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Abstract: Zoom tracking is an important function in video surveillance, particularly in 
traffic management and security monitoring. It involves keeping an object of interest in 
focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom 
and focus motors in lenses following the so-called “trace curve”, which shows the in-focus 
motor positions versus the zoom motor positions for a specific object distance. The main 
task of a zoom tracking approach is to accurately estimate the trace curve for the specified 
object. Because a proportional integral derivative (PID) controller has historically been 
considered to be the best controller in the absence of knowledge of the underlying process 
and its high-quality performance in motor control, in this paper, we propose a novel 
feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and 
PID feedback controller. The performance of this approach is compared with existing 
zoom tracking methods in digital video surveillance. The real-time implementation results 
obtained on an actual digital video platform indicate that the developed FZT approach not 
only solves the traditional one-to-many mapping problem without pre-training but also 
improves the robustness for tracking moving or switching objects which is the key 
challenge in video surveillance. 
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1. Introduction 

Due to the remarkable growth in the video surveillance market over the last few years [1–3],  
high-quality imaging results from zoom operation are now demanded by consumers [4,5], particularly 
in traffic management and security monitoring [6–8]. Maintaining image sharpness or focus during the 
entire zoom process is the main challenge of zoom tracking. Figure 1 shows the zoom tracking effect 
as the zoom is changed from a wide-angle zoom to a tele-angle zoom. As shown in this figure, the 
plant remains in-focus as the zoom is changed by the user in the presence of zoom tracking. However, 
the image becomes out-of-focus in the absence of zoom tracking, and the image finally clarifies after 
zoom tracking due to an auto-focusing (AF) [9] algorithm. 

Figure 1. Illustration of the zoom tracking effect. 

 

1.1. Zoom Tracking Principle 

Users often utilise two different zoom options in a digital video system: optical zoom and digital 
zoom. Digital zoom works by cropping and subsequently enlarging a captured image, which produces 
an image of lower optical resolution. In contrast, optical zoom uses the optic lens to bring the subject 
closer [10]. In this paper the zoom tracking problem is only studied for optical zoom. Figure 2(a) 
shows an actual zoom system, and its structure chart is shown in Figure 2(b).  

Figure 2(c) introduces the zoom tracking mechanism in detail. When the zoom is changed from  
wide-angle to tele-angle, the zoom lens focal length increases from Fwide to Ftele, whereas the angle of 
view reduces from Φwide to Φtele. In response to this change, the in-focus plane (image distance) should 
shift during this process. For an object at a distance d, sd(zwide) and sd(ztele) are defined as the image 
distance at wide-angle and tele-angle zooms, respectively. Thus, when the zoom is changed from  
wide-angle to tele-angle, to maintain image sharpness, the image sensor must be moved from the  
wide-angle in-focus plane at sd(zwide) to the tele-angle in-focus plane at sd(ztele). As the zoom lens focal 
length is altered via a zoom motor and the image sensor is moved by a focus motor, the zoom tracking 
is typically achieved by following the so-called “trace curves”, which show zoom motor positions 
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versus in-focus motor positions for various object distances in Figure 3. Thus, trace curve estimation is 
a crucial problem for zoom tracking methods. A major challenge in this estimation is the one-to-many 
mapping problem [11], which becomes troublesome when the zoom is changed from wide-angle to  
tele-angle. This problem will be further described in Section 2.  

Figure 2. (a) Illustration of an actual zoom system; (b) The structure of a zoom system;  
(c) Zoom tracking mechanism. 

 

Figure 3. Trace curves for an 18× zoom lens. 
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1.2. Existing Zoom Tracking Methods 

The existing zoom tracking methods can be divided into two categories: (1) geometric methods, 
such as geometric zoom tracking (GZT) and adaptive zoom tracking (AZT); (2) machine learning 
methods, such as relational zoom tracking (RZT) and predictive zoom tracking (PZT). The 
development of zoom tracking can be traced back to the look-up table method [12], which stores a 
large number of trace curves for various object distances in memory. The real trace curve is estimated 
by selecting the closest curve among the stored ones. However, this approach is not often used in 
practice because of its large memory requirement. To cover the shortage of memory, the GZT [13,14] 
has been proposed. The GZT approach obtains an estimate of a trace curve via linear interpolation only 
based on two trace curves for near and far objects. A drawback of this approach is that the offset between 
the estimated and the real trace curves gradually increases as the zoom is changed from wide-angle to 
tele-angle. This approach is later extended to the AZT method [15], which incorporates a recalibration 
procedure at the boundary zoom position where the trace curve changes from linear to non-linear. 

The RZT [16] and PZT [11] methods were proposed later to improve the estimation accuracy through 
machine learning. RZT generates an estimate of the distance range in which the object resides by so-called 
“relational curves”. This distance range is then used to estimate a trace curve. PZT uses an input-output 
model trained by a priori characteristic trace curves to generate an estimate of a trace curve. The trained 
model is often based on the Auto-Regression with Exogenous Inputs (ARX) model [17] or the Recurrent 
Neural Network (RNN) model [18]. Both RZT and PZT solve the one-to-many mapping problem well, 
but they require a significant amount of a priori knowledge for training. It is not always convenient to 
obtain these a priori trace curves in practical use. Furthermore, the errors in the learning step will also 
have an effect on the estimation. Because the variation of the lens or scenes often requires additional 
time for re-training, the adaptability of these two algorithms is relatively poor. 

1.3. Zoom Tracking for Digital Video Surveillance 

There are typically two occasions for which the optical zoom is used: (1) the enlarged occasion, 
which enlarges the object at a constant distance in image to look at it in detail; and (2) the telephoto 
occasion, which tracks the object moving away. In traffic management and security monitoring, the 
telephoto occasions are often encountered, for example, for capturing the license plate of an escaping 
vehicle that has just run a red light. However, all existing zoom tracking methods mentioned 
previously have been developed for the digital still camera systems. These algorithmic methods 
assume that the object distance is constant; thus, the moving or switching object in video surveillance [19] 
has not been considered.  

Figure 4(a) shows the moving object as the zoom is changed from wide-angle to tele-angle. The 
object distance is changing as the car moves towards the video camera during zooming. In this 
situation, existing methods cannot produce an ideal result. There are several other situations in which 
these methods cannot properly function, even when the objects are stationary. Figure 4(b) illustrates 
the switching object during zooming. The computer box and network switch are shown as two 
stationary objects at different distances in the scene. When the zoom motor is moved from wide-angle 
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to tele-angle, the main target in the video changes from the computer box to the network switch. The 
traditional zoom tracking methods will also fail in this situation. 

Figure 4. (a) Moving object during zooming; (b) Switching object during zooming. 

 

To track moving and switching objects in digital video surveillance and to acquire better estimated 
results without pre-training the system, we propose the robust feedback zoom tracking (FZT) method 
to revise the estimated trace curve, which is based on traditional GZT estimation and utilises a 
proportional-integral-derivative (PID) loop-closed feedback controller [20–22]. In the absence of 
knowledge of the underlying process, a PID controller has historically been considered optimal [23]. 
The controller can provide control action for specific process requirements by tuning its parameters. 
This method compensates for errors along the estimated trace curve using the real-time focus value 
(FV), which is typically used in the auto-focusing function. 

1.4. Contributions and Organisation 

In this work: (1) we discuss the zoom tracking methods in video surveillance for the first time;  
(2) we propose a novel zoom tracking method called FZT, which is robust in tracking moving or 
switching objects in video surveillance; (3) we implement our FZT zoom tracking algorithm on  
real-time digital video hardware and compare it with commonly used algorithms. To the best of our 
knowledge, the focus value and real-time feedback mechanism have not yet been used in previous 
zoom tracking studies, and there have been no previous reports on the implementation of the zoom 
tracking method in video surveillance devices. 

This paper is organised as follows. Section 2 introduces our FZT method in detail. The FZT 
approach is then implemented on the hardware platform in Section 3. Our experimental results and 
comparisons between our algorithm and other existing methods in terms of accuracy and speed are 
reported in Section 4. Finally, conclusions are stated in Section 5. 
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2. Feedback Zoom Tracking 

As mentioned above, zoom tracking is related to the zoom and focus motor positions. It is typically 
achieved by following a trace curve. If the motors are moved following the trace curve during zoom 
operation, the image will always stay sharp. Figure 3 shows the trace curves for an 18× zoom lens. 
Each trace curve corresponds to a certain object distance.  

2.1. Trace Curve Estimation 

The first goal in zoom tracking that we addressed is how to estimate the right trace curve without 
any special distance measurement equipment. Let fd denote the real trace curve acquired by running the 
global search auto-focusing function [24,25]. Thus, fd indicates the in-focus motor position for each 
zoom motor position zn at a given object distance d. For simplicity, let z1 and zn denote the wide-angle 
zoom (zwide) and tele-angle zoom (ztele), respectively. As shown in Figure 3, all of the trace curves for 
various object distances have the same in-focus motor position at the wide-angle zoom z1, which is  
f1m (z1) = f1.5m (z1) =… = f30m (z1). However, it is difficult to determine which trace curve should be 
followed during zooming without the distance information, particularly when the zoom motor moves 
from the wide-angle towards the tele-angle. This issue is the so-called “one-to-many” mapping problem.  

Thus, a zoom tracking approach is required to estimate a trace curve as close as possible to the real 
one. The classical method GZT estimates the trace curve via linear interpolation based on the stored 
trace curves for near and far objects. It obtains the estimated trace curve using Equation (1): 

 (1) 

where  and  denote in-focus motor positions at the zoom position z for near and far 
objects, respectively, and  and  represent the initial zoom motor position and its 
corresponding in-focus motor position for an object at a distance d, respectively. The subscript “start” 
indicates that the in-focus motor position is obtained by performing auto-focusing before the zoom 
motor is moved. As shown in Figure 5, GZT actually uses the so-called GZT focus ratio described in 
Equation (2) to estimate the in-focus motor position:  

 (2) 

Figure 6 shows the effectiveness of the GZT focus ratio for the targets at different distances. When 
the zoom is changed from wide-angle to tele-angle, the GZT focus ratio shows non-linear 
characteristics, resulting in large estimation errors when predicting the trace curves with GZT. 
Although AZT uses recalibration to improve its accuracy, it also cannot completely avoid this type of 
error caused by using linear interpolation to fit the non-linear problem. 

2.2. Trace Curve Revision 

To overcome the disadvantages of GZT and the issues associated with the moving and switching 
objects, we utilise the feedback method to revise the estimated trace curve automatically in real-time 
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applications. The first step of the feedback method is to acquire the error from the system. We first 
consider the focus value (FV) [26–28], which is the measurement of sharpness in the auto-focusing 
application. As the focus value increases, an object’s image increases in sharpness. Figure 7 illustrates 
the focus values for per focus motor position versus per zoom motor position acquired using our digital 
video surveillance equipment, which is described in Section 3. Figure 7 shows that the highest focus 
value is on the peak of the mountain and that sharpness decreases gradually down the hillside. The 
peak line is the real trace curve for the object in the experiment. Away from the trace curves, the 
corresponding focus value declines symmetrically on both sides of the mountain. Thus, the FV can be 
used as a measurement of the offset between a test point and the real trace curve. 

Figure 5. Illustration of the GZT focus ratio. 

 

Figure 6. GZT focus ratio curves. 
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Figure 7. Focus values for each motor position. 

 

Using focus values, we propose that the FZT method will maintain object sharpness during the 
entire zoom process, even when there are moving or switching objects in the scene. Figure 8 depicts 
the FZT method flowchart. There are three main stages in this flowchart: detection position estimation, 
feedback value calculation, and trace curve revision. 

Figure 8. Feedback zoom tracking method. 

 



Sensors 2012, 12 8081 
 

 

In the first stage, the initial estimated trace curve is given by the GZT model according to the 
geometric characteristics at the beginning of zooming. When the user changes the zoom from  
wide-angle to tele-angle, the approach requires a feedback period length fp to determine where it 
should revise the trace curve. If fp = 48, the system must detect the error once every 48 zoom motor 
steps. For example, if the first detection begins at motor position z = −2,536, the following feedback 
mechanism will be run at z = −2,584, −2,632, −2,680, and so on. As shown in Figure 8, if the current 
zoom position does not require revision, the zoom and focus motors are moved according to the 
current estimated trace curve without detection; otherwise, the system would acquire the focus values 
at two corresponding probe points for real-time feedback revision. The probe points are detecting 
positions for obtaining the focus values needed by our FZT, and they are symmetrically located on 
both sides of the current estimated trace curve. Figure 9 shows that the two probe point positions p1 
and p2 are calculated using p1 = p0 + ps, p2 = p0 − ps, in which p0 is the point on the current estimated 
trace curve at the corresponding zoom position, and ps is a probe step length parameter used to 
determine positions p1 and p2. This ps parameter controls the detection boundary of the algorithm. A 
small ps may miss some tiny errors, whereas a large ps will increase the fluctuation of the trace curve. 
The ps can be either constant or variable. Here, we propose an adaptive selection mechanism: the ps is 
determined using the difference between the current and next focus motor positions on the estimated 
trace curve. The adaptive mechanism is described by Equation (3): 

 (3) 

where Fcurrent represents the focus motor position on the estimated trace curve at the current step, and 
Fnext represents the focus motor position at the next step. Both of these are shown on the y-axis in 
Figure 9. 

Figure 9. Illustration of FZT revision. 
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In the second stage, the focus motor is moved from p1 to p2, and the corresponding focus values e1 
and e2 are acquired at these two points, respectively. Because the focus value decreases symmetrically 
on both sides with the increasing distance from the real trace curve, the revision can be made by our 
FZT algorithm. Because they are the same distance from the point p0, the probe points p1 and p2 should 
have approximately the same focus value. However, because the estimated trace curve often deviates 
from the real one, the focus values e1 and e2 are often different. By studying the relationship between 
these two values, we can determine the actual location of the trace curve. As illustrated in Figure 10, 
the red line represents the real focus value curve at the current zoom position, whereas the blue line 
represents the estimated focus value curve. Thus, e2 > e1 in Figure 10 indicates that the probe point p2 
is closer to the real trace curve than is p1. Thus, the estimated trace curve should be revised towards the 
direction of p2 to approach the real one. In contrast, if e1 > e2, the estimated trace curve should be 
moved towards p1.  

Figure 10. Principle of FZT revision. 

 

During the trace curve revision stage, revision is achieved by moving the next estimated position pe 
on the current estimated trace curve to pr, as shown in Figure 9. The program then updates the GZT 
focus ratio k by pr and rebuilds the estimated trace curve. The revision distance , which will be 
discussed later, is finally calculated by the PID controller. 

In addition to the feedback period fp, there are several other variable parameters in our FZT model. 
In the feedback area, the motors are moved following straight lines. The feedback area length fa, which 
consists of the front area length fra and the back area length bka, influences the fluctuations of the 
motor trace. A large fa value will reduce the slope of the trace adjustment and causes less shaking in 
the image during the process. In other parts of the feedback period, the motors should be moved 
according to the current estimated trace curve. 

SΔ
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The process of revision is given in Figure 9. When the zoom motor enters the first feedback area at point 
ps, the probe position p1, p2 should be calculated at the next step. The motors are then moved to these 
positions to acquire the focus values e1 and e2 following straight lines. The error can then be obtained using 
Equation (4): 

 (4) 

Because Δe < 0 and |Δe| > ethr, the estimated trace curve should be revised towards the p2 direction in 
which ethr is a threshold parameter that avoids system jittering. Next, the position pe on the current 
estimated trace curve is revised to pr = pe + ΔS1. The focus ratio k is then recalculated via the position of pr, 
and the new estimated trace curve C2 is built by the classical GZT method. 

The motors pass through the back area following the straight line from p2 to pr. They then move 
from pr to p's following the curve C2 without feedback and enter the second feedback area. Because  
Δe > 0 in this area, the estimated trace curve C2 is judged to have a lower value than the real trace 
curve. Then, the position p'e is revised to p'r on the curve C3 by ΔS2. The green line in Figure 9 shows 
the actual motor trace during this process. The feedback mechanism occurs during the entire zoom 
operation process. 

2.3. Revision Distance Control 

The revision distance ΔS is a critical parameter that decides the regulating ability of the algorithm. 
If the ΔS is smaller than the ideal ΔS, the revised trace curve will not approach the real trace curve 
efficiently. However, if ΔS is too large, an overshoot error will occur. Because the revision is 
influenced not only by the current error but also by the previous errors, we use a proportional-integral 
(PI) controller to improve its accuracy. The PI controller, which is widely used in motor control, can 
provide the control action according to the current and previous errors. Figure 11 shows the control 
structure of our FZT method. The controller action, which consists of proportional and integral 
components, can also be written as Equation (5): 

 (5) 

where KP is the proportional gain and TI is the integral time. The integral component accumulates all 
previous errors to compensate for the error value, with the intention of completely eliminating these 
errors in TI seconds. The resulting compensated error value is scaled by the proportional gain KP. 

Figure 11. Control structure of FZT. 
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Because the Equation (5) can only be used in analogue systems, the integral component should be 
discretised for the digital equipment. Equation (6) shows the formula conversion from the integral term 
to the sum of discrete errors: 

 (6) 

where Δt = T represents the sampling period. In our experiments, the value of T is set to 1. Equation (5) 
can then be rewritten in discrete form as Equation (7): 

 (7) 

According to Equation (8), Equation (7) can be further converted to the incremental form as 
Equation (9), which simplifies the calculation and saves storage space. This equation now only needs 
the last ΔS and the errors in the last two consecutive steps to calculate the revision distance: 

 (8) 

 (9) 

where  is the integral coefficient. 

Using the PI controller, FZT is able to complete its feedback procedure. However, the parameters 
KP and TI need tuning before use. Tuning a PI control loop involves adjusting these parameters to the 
optimum values for the desired control response. There are several methods for tuning a PI loop, 
including manual tuning, the Ziegler-Nichols method [29], the Cohen-Coon method [30] and so on.  

3. Real-Time Hardware Implementation 

The improved FZT algorithm and traditional methods were implemented on a high-speed TI 
TMS320DM365 digital video platform, and the focus value calculation for the 720-P (1280 × 720 pixels) 
image was simultaneously performed at 30f/s. Figure 12(a) shows the configuration of this platform. This 
platform consists of a zoom lens, CMOS chip, dedicated video capture board, lens control board, and PC. 

For the high-speed camera head, we adopted a CHIOPT 18× zoom lens, in which the zoom range is 
sufficiently large for experiments. To increase motion accuracy, the zoom motor was driven by a program 
in four-subdivision mode, which divides each normal motor step into four smaller steps. Figure 12(b) 
shows an overview of the device. Twelve-bit RAW image data were built by the 5-MP CMOS chip 
(MT9P031) and then transferred to the video capture board at 30f/s for 1,280 × 720 pixels. The video 
capture board is designed as a dedicated device for video capturing, transferring, processing, and focus 
value calculation. Figure 12(c) shows an overview of this board, which consists of four parts: (1) an 
ARM microprocessor (TMS320DM365) for building video from CMOS and transferring it to a PC via 
Ethernet; (2) a C8051F microcontroller (C8051F360) for calculating the focus value and outputting it 
by RS485; (3) memories, including DDR-SDRAM (MT47H64M16HR); and (4) interface circuits, 

0
0 0

( ) ( ) ( )
n nt

j j

e d e j t T e jτ τ
= =

Δ = Δ ⋅Δ = Δ∑ ∑∫

0
( ) ( ) ( )

n

P
jI

TS k K e k e j
T =

⎡ ⎤
Δ = Δ + Δ⎢ ⎥

⎣ ⎦
∑

( ) ( 1) ( ) ( 1) ( )P
I

TS k S k K e k e k e k
T

⎡ ⎤
Δ − Δ − = Δ − Δ − + Δ⎢ ⎥

⎣ ⎦
[ ]( ) ( 1) ( ) ( 1) ( )P IS k S k K e k e k K e kΔ = Δ − + Δ − Δ − + Δ

I P
I

TK K
T

=



Sensors 2012, 12 8085 
 

 

such as UART and Ethernet. This board, CMOS, and zoom lens actually construct a standard internet 
protocol network camera (IPNC) system. 

Figure 12. High-speed TI TMS320DM365 digital video platform. 

 

The lens zoom board is another electronic function in this system. This board contains another 
C8051F microcontroller for estimating the trace curve. It receives zoom commands and focus values 
from the PC and video capture board, respectively. The FZT algorithm is implemented here to acquire 
the positions of motors using focus values. The motor control signals are then produced by the special 
motor control chip. The entire working procedure of our device is as follows: 

(1) Receive zoom command from PC: The PC transfers the zoom command given by the user to the 
lens control board. 

(2) Acquire motor position by estimated trace curve: Our FZT algorithm is an improved GZT  
that accounts for the focus value when revising the estimated trace curve. Before obtaining  
the corresponding focus value, the lens control board applies GZT to estimate the position of 
the focus motor. In the feedback area, the probe positions are also acquired on this board 
through FZT. 
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(3) Calculate the focus value: The focus value is calculated by the video capture board and sent to 
the lens control board. To fit the real-time requirement, we use the analogue circuits. The 
corresponding analogue video signals are first output by the Video DAC in TMS320DM365. 
Then, an analogue band-pass circuit is used to filter out the high-frequency components. As the 
number of high-frequency components increases, the clarity of the image increases. A precise 
small-signal rectifier and analogue integrator circuit are applied to build a voltage from  
high-frequency components that represents the focus value. The 10-bit A/D converter 
embedded in the C8051F microcontroller is used to obtain the exact digital focus value from 
the voltage. Furthermore, the focus value can also be obtained digitally through the information 
contained in the H3A register in TMS320DM365. 

(4) Revise the estimated trace curve using FZT: The FZT is run on the lens control board to revise 
the estimated trace curve. The next motor positions can then be obtained by the new curve. 

(5) Create control signals and move the motors: The motor control signals are created by the 
special motor control chip in the lens control board according to the new trace curve. The zoom 
and focus motors are then moved to the exact positions according to these signals.  

(6) Update the image on the PC: The latest image captured by the video capture board is sent to 
the PC via the Ethernet for display. 

This hardware implementation can run as an IPNC video surveillance system, which fits the active 
object during zoom operation. It can also run as the base of various applications, including active 
tracking [31,32], salient recognition [33], speed estimation [34] and automatic driving [35,36]. In this 
paper, we use a PC with a 2.6-GHz Intel Pentium Dual-Core CPU and 2 GB of memory for 
observation and control. 

4. Experimental Results and Discussion 

In this section, we provide a comparison of our FZT with the traditional zoom tracking approaches 
of GZT, AZT, RZT and PZT. The performance measures considered include tracking accuracy, 
tracking speed, storage space and training requirements. Tracking accuracy was measured in terms of 
mean offsets between the estimated and real trace curves for stationary and moving objects, 
respectively. Tracking speed was measured in terms of the total zoom operation time, which is dependent 
on the lens’ motor type. Training and storage requirements were measured using the demand of 
determining the optimal model parameters. The parameters of the PI controller are also discussed in this 
section. Finally, the drawbacks of our method observed in the experiments are discussed. 

All of the experiments were realised by the digital video surveillance system described in Section 3. 
Due to the four-subdivision mode, the zoom motor position, which was four times the normal pattern 
(190 to −970), ranged from 760 to −3,880. This mode improved the precision of our experiments. 
Furthermore, all of the experiments described in this section were under the zoom direction of  
wide-angle to tele-angle because the reverse sequence does not cause the one-to-many mapping 
problem when applied. 

Moreover, because there are many independent parameters for our proposed system, we discuss 
how to obtain these values here. The seven main parameters in our algorithm are KP, TI, T, fp, fra, bka 
and ps. The proportional gain KP, integral time TI and sampling period T are three important 
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parameters for the PI controller. We propose a combined tuning method for setting these three values 
in our experiments, as it is relatively difficult to obtain sufficient results using single tuning methods in 
complex surveillance environments. First, we use the Ziegler-Nichols [29] method to obtain the 
approximate values. Then, the manual tuning is performed for further optimisation according to the 
actual effect of the algorithm. The different revision effects acquired by the various KP and TI values in 
our experiments will be discussed in Section 4.3 as a reference for the stage of manual tuning. Because 
the fp, fra, bka and ps depend on different zoom lenses, image sensors, control circuits and application 
environments, it is difficult to find a common setting method for them. They should be regulated based 
on the hardware and software conditions and application environment, which can be obtained through 
several actual experiments in the user’s specific working environment. We chose these values 
manually according to our digital surveillance platform and the scenes in our experiments. The 
feedback period fp controls the feedback frequency along the trace curve. A small fp value can increase 
the accuracy within a certain range through a frequent feedback procedure but causes increased time 
consumption and fluctuations on the trace curve. Thus, the fp value should achieve a balance between 
accuracy and user experience according to the specific application scene. Because user experience 
varies, this value setting mainly relies on actual tests and manual regulation. When there are many 
high-speed moving objects or objects with complex movement, such as in traffic or outdoor video 
surveillance, the value of fp should be relatively reduced. Otherwise, the fp should be set relatively 
high for indoor surveillance. The effect of fp in our experiment will be further discussed in Section 4.3 
for advanced reference. The front area length fra and back area length bka are two auxiliary parameters 
that also affect the user experience by influencing the motor trace fluctuations. Their values are often 
set to 1/4 or 1/5 of the feedback period fp, depending on the user experience. The probe step length 
parameter ps controls the detection boundary of the algorithm, for which we have proposed an 
adaptive mechanism to determine this boundary described in Section 2.2. 

4.1. Stationary Objects 

The performance measures for tracking stationary object during zoom operation were collected 
from 600 distinct scenes under different lighting conditions and various object distances. This 
evaluation was performed for enlarged occasions in surveillance, which was described in Section 1.3. 
The object distances were set to 2, 3, 5, 10 and 20 m. For each distance, 120 samples were obtained 
from the GZT, AZT, RZT, PZT (S = 5), PZT (S = 20) and FZT models (20 samples for each method). 
Due to its higher accuracy in comparison to the RNN model [11], we chose the ARX model for PZT 
for all of our experiments. PZT(S = 5) indicates that the PZT model was only trained using five 
characteristic trace curves before use, whereas PZT (S = 20) was trained using 20 curves. 

Figure 13 shows an example of the trace curve for a 3 m stationary object acquired using our FZT 
method. In this case, the parameters were set as follows: fp = 96, fra = bka = 24, KP = 3, TI = 6, T = 1, 
and the adaptive probe step mechanism was applied to choose the ps. The real trace curve was 
obtained by running the global search auto-focusing function at each zoom motor position. The FZT 
trace curve was observed to tightly fit the real trace curve with several small fluctuations. 
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Figure 13. FZT trace curve for a 3 m stationary object. 

 

Table 1 summarises the overall tracking accuracy of the developed FZT compared with the existing 
GZT, AZT, RZT and PZT approaches. From this table, it can be observed that FZT exhibits better 
tracking accuracies than most of the traditional methods. However, FZT does not gain improvement in 
comparison with PZT trained by 20 trace curves due to its beneficial adaptability to the one-to-many 
mapping problem. However, if PZT has not been trained sufficiently, as shown in the PZT (S = 5) 
results, it may lose its advantages. 

Table 1. Tracking accuracy for stationary objects. 

Zoom tracking 
approach 

Mean offset (motor steps) wide-angle > tele-angle 
2 m 3 m 5 m 10 m 20 m 

GZT 7.68 7.36 7.13 6.85 6.59 
AZT 7.45 7.16 6.95 6.69 6.46 
RZT 5.92 5.64 5.46 5.22 5.04 

PZT (S = 5)  6.14 5.87 5.68 5.45 5.23 
PZT (S = 20)  5.15 4.89 4.73 4.52 4.34 

FZT 5.79 5.53 5.34 5.10 4.91 

The distributions of offsets for all of the approaches in these experiments are shown in Figure 14. 
The cases are divided into two groups: 0 m to 10 m stationary objects and 10 m to 20 m stationary 
objects. The offsets of most points on the FZT trace curve were within five steps. The experiments also 
showed that there was a tolerant threshold of focus position offset for human vision. If the offset stays 
below the tolerant threshold, the user will not feel uncomfortable. This threshold is not a constant 
value but a variable that gradually increases from 10 to 30 steps when the zoom is changed from  
wide-angle to tele-angle in our system. Thus, the small fluctuations from probe steps on the FZT trace 
curve did not cause user discomfort. 
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Figure 14. Offset distribution for stationary objects. 

 

To compare the approaches for situations involving the one-to-many mapping problem, a further 
study was performed for the different zooming sequences shown in Figure 15. As indicated in this 
figure, the four different zooming sequences depend on the location of the initial and stopping zoom 
motor positions with respect to the boundary zoom position. Zooming Sequence-3 (ZS-3) incorporates 
the sequences that generate the one-to-many mapping problem because the zoom motor is moved from 
the linear region to the non-linear region on the trace curves. 

Figure 15. Different types of zooming sequences. 

 

A total of 400 experiments were performed to evaluate the performance for tracking an 8 m 
stationary object. For each zooming sequence, 100 samples were obtained using the GZT, AZT, RZT, 
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PZT (S = 20) and FZT models (20 samples for each method). Table 2 provides the overall tracking 
accuracies for each sequence region. For stationary objects, PZT (S = 20) generated the least mean 
offset of 8.13 motor steps for ZS-3 compared to other approaches and worked better for the other three 
sequences as well. Furthermore, FZT exhibited a mean offset of 8.37 motor steps, which was more 
than that of PZT. 

Table 2. Tracking accuracy for each zooming sequence. 

Zoom tracking 
approach 

Mean offset (motor steps) Object distance = 8 m 

ZS-1 ZS-2 ZS-3 ZS-4 
GZT 3.19 3.18 9.07 6.22 
AZT 3.34 3.32 7.79 6.56 
RZT 2.86 2.95 8.68 5.65 

PZT(S = 20) 2.49 2.33 8.13 4.61 
FZT 2.63 2.57 8.37 5.13 

The FZT model was found to work better than most of the existing methods for tracking stationary 
objects with the exception of the PZT model with sufficient training. However, FZT does not require 
any specified training before tracking; thus, it is more suitable for use in complex environments in 
which the user is not able to acquire a sufficient amount of accurate training trace curves. It can also be 
applied to a video surveillance system with many different lens configurations in which the RZT or 
PZT models would have to be trained for every lens. 

4.2. Moving and Switching Objects 

Experiments were also performed to evaluate the robustness in tracking moving or switching 
objects. Figure 16 shows the focus values of an object moving from 6 m to 8 m. The focus values 
acquired by our equipment show an obvious real trace curve. Therefore, according to these values, the 
feedback mechanism can be run to revise the estimated trace curve. 

Figure 16. Focus value for per zoom position versus focus motor position. 
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Figure 17 shows the FZT trace curves for an object moving from 3 m to 4 m and an object moving 
from 5 m to 8 m compared with the RZT and PZT models. In these cases, the FZT parameters were set 
as follows: fp = 96, fra = bka = 24, KP = 1, TI = 8, T = 1, and the adaptive ps was used. The FZT trace 
curve was observed to be closer to the real trace curve than the RZT and PZT curves due to its  
real-time revision based on the feedback mechanism. 

Figure 17. (a) Trace curves for an object moving from 3 m to 4 m; (b) Trace curves for an 
object moving from 5 m to 8 m. 

 

To further study the robustness in tracking moving or switching objects, we performed another 500 
experiments for tracking objects moving from 2 m to 3 m, 5 m, 8 m, 10 m and 20 m. For each group of 
moving distance, 20 cases under different scenes for each tracking method were modelled. In these 
experiments, the FZT parameters were set as follows: fp = 96, fra = bka = 24, KP = 1, TI = 8, and T = 1. 

Table 3 provides the results of the average tracking accuracy for these experiments. The FZT 
approach showed significant robustness, which was better than those of the other existing approaches. 
Furthermore, the mean offset of FZT grew slowly as the moving distance increased. The additional 
real-time estimate revision contributed to all of these effects. 

Table 3. Tracking accuracy for moving objects. 

Zoom tracking 
approach 

Mean offset (motor steps) wide-angle > tele-angle 
2 m->3 m 2 m->5 m 2 m->8 m 2 m->10 m 2 m->20 m

GZT 10.74 12.46 13.31 13.79 14.15
AZT 10.56 12.27 13.11 13.57 13.93
RZT 9.97 11.66 12.47 12.92 13.26

PZT(S = 20) 9.66 11.33 12.12 12.54 12.87
FZT 7.48 8.23 8.59 8.87 9.09



Sensors 2012, 12 8092 
 

 

Another 500 experiments under the similar parameter conditions were performed to validate the 
robustness for tracking switching objects in various scenes. We set two testing objects at 2 m and 3 m 
in the 2 m; 3 m group. When the main target switched from 2 m to 3 m, the FZT model exhibited the 
least mean offset of 8.41 motor steps in Table 4 compared with the other algorithms. Table 4 shows the 
overall accuracy results for this type of experiment. 

Table 4. Tracking accuracy for switching objects. 

Zoom tracking 
approach 

Mean offset (motor steps) wide-angle > tele-angle 
2 m; 3 m 2 m; 5 m 2 m; 8 m 2 m; 10 m 2 m; 20 m 

GZT 12.43 14.76 15.85 16.51 17.07 
AZT 12.21 14.53 15.61 16.27 16.83 
RZT 11.54 13.78 14.79 15.42 15.97 

PZT(S = 20) 11.17 13.41 14.43 15.06 15.59 
FZT 8.41 9.32 9.79 10.13 10.42 

Unlike moving object, switching object shows a transition in real trace curve because of the 
different object distances of switching targets in the scene. The focus value of image increases as 
motor positions approach the characteristic trace curve of new target. Thus, the estimated trace curve 
can be revised to the new object trace curve gradually towards the high focus value direction using 
real-time feedback mechanism of our FZT. The revision effect mainly focuses on a small range of the 
trace curve, in which the main object of image switches. Outside this range, FZT has little influence on 
the estimated trace curve. Experimental results show that FZT has better robustness compared with 
other existing methods on tracking switching object. 

Figure 18 shows the offset distributions for the 2 m; 5 m and 2 m; 20 m groups in the experiments. 
Most of the offsets on the FZT trace curve were within 10 steps, whereas more than 40% of the offsets 
on the other trace curves exceeded 15 steps. The large offset may cause users to be uncomfortable. 
Thus, FZT is the best choice for scenes that contain many moving or switching objects. 

Figure 18. (a) Offset distribution for objects switching from 2 m to 5 m; (b) Offset 
distribution for objects switching from 2 m to 20 m. 
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4.3. Control Parameters 

The control parameter setting is an important problem in the applications of FZT applications. In 
this section we discuss the feedback period fp, proportional gain KP and integral time TI. The feedback 
period fp controls the feedback frequency along the estimated trace curve. Figure 19 shows the FZT 
trace curves for tracking an 8 m stationary object with different feedback periods under fra = bka = 24, 
KP = 3, TI = 6, and T = 1. A group of 20 experimental cases was performed for each fp value, and the 
average accuracies and time consumption are shown in Table 5. A small fp value caused the feedback 
procedure to occur frequently. In addition, it increased the accuracy within a certain range but caused a 
larger time consumption and more fluctuations along the trace curve. Moreover, the overly frequent 
revision might reduce the tracking accuracy at times due to the overshoot effect. Table 5 shows that  
fp = 96 was the suitable value for our device in this experiment due to the feedback procedure’s high 
accuracy and relatively low time consumption. 

Figure 19. Trace curves for different FZT feedback periods. 

 

Table 5. Tracking accuracy and time consumption for different FZT feedback periods. 

Feedback period Revision time Total time Mean offset 
fp = 48 1,274 ms 4,780 ms 5.21 
fp = 72 849 ms 4,355 ms 5.14 
fp = 96 637 ms 4,143 ms 5.18 

fp = 120 510 ms 4,016 ms 5.24 
fp = 144 425 ms 3,931 ms 5.37 
fp = 168 364 ms 3,870 ms 5.59 
fp = 192 318 ms 3,824 ms 6.04 

After the discussion of fp, we consider the proportional gain KP for the PI controller. The parameter 
KP decides the revision magnitude. To show the magnitude in a clear manner, we use the feed response 
curves in which fp = fa and the motors are moved following the straight connection of probe points. 
For instance, if we want to produce the feedback response curve in Figure 9, the motors should be 
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moved using the following sequence: p1, p2, p'1, p'2, p''1, p''2. This type of curve causes feedback operation 
throughout the time period and shows the revision distance ΔS directly through the amplitude of the curve. 

Figure 20 shows the feedback response curves for tracking the same 8 m stationary object with 
TI = 6, T = 1 and KP = 1, 3, 5, and 8. It was observed that the KP influenced the magnitude 
significantly. A high KP caused a large fluctuation on the response curve, which indicates strong 
adjustment on the estimated trace curve. In contrast, the small KP with a weak revision effect is not 
able to complement the error in time. Thus, the choice of KP should be based on the offset between the 
estimated and actual trace curves. For stationary objects, the KP can be set to a small value, whereas a 
larger KP is necessary for tracking moving or switching objects. 

Figure 20. Feedback response curves for different proportional gains. 

 

The integral term in the PI controller accumulates the past errors over time and adds them to the 
revision distance ΔS as a complementary effect. The parameter TI controls the speed of releasing the 
accumulated errors to the revision distance. Figure 21 illustrates the feedback response curves for 
tracking the same 8 m stationary object mentioned above with KP = 5, T = 1 and TI = 1, 3, and 8. As 
observed in Figure 21, a large TI value reduced the fluctuations of the response curve.  

Figure 21. Feedback response curves for different integral time. 
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Figure 22. Complementary response curves for different integral time. 

 

However, Figure 22 shows two additional cases with TI = 10 and 20 in which an excessively large 
TI could not achieve a sufficient feedback result because it reduced the role of the integral value. Thus, 
TI should be set properly according to the KP value, considering the revision effect and fluctuation. 

4.4. Speed and Drawback 

Because zoom tracking is a real-time application, tracking speed is also a key issue. Table 6 
summarises the time consumption for the experiments of stationary, moving and switching targets. 
AZT took the largest amount of time due to its recalibration when crossing the boundary zoom 
position. FZT with fp = 96 achieved the second-highest time cost due to an additional 637 ms for 
feedback revision. Thus, FZT sacrifices speed in exchange for accuracy. 

Table 6. Time consumption of zoom tracking approaches. 

Zoom tracking 
approach 

Auto-focus Feedback 
revision 

Trace curve 
estimation 

Total time 

GZT 658 ms 0 ms 5 ms 3,506 ms 
AZT 1,316 ms 0 ms 5 ms 4,164 ms 
RZT 658 ms 0 ms 8 ms 3,509 ms 
PZT 658 ms 0 ms 13 ms 3,514 ms 
FZT 658 ms 637 ms 5 ms 4,143 ms 

The comparison of other performance measures is summarised in Table 7. The following 
observations are made from this table. (1) GZT, AZT and FZT do not require any training procedures, 
while RZT and PZT require a minimum of 20 trace curves to generate an acceptable tracking result;  
(2) To revise the estimate, FZT requires some additional memory spaces, but this storage requirement 
does not grow as the number of discrete zoom motor position N increases. Thus, FZT limits the storage 
usage on the order of N similar to GZT, AZT and RZT, as opposed to PZT, which requires storage on 
the order of N2; (3) Unlike AZT, FZT does not cause discomfort when crossing the boundary zoom 
position. However, it causes users to be uncomfortable when the fluctuations on its trace curve are 
serious. Fortunately, this phenomenon occurs seldomly when we choose suitable parameters for the PI 
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controller; (4) Based on the feedback, with respect to the moving or switching objects that often appear 
in video surveillance, FZT demonstrates robustness, while RZT and PZT have large offsets in these 
situations. Therefore, based on the above observations, FZT not only solves the one-to-many mapping 
problem but also improves the tracking robustness. 

Table 7. Performance comparison of zoom tracking approaches. 

Performance measures Zoom tracking approach 
GZT AZT RZT PZT FZT 

Requires training No No Yes Yes No 
Number of trace  

curves for training 
0 0 20 20 0 

Storage usage 
(N zoom positions) 

3N 3N 3N 3N2 3N 

Causes user discomfort 
during zooming 

No Boundary No No Seldom 

Robustness for moving 
or switching objects 

No No No No Yes 

Finally, it is also worth mentioning that similar to GZT, AZT, RZT and PZT, our FZT method may 
also fail in several scenes in which there are two main targets at different distances due to an incorrect 
estimate acquired by auto-focusing at the beginning of the algorithms. Figure 23 shows one example of 
this failure. There are two peak lines in the figure that indicate the two main targets, whereas only one 
line is present in the normal case, as shown in Figure 16. The additional peak line will disturb the  
auto-focusing program and build an incorrect estimated trace curve due to its relatively high focus 
value. Due to this incorrect estimate at the beginning of the algorithm, FZT may fall into the local 
adjustment along the wrong curve. 

Figure 23. One example of FZT failure. 
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It should also be noted that this drawback is not caused by the feedback mechanism but by the  
auto-focusing procedure. Thus, all of the existing zoom tracking approaches that use the auto-focusing 
program at the beginning of the algorithm have this drawback. The advanced auto-focusing technique 
concerning image content can further be used to cover this shortage. 

5. Conclusions 

In this paper, a robust feedback zoom tracking method has been introduced for digital video 
surveillance systems. This real-time method uses focus values and a PI loop-closed controller to revise 
the estimation of the trace curve. To assess performance, a real-time hardware implementation of the 
FZT algorithm along with commonly used methods was performed on an actual digital video platform. 
The extensive experiments under different lighting conditions for both stationary and moving objects 
revealed that the proposed feedback method generates better accuracies without pre-training compared 
to the commonly used approaches. Furthermore, the feedback mechanism may cause several fluctuations 
on the trace curve, but they typically stay within the tolerance level of a human being if the method 
parameters are properly chosen. Although it takes a little more time than traditional methods, the FZT 
method improves the robustness and adaptability of zoom tracking, particularly for moving or 
switching objects in video surveillance. 

Acknowledgments 

This study was supported by the National Natural Science Foundation of China (Grant No. 
50905069 and No. 51121002) and the National Science and Technology Major Project (Grant No. 
2012ZX04001012). 

References 

1. Haritaoglu, I.; Harwood, D.; Davis, L.S. W-4: Real-time surveillance of people and their 
activities. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 809–830. 

2. Foresti, G.L.; Micheloni, C.; Piciarelli, C.; Snidaro, L. Visual sensor technology for advanced 
surveillance systems: Historical view, technological aspects and research activities in Italy. 
Sensors 2009, 9, 2252–2270. 

3. Chen, Y.-L.; Chiang, H.-H.; Chiang, C.-Y.; Liu, C.-M.; Yuan, S.-M.; Wang, J.-H. A vision-based 
driver nighttime assistance and surveillance system based on intelligent image sensing techniques 
and a heterogamous dual-core embedded system architecture. Sensors 2012, 12, 2373–2399. 

4. Tordoff, B.J.; Murray, D.W. A method of reactive zoom control from uncertainty in tracking. 
Comput. Vis. Image Underst. 2007, 105, 131–144. 

5. Fayman, J.A.; Sudarsky, O.; Rivlin, E.; Rudzsky, M. Zoom tracking and its applications.  
Mach. Vis. Appl. 2001, 13, 25–37. 

6. Cheng, H.Y.; Hsu, S.H. Intelligent highway traffic surveillance with self-diagnosis abilities.  
IEEE Trans. Intell. Transp. Syst. 2011, 12, 1462–1472. 

7. Lee, Y.S.; Chung, W.Y. Visual sensor based abnormal event detection with moving shadow 
removal in home healthcare applications. Sensors 2012, 12, 573–584. 



Sensors 2012, 12 8098 
 

 

8. Kumar, P.; Ranganath, S.; Huang, W.; Sengupta, K. Framework for real-time behavior 
interpretation from traffic video. Intell. Transp. Syst. IEEE Trans. 2005, 6, 43–53. 

9. Gamadia, M.; Peddigari, V.; Kehtarnavaz, N.; Lee, S.-Y.; Cook, G. Real-time implementation of 
autofocus on the TI DSC processor. In Proceedings of the SPIE Electronic Imaging Symposium, 
San Jose, CA, USA, 20 January 2004; pp. 10–18. 

10. Weerasinghe, C.; Nilsson, M.; Lichman, S.; Kharitonenko, I. Digital zoom camera with image 
sharpening and noise suppression. IEEE Trans. Consum. Electron. 2004, 50, 777–786. 

11. Peddigari, V.; Kehtarnavaz, N. Real-time predictive zoom tracking for digital still cameras.  
J. Real-Time Image Process. 2007, 2, 45–54. 

12. Hoad, P.; Illingworth, J. Automatic Control of Camera Pan, Zoom and Focus for Improving 
Object Recognition. In Fifth International Conference on Image Processing and its Applications, 
Edinburgh, UK, 4–6 July 1995; pp. 291–295. 

13. Kim, Y.; Lee, J.S.; Morales, A.W.; Ko, S.J. A video camera system with enhanced zoom tracking 
and auto white balance. IEEE Trans. Consum. Electron. 2002, 48, 428–434. 

14. Peddigari, V.R.; Kehtarnavaz, N.; Lee, S.-Y.; Cook, G. Real-time implementation of zoom 
tracking on TI DM processor, In Proceedings of the SPIE Electronic Imaging Symposium;  
San Jose, CA, USA, 18 January 2005; pp. 8–18. 

15. June-Sok, L.; Sung-Jea, K.; Yoon, K.; Morales, A. A video camera system with adaptive zoom 
tracking. In Proceedings of the International Conference on Consumer Electronics, Los Angeles, CA, 
USA, 18–20 June 2002; pp. 56–57. 

16. Peddigari, V.; Kehtarnavaz, N. A relational approach to zoom tracking for digital still cameras. 
IEEE Trans. Consum. Electron. 2005, 51, 1051–1059. 

17. Wang, D.; Ding, F. Input-output data filtering based recursive least squares identification for 
cararma systems. Digit. Signal Process. 2010, 20, 991–999. 

18. Kamijo, K.; Tanigawa, T. Stock price pattern recognition-a recurrent neural network approach. In 
Proceedings of the International Joint Conference on Neural Networks, San Diego, CA, USA,  
17–21 June 1990; pp. 215–221. 

19. Sánchez, J.; Benet, G.; Simó, J.E. Video sensor architecture for surveillance applications. Sensors 
2012, 12, 1509–1528. 

20. Hu, H.G.; Xu, L.H.; Wei, R.H.; Zhu, B.K. Multi-objective control optimization for greenhouse 
environment using evolutionary algorithms. Sensors 2011, 11, 5792–5807. 

21. Jimenez-Fernandez, A.; Jimenez-Moreno, G.; Linares-Barranco, A.; Dominguez-Morales, M.J.; 
Paz-Vicente, R.; Civit-Balcells, A. A neuro-inspired spike-based PID motor controller for  
multi-motor robots with low cost fpgas. Sensors 2012, 12, 3831–3856. 

22. Yu, Z.P.; Wang, J.D.; Huang, B.A.; Bi, Z.F. Performance assessment of PID control loops subject 
to setpoint changes. J. Process. Control 2011, 21, 1164–1171. 

23. Bennett, S. A History of Control Engineering, 1930–1955; P. Peregrinus on behalf of the 
Institution of Electrical Engineers: London, UK, 1993; p. 48.  

24. Kehtarnavaz, N.; Oh, H.J. Development and real-time implementation of a rule-based auto-focus 
algorithm. Real-Time Imaging 2003, 9, 197–203. 

25. Peddigari, V.; Gamadia, M.; Kehtarnavaz, N. Real-time implementation issues in passive 
automatic focusing for digital still cameras. J. Imaging Sci. Technol. 2005, 49, 114–123. 



Sensors 2012, 12 8099 
 

 

26. Kuo, C.F.J.; Chiu, C.H. Improved auto-focus search algorithms for cmos image-sensing module.  
J. Inf. Sci. Eng. 2011, 27, 1377–1393. 

27. Burge, J.; Geisler, W.S. Optimal defocus estimation in individual natural images. Proc. Natl. 
Acad. Sci. USA 2011, 108, 16849–16854. 

28. Lee, J.-Y.; Wang, Y.-H.; Lai, L.-J.; Lin, Y.-J.; Chang, Y.-H. Development of an auto-focus 
system based on the moiré method. Measurement 2011, 44, 1793–1800. 

29. Åström, K.J.; Hägglund, T. Revisiting the ziegler-nichols step response method for PID control.  
J. Process Control 2004, 14, 635–650. 

30. Ho, W.K.; Hang, C.C.; Zhou, J.H. Performance and gain and phase margins of well-known PI 
tuning formulas. Control Syst. Technol. IEEE Trans. 1995, 3, 245–248. 

31. Huang, J.W.; Li, Z.N. Automatic detection of object of interest and tracking in active video.  
J. Signal Process. Syst. Signal Image Video Technol. 2011, 65, 49–62. 

32. Kumar, P.; Dick, A.; Sheng, T.S. Real Time Target Tracking with Pan Tilt Zoom Camera. In 
Proceedings of the 2009 Digital Image Computing: Techniques and Applications, Melbourne, 
Australia, 1–3 December 2009; pp. 492–497. 

33. Kwak, S.; Ko, B.; Byun, H. Salient human detection for robot vision. Pattern Anal. Appl. 2007, 
10, 291–299. 

34. Doğan, S.; Temiz, M.S.; Külür, S. Real time speed estimation of moving vehicles from side view 
images from an uncalibrated video camera. Sensors 2010, 10, 4805–4824. 

35. Lin, C.-C.; Wang, M.-S. A vision based top-view transformation model for a vehicle parking 
assistant. Sensors 2012, 12, 4431–4446. 

36. Garcia-Garrido, M.A.; Ocana, M.; Llorca, D.F.; Arroyo, E.; Pozuelo, J.; Gavilan, M. Complete 
vision-based traffic sign recognition supported by an i2v communication system. Sensors 2012, 
12, 1148–1169. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


