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Abstract: Wireless machine-to-machine sensor networks with multiple radio interfaces are 

expected to have several advantages, including high spatial scalability, low event detection 

latency, and low energy consumption. Here, we propose a network model design method 

involving network approximation and an optimized multi-tiered clustering algorithm  

that maximizes node lifespan by minimizing energy consumption in a non-uniformly 

distributed network. Simulation results show that the cluster scales and network parameters 

determined with the proposed method facilitate a more efficient performance compared to 

existing methods. 

Keywords: clustering algorithm; lifespan; machine to machine; multiple radio interfaces; 
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1. Introduction 

In machine-to-machine (M2M) sensor networks, individual nodes may be stationed in a non-uniform 

manner, depending on the topography of the environment and the specific application. In such cases, it 

is particularly important to form uniform clusters in the network. To this end, advanced sensor nodes 

with multiple radio interfaces are expected to have several advantages, including high spatial scalability, 
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low event detection latency, and low energy consumption [1]. However, it is also essential to develop 

methods to maximize network lifespan by minimizing the energy consumption of sensor nodes.  

Several hierarchical clustering methods (LEACH, PEGASIS, TEEN, etc.) have been suggested for 

increasing network energy efficiency, and a variety of cluster head (CH) election methods have been 

studied. In addition, a few advanced methods (M-LEACH, HEED, EEHC, etc.) have been proposed 

for mobile nodes such as those in an M2M sensor network [2]. However, these methods have several 

limitations. First, efficient cluster formation becomes more difficult with increasing network scale. 

Second, if the sensor nodes are not evenly distributed in the network environment, uniform cluster 

formation is impossible. 

Here, we propose a network modeling method and an energy-efficient clustering algorithm for 

advanced M2M sensor networks. We also present the results of simulations in which the proposed 

method is compared with existing methods. 

2. Related Research 

2.1. Low Energy Adaptive Clustering Hierarchy 

The LEACH [3] protocol is an energy-efficient protocol that extends system lifetime. LEACH is 

designed for sensor networks where an end-user wants to remotely monitor the environment. In such a 

situation, the data from the individual nodes must be sent to a central base station (BS), often located 

far from the sensor network, through which the end-user can access the data. There are several 

desirable properties for protocols on these networks:  

(1) Use 100 s–1,000 s of nodes  

(2) Maximize system lifetime  

(3) Maximize network coverage  

(4) Use uniform, battery-operated nodes  

Conventional network protocols, such as direct transmission, minimum transmission energy, multi-hop 

routing, and clustering all have drawbacks that don’t allow them to achieve all the desirable properties. 

LEACH includes distributed cluster formation, local processing to reduce global communication, and 

randomized rotation of the CHs. These features allow LEACH to achieve the desired objectives.  

2.2. Power-Efficient Gathering in Sensor Information Systems 

The PEGASIS [4] protocol is a chain-based protocol. In general, the PEGASIS protocol presents 

twice or more performance in comparison with the LEACH one. However, PEGASIS causes 

redundant data transmissions since one of nodes on the chain is selected as the head node, regardless of 

the BSs location. 

2.3. Threshold Sensitive Energy Efficient Sensor Network 

The TEEN [5] protocol is a hierarchical clustering protocol, which groups sensors into clusters with 

each led by a CH. The sensors within a cluster report their sensed data to their CH. The CH sends 

aggregated data to higher level CH until the data reaches the sink. Thus, the sensor network 
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architecture in TEEN is based on a hierarchical grouping where closer nodes form clusters and this 

process goes on the second level until the BS (Sink) is reached. TEEN is useful for applications  

where the users can control a trade-off between energy efficiency, data accuracy, and response time 

dynamically. TEEN uses a data-centric method with hierarchical approach. 

2.4. Multihop-LEACH 

A LEACH CH always transmits data directly to the BS, regardless of the distance between them. 

To reduce energy, the M-LEACH [6] protocol, another variant on the LEACH theme, chooses an 

optimal path between a CH and the BS through other CHs. These CHs transmit data to the CH which 

is nearest to BS. Finally, this CH sends data to BS. M-LEACH is almost the same as LEACH, but the 

difference is that the communication mode in M-LEACH is multi-hop between CHs and BS.  

M-LEACH has better energy efficiency than LEACH in many cases. 

2.5. Hybrid Energy-Efficient Distributed Clustering Approach 

HEED [7] is a hybrid: CHs are probabilistically selected based on their residual energy, and nodes 

join clusters such that communication cost is minimized. HEED parameters, such as the minimum 

selection probability and network operation interval, can be easily tuned to optimize resource usage 

according to the network density and application requirements. HEED achieves a connected multi-hop 

inter-cluster network when a specified density model and a specified relation between cluster range 

and transmission range hold. 

2.6. Energy Efficient Heterogeneous Clustering Approach 

EEHC [8] is a distributed randomized clustering algorithm that maximizes the lifetime of a network 

with a large number of sensor nodes. EEHC organizes the sensors in a network into clusters with a 

hierarchy of CHs. The CHs collect the information from the sensor nodes within their clusters and send 

an aggregated report through the hierarchy of CHs to the BS. EEHC assumes that communication 

environment is contention and error free. The energy consumed in network will depend on: (i) the 

probabilities of each sensor node becoming a CH at each level in the hierarchy and (ii) the maximum 

number of hops allowed between one cluster node and its CH. The optimal clustering parameters are 

obtained through hierarchical clustering to minimize the total energy consumption in the network. 

However, CHs in hierarchical model consume relatively more energy than other sensor nodes because 

CHs have more loads to handle. Hence, CHs may run out of their energy faster than other sensor 

nodes. Thus, EEHC can be run periodically for load balancing or triggered as the energy levels of the 

CHs fall below a certain threshold. 

3. Network Model Design and Energy-Efficiency Optimization 

3.1. Uniform Network Model 

Consider a non-uniform network, such as the one shown in Figure 1(a). The network is divided into 

sections centered around sink nodes to show the cluster density. Cluster formation in the low- and 
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high-density areas of this network occurs as shown in Figure 1(b,c), respectively. In these figures, the 

CH elects member nodes by using a logical-hop-count range and the shortest hop count in the 360° 

range. Figure 1(d) shows the result of hierarchical cluster formation. Shortest-hop-count-based 2-hop 

clustering was used at 60° intervals in order to generate the circles. In the angle range, the initial multi-hop 

cluster (C1) is created using the shortest hop count. The terminal node sends a CH create request 

message to nodes within D+1 hops from itself. CH2 and CH3 receive this request message as they are 

within D+1 hops from C1’s terminal node.  

Figure 1. Hierarchical uniform cluster formation. (a) Non-uniform network environment. 

(b) Cluster formation in Low-Density Area. (c) Cluster formation in High-Density Area. 

(d) Hierarchical cluster formation using the shortest-hop-count-based clustering. 

 

Thus, they form the new CHs of clusters C2 and C3. However, some nodes receive duplicate cluster 

join messages. Such nodes must decide which cluster to join on the basis of the communication cost. 

Therefore, the network model should be constructed as a multi-tiered structure: the first tier collects 

intracluster data and the second tier collects information on CHs; the second tier begins from the sink 

node and extends toward the interior of the cluster. 
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The scale and topography of each cluster differ since the node density differs. Thus, we propose the 

network approximation model shown in Figure 2. All networks are approximated by a multi-tiered 

network, shown by a circle of radius L, and the constructed clusters are represented by the small circles 

of radius R. The network model has a donut-shaped ring structure, which is convenient for forming a 

set of clusters located at the same distance from the sink node.  

Figure 2. Network approximation model. 

 

Both the first- and second-tier clusters are approximated by the same method, and data transmission 

begins from the outermost ring and progresses toward the interior in a gradual manner. Ultimately, the 

data are passed to the sink node. At the first tier, the transmission distance is less than that at the 

second tier and so a relatively small amount of data is transmitted. At the second tier, in contrast,  

a relatively large amount of data is transmitted.  Multiple radio interfaces are used for each tier to allow 

energy-efficient data transmission. Specifically, the first tier uses a low-speed radio interface and the 

second tier uses a high-speed radio interface. 

3.2. Use of Clustering Algorithm to Optimize Energy Efficiency 

The clustering algorithm proposed here allows the formation of clusters of similar scales by using 

the network approximation modeling algorithm shown in Algorithm 1. 

Algorithm 1. Proposed clustering algorithm to optimize energy efficiency. 

// Assign Initial-Value  

# own.ID ← own ID 

# src.ID ← received own.ID 

# sink ← first sink node ID 

# sink.toward ← src.ID 

# provisional.CH ← true 

# msg.odr.RSSI, own.msg.odr.RSSI ← 0 

# thrhold.RSSI ← ρ 

# bc.elect.msg ← src.ID, hop.count, msg.odr.RSSI 

# own.elect.msg ← own.ID, own.hop.count, own.msg.odr.RSSI 

DO (hop.count = 0)  
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Algorithm 1. Cont. 

// Broadcast of CH Election Order Message from the First Sink-node 

 IF (sink! = null) 

  msg.odr ← sink, hop.count 

  broadcast msg.odr 

  ELSE 

   BREAK 

 ENDIF 

   

 // Cluster Head Election and Elected Message Broadcasting 

 IF (get msg.odr(src.ID, hop.count)) THEN 

  own.msg.odr.RSSI ← RSSI value of msg.odr 

  ELSE IF (msg.odr.RSSI < thrhold.RSSI || own.hop.count < hop.count || msg.odr.RSSI < 

own.msg.odr.RSSI) 

   own.hop.count ← hop.count 

   own.msg.odr.RSSI ← msg.odr.RSSI 

   generate sink.toward 

   bc.elect.msg ← own.elect.msg 

   broadcast bc.elect.msg 

  ENDIF 

 ENDIF 

 

 // Compare RSSI 

 IF (get bc.elect.msg) THEN 

  elect.msg.RSSI ← RSSI value of elect.msg 

  ELSE IF (elect.msg.RSSI < thrhold.RSSI || own.hop.count < hop.count)  

 

IF (own.msg.odr.RSSI > msg.odr.RSSI) then 

    provisional.CH ← false 

    BREAK 

   ENDIF 

  ENDIF 

 ENDIF 

 // Repeat Cluster Head Election 

 IF (provisional.CH = true) THEN 

  SET self AS NEW CH 

  hop.count ← hop.count++ 

  broadcast msg.odr(own.ID, hop.count) 

 ENDIF 

WHILE (own.hop.count = ∞) 

The above algorithm begins broadcasting the CH election order message (msg.odr) from the initial 

sink node. msg.odr includes the ID of the node that transmitted the message (src.ID) and the hop count 

(hop.count) from the sink node. The neighboring nodes receive msg.odr and record the message signal 

strength (msg.odr.RSSI). For the clusters, there is a specified threshold value for the received signal 

strength indication (RSSI) (thrhold.RSSI), and only sensor nodes within the transmission range of the 
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circle can receive msg.odr for network approximation modeling. The nodes that receive msg.odr 

broadcast the CH election message (elect.msg), which includes src.ID, hop.count, and msg.odr.RSSI.  

The nodes that receive elect.msg compare own.hop.count with the received hop.count message. If 

they are not equal, then the comparison result is ignored and messages are received only from nodes 

within the circle. Then, the number of nodes that receive elect.msg is greater than the number of nodes 

belonging to Sx (set of nodes). The nodes that may belong to Sx compare own.msg.odr.RSSI with 

msg.odr.RSSI, which is contained in each received elect.msg. If their own value is less than the 

received value, they elect themselves as CHs. An elected CH is within the angle range, and it is the 

node farthest from the sink node, among the nodes that belong to Sx. The elected CHs increment 

hop.count by 1, broadcast msg.odr, and repeat the CH election process. There is a limit on the number 

of hops, and this limit is determined by the node density. Finally, they can assign their own cluster 

range and induct cluster members from the nodes within the range, as shown in Figure 1(d). 

In the above-suggested clustering algorithm, there is an upper limit for the density since there is no 

CH cluster without a CH in the previous hop being in the range of the thrhold.RSSI of the CHs.  

In addition, there is also a lower limit to the density since the CH election process is repeated until 

there are no nodes left. The upper and lower limits of the cluster density ρ are as follows: 

3

34

9

34
   (1)  

3.3. Maximum Energy Consumption 

To predict the network lifespan, we should determine the maximum energy consumption on the 

basis of the energy consumed by each node. To determine the maximum energy consumption, we 

define the (i,j)-th ring as the i-th ring in the first tier and the j-th ring in the second tier since each node 

is included in both tiers. 

The first and second rings in the two tiers are candidates for the node with the maximum energy 

consumption. Thus, the maximum energy consumption range is decided by concentric rings consisting 

of the (1,1)-, (1,2)-, (2,1) and (2,2)-th rings.  

The maximum energy consumption includes the wake-up energy, which is required to initialize the 

network from the sleep state. We propose that the maximum energy consumption rate is as follows: 
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The above formula can be used to compute the maximum average power (emax_avg) from the average 

energy consumption rate (Etime,i,j), amount of data periodically handled by each node (γ), and the  

wake-up energy required to switch from the idle mode or sleep mode for each node (Ewake-up). 

The average energy required for transmitting and receiving data in the (i, j)-th ring (Etime,i,j) is 

computed as follows: 
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(3)  

where the subscript Ft denotes the first tier, St denotes the second tier, (s) indicates transmitting, and (r) 

indicates receiving. In addition, the data transmitted from the x-th ring in the X-th tier (DSXt(s),x), energy 
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consumption rate of the radio interface for transmission (PXt(s),i), and ring width of each tier (RAXt,x)  

are required. 

The total energy consumption is obtained by multiplying the transmit and receive energies in each 

tier, and the average for each tier is the average of the values obtained by dividing the sum of the 

transmit and receive energies by the widths of the different rings. 

Consider a network of radius L in where each tier has a constant number of rings k and the 

transmission and reception power are PXs,x and PXr.x, respectively. Then, it can be formulated as follows. 

The data scale for transmitting and receiving is: 

222

1,, )12(( RxLDSDS xXrxXs     (4)  

The power consumption of the radio interface is: 

xC

xxxXrxXs RbaPP )2(,,   (5)  

The ring width is: 

)1(8 2

,  xkRA xXt   (6)  

Here ax, bx, and cx are constants for the radio interface, R is the radius of the cluster, and L is given 

by (2k − 1)·R. Each tier can be formed by the same method. However, the first tier does not have the 

same clusters as those in the second tier. Therefore, we can write R = (2k − 1)·r. 

The wake-up energy (Ewake-up) is the sum of the energies of all tiers, and it can be computed as follows: 
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where Nall is the total number of sensor nodes (it is used to calculate the density of the first-tier sensors) 

and WXt is the energy consumed during wake-up. The wake-up energy consumption of each tier is 

obtained by dividing WXt by πL
2
 and πR

2
 for each cluster scale. In each tier, all nodes should wake up 

once for data transmission. Thus, the energy consumption is the same in all tiers of the network. 

4. Performance Evaluation 

In this paper, we assumed only one sink to compare the proposed method with existing methods 

(M-LEACH, HEED, and EEHC) by considering the clear parameters shown in Table 1. 

In the simulation, we used CC2420 [9] for intracluster communication and IEEE 802.11g [10] for 

intercluster communication on the basis of technical standards for fair performance evaluation,  

the technical standards are obtained from experimental measurements performed in past studies [6–8]. 

The interface specifications are obtained by using the energy-consumption model of Equation (5) in 

the simulation. The results of the performance evaluation are shown in Figure 3. 

In Figure 3(a,b), the maximum energy consumption rates for different hop counts are shown for 

each tier. The shaded areas are excluded since the transmission distance in these areas exceeds the 

maximum transmission distance, rendering them unsuitable for practical use. The results show that the 

lowest value of the maximum energy consumption rate corresponds to xFt and xSt values of 1 and 4, 

respectively; xFt and xSt are the energy-efficiency-optimized hop counts in the two tiers. 
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Table 1. Simulation parameters. 

Description Value 

Network size 500 m/L 

Number of nodes 5,000 

Data aggregation energy 5 nJ/bit/report 

Initial energy 2.5 J 

Energy consumed for short distance transmission 10 pJ/bit 

Energy consumed for long distance transmission 0.0015 pJ/bit 

Energy consumed to send or receive a signal 50 nJ/bit 

Wake-up energy (CC2420 for 1st tier) 0.0347 mJ 

Wake-up energy (IEEE 802.11g for 2nd tier) 5 mJ 

Maximum transmission distance (CC2420) 60 m 

Maximum transmission distance (IEEE 802.11 g) 100 m 

Figure 3. Performance evaluation. (a) First-tier standpoint; (b) Second-tier standpoint;  

(c) Average service rate comparison; (d) Network lifespan comparison. 

 
  



Sensors 2012, 12 14860 

 

 

Figure 3(c) compares the number of available nodes as different nodes run out of energy. The results 

show that our algorithm has 7%, 3%, and 4% more available nodes than M-LEACH, HEED, and 

EEHC, respectively. In particular, we see that while the existing methods have lower energy efficiency 

at lower hop counts, this is not the case with our method. 

Figure 3(d) compares the network lifespan for different numbers of nodes. For M-LEACH, we see 

that when the density of nodes increases with the number of nodes, the energy consumption of CHs 

increases. The increase in the energy consumption is because of clustering, which results from the 

large value of the absolute hop count. Consequently, the network lifespan decreases because of the 

energy consumption of CHs in relatively high-density areas. HEED and EEHC show relatively longer 

lifespans. However, the proposed method leads to about 17% greater lifespan. 

5. Conclusions 

We propose a network model design method involving network approximation and an optimized 

multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a 

nonuniformly distributed network. Simulation results show that cluster scales and network parameters 

determined with the proposed method lead to more efficient performance compared to existing methods. 

Based on this research, therefore, we plan to devise methods to maintain uniform clusters in network 

environments with frequently changing topology. 
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