) (f) 

Table 4. Calibration results of 500 Monte Carlo simulations for triaxial accelerometers. 

 Minimum Maximum Mean Median Deviation 

Scale factor errors 
(ppm) 

,a xk  −2.273 1.924 0.007 −0.029 0.654 
,a yk  −1.896 1.644 −0.003 −0.022 0.647 
,a zk  −2.068 2.641 0.005 −0.001 0.709 

Misalignment 
errors (arc-sec) 

yxτ  −0.919 0.843 −0.015 −0.008 0.269 
zxτ  −0.736 0.889 −0.021 −0.029 0.257 
zyτ  -0.955 0.8127 −0.009 0.004 0.264 
yyτ  −1.488 × 10−4 1.584 × 10−4 2.39 × 10−6 1.41 × 10−6 4.698 × 10−5 
zzτ  −2.302 × 10−4 2.658 × 10−4 7.29 × 10−6 6.657 × 10−6 8.842 × 10−5 

Bias errors 
 (܏ૄ)

0,xp −4.754 5.063 −0.021 −0.108 1.631 
0, yp −4.295 4.097 0.017 0.014 1.576 
0,zp −5.323 4.375 −0.318 −0.074 1.633 

Squared 
coefficient errors  
(g/g2) 

2,xk  −7.555 × 10−6 6.303 × 10−6 6.924 × 10−8 2.035 × 10−7 2.312 × 10−6 
2, yk  −6.057 × 10−6 6.938 × 10−6 −2.529 × 10−9 5.979 × 10−8 2.208 × 10−6 
2,xk  −6.185 × 10−6 8.245 × 10−6 2.043 × 10−7 2.079 × 10−7 2.271 × 10−6 

The standard deviation for scale factor errors are less than 1 ppm, less than 0.3 arc-seconds for 
misalignment errors, less than 2 µg for bias errors and less than 3 × 10−6 g/g2 for squared coefficient 
errors. Meanwhile the standard deviation of inclination vector estimation error is less than 1 arc-sec for 
the optimal 18 observation positions.  

6. Experiments and Data Analysis 

The calibration experiments are implemented for the triaxial quartz accelerometers with the noise of 
10 µg/√Hz. A low-grade two-axis turntable with about 2 arc-minutes (1σ) is utilized to supply the 
approximately optimal 18-position static observation which also avoids the lever arms problem. 
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However, the orientation information of the turntable is not used for estimation. The raw outputs of 
triaxial accelerometers are collected for 1 minute at each position with the sample frequency of 100 Hz. 
The averaged raw output at each position is utilized for the iterative estimation. The calibration 
procedure is implemented for three groups for comparison purpose. An experiment snapshot is given 
in Figure 4. 

Figure 4. The experimental conditions for the calibration of triaxial accelerometers. 

 

Table 5. Three groups of calibration results for triaxial accelerometers. 

 #1 (pulse/m/s2) #2 (pulse/m/s2) #3 (pulse/m/s2) Deviation (ppm) 

Scale factors 

,a xk  5400.4641 5400.4518 5400.4338 2.8218 
,a yk  5233.0673 5233.0463 5233.0383 2.8621 
,a zk  5565.1729 5565.1577 5565.1492 2.1575 

 #1 (arc-sec) #2 (arc-sec) #3 (arc-sec) Deviation (arc-sec) 

Misalignments 

yxτ  −57.4562 −57.5347 −57.5613 0.0546 
zxτ  1.8155 1.7753 1.7188 0.0486 
zyτ  −9.0441 −9.0669 −9.1034 0.0299 
yyτ  206264.7982 206264.7982 206264.7982 0 
zzτ  206264.8061 206264.8061 206264.8061 0 

 (܏ૄ) Deviation (܏ૄ) 3# (܏ૄ) 2# (܏ૄ) #1 

Biases 

0,xp  −19.9151 −18.5515 −19.2154 0.6819 
0, yp  1384.2615 1386.5858 1387.6277 1.7233 
0,zp  655.1133 656.8854 657.6365 1.2956 

 #1 (g/g2) #2 (g/g2) #3 (g/g2) Deviation (g/g2) 

Squared 
coefficients 

2,xk  2.9523 × 10−6 8.5401 × 10−7 1.0946 × 10−6 1.1483 × 10−6 
2, yk  −2.2722 × 10−6 −4.5485 × 10−6 −4.7544 × 10−6 1.3775 × 10−6 
2,zk  −3.3496 × 10−5 −3.5066 × 10−5 −3.6377 × 10−5 1.4424 × 10−6 
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Three groups of calibration results for the same triaxial quartz accelerometers are shown in Table 5. 
The standard deviation of scale factor are less than 3 ppm, less than 0.1 arc-seconds for misalignments, 
less than 2 µg for biases and less than 2 × 10−6 g/g2 for squared coefficients. Obviously, the squared 
coefficient of z-accelerometer is larger than the other two accelerometers by one order of magnitude, 
so the squared coefficient of the z-accelerometer has more effect on the measurement accuracy of 
gravity value compared with the noise variance. 

Figure 5. (a) The standard deviation of inclination vector estimation error; (b) The 
measurements for estimation and verification; (c) The estimation error and verification 
error; (d) Error comparison of linear and nonlinear models of triaxial accelerometers. 

(a) (b) 

(c) (d) 

Meanwhile, the standard deviation of inclination vector estimation for 18 positions is less than  
1 arc-second, as shown in Figure 5(a). To verify the measurement accuracy of triaxial accelerometers 
in the total gravity space, the positions for estimation and additional 48 positions for verification are 
respectively described in Figure 5(b) and the estimation and verification errors are shown in  
Figure 5(c). The standard deviation of estimated gravity error is 5.83 µg comparing with 5.24 µg for 
the verified gravity error. These two equivalent gravity errors validate the effectiveness of the chosen 
optimal 18-position observation. Thus the nonlinear model of triaxial accelerometers indicates enough 
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accurate specific force measurement in the gravitational field. Besides, the calibration parameters of 
linear model are also estimated by the proposed two-step iterative method. The error comparison of 
linear and nonlinear models is shown in Figure 5(d). The standard deviation of estimation error by the 
linear model is 7.74 µg similar with 7.08 µg as the verified error. Consequently, the nonlinear model of 
triaxial accelerometers has higher accuracy than the linear model.  

7. Conclusions 

Laboratory calibration of triaxial accelerometers is a necessary step for high-accuracy specific force 
measurements. This paper proposes an improved iterative estimation method to derive the scale factors, 
misalignments, biases and squared coefficients associated with the inclination vectors at different 
positions. Additionally, no orientation information is required for the calibration. Thus the proposed 
calibration method is suitable for both low-grade and high-grade triaxial accelerometers. The main 
contributions of this paper can be summarized as follows: 

(1) Elements of direction cosine matrix are utilized for estimation instead of Euler angles to avoid 
the inclination vector computation singularities. The nonlinear errors of triaxial accelerometers 
are also estimated. 

(2) The initial inclination vectors are derived by normalizing raw outputs of triaxial accelerometers 
without any a priori information.  

(3) The optimal observation scheme is designed according to the maximum sensitivity principle to 
overcome the imperfections of models. 

Simulation results illustrate the sufficient estimation accuracy of parameters and inclination vectors. 
The experiments have validated the effectiveness of optimal 18-position scheme by error comparison 
at estimated positions and verified positions. Comparison of the residual gravity error also proves that 
the measurement accuracy can be improved with the nonlinear model of triaxial quartz accelerometers 
with respect to the linear model case. 
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Appendix  

The sensitivity functions can be derived from Equations (29) and (30) below: 

( )
( ) ( )

22
2, 0, 2, 2 2

3

ˆˆ 2 22 sin

b
a x x x x

b
x

axx axx axxaxx

p p k f
L gf

k k kk
θ

⎛ ⎞− −⎜ ⎟∂ ⎝ ⎠= − = − = −
∂

 (A-1) 

( )2
, 0, 2,

2
,0

ˆˆ 2 22 sin
b

a x x x x b
x

x axx axxaxx

p p k fL gf
p k kk

θ
− −∂ = − = − = −

∂
 (A-2)

( )
( ) ( )

22
2, 0, 2, 2 2

3

ˆˆ 2 22 cos cos

b b
a y y ayx x y y

b
y

ayy ayy ayyayy

p p k f k f
L gf

k k kk
θ φ

⎛ ⎞− − −⎜ ⎟∂ ⎝ ⎠= − = − = −
∂

 (A-3)

( )2
, 0, 2,

2
,0

ˆˆ 2 22 cos cos
b b

a y y ayx x y y b
y

y ayy ayyayy

p p k f k fL gf
p k kk

θ φ
− − −∂ = − = − = −

∂
 (A-4)

( )2
2, 0, 2,

2

ˆˆ 22 sin 2 cos
b b

a y y ayx x y yb b b
x x y

ayx ayy ayyayy

p p k f k fL gf f f
k k kk

θ φ
− − −∂ = − = − = −

∂
 (A-5)

( )
( ) ( )

22
2, 0, 2, 2 2

3

ˆˆ 2 22 cos sin

b b b
a z z azx x azy y z z

b
z

azz azz azzazz

p p k f k f k f
L gf

k k kk
θ φ

⎛ ⎞− − − −⎜ ⎟∂ ⎝ ⎠= − = − = −
∂

 (A-6)

( )2
2, 0, 2,

2

ˆˆ 22 sin 2 sin
b b b

a z z azx x azy y z zb b b
x x z

azx azz azzazz

p p k f k f k fL gf f f
k k kk

θ φ
− − − −∂ = − = − =

∂
 (A-7)

( ) ( )
2

2, 0, 2, 2
2

ˆˆ 22 cos sin 2
b b b

a z z azx x azy y z zb b b
y y z

azy azz azzazz

p p k f k f k fL gf f f
k k kk

θ φ
− − − −∂ = − = − =

∂
 (A-8)

( )2
, 0, 2,

2
,0

ˆˆ 2 22 cos sin
b b b

a z z azx x azy y z z b
z

z azz azzazz

p p k f k f k fL f
p k kk

θ φ
− − − −∂ = − = − =

∂
 (A-9)

( ) ( ) ( ) ( )
2

2 3, 0, 2, 3
2

2,

ˆˆ 2 22 sin
b

a x x x xb b
x x

x axx axxaxx

p p k fL f f
k k kk

θ
− −∂ = − = − = −

∂
 (A-10)



Sensors 2012, 12 8175 
 

( ) ( ) ( ) ( )
2

2 3, 0, 2, 3
2

2,

ˆˆ 2 22 cos cos
b b

a y y ayx x y yb b
y y

y ayy ayyayy

p p k f k fL f f
k k kk

θ φ
− − −∂ = − = − = −

∂
 (A-11)

( ) ( ) ( ) ( )
2

2 3, 0, 2, 3
2

2,

ˆˆ 2 22 cos sin
b b b

a z z azx x azy y z zb b
z z

z azz azzazz

p p k f k f k fL f f
k k kk

θ φ
− − − −∂ = − = − =

∂
 (A-12)

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/).  


