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Abstract: LiDAR (Light Detection And Ranging) systems are capable of providing 3D 
positional and spectral information (in the utilized spectrum range) of the mapped surface. 
Due to systematic errors in the system parameters and measurements, LiDAR systems 
require geometric calibration and radiometric correction of the intensity data in order to 
maximize the benefit from the collected positional and spectral information. This paper 
presents a practical approach for the geometric calibration of LiDAR systems and 
radiometric correction of collected intensity data while investigating their impact on the 
quality of the derived products. The proposed approach includes the use of a quasi-rigorous 
geometric calibration and the radar equation for the radiometric correction of intensity 
data. The proposed quasi-rigorous calibration procedure requires time-tagged point cloud 
and trajectory position data, which are available to most of the data users. The paper 
presents a methodology for evaluating the impact of the geometric calibration on the 
relative and absolute accuracy of the LiDAR point cloud. Furthermore, the impact of the 
geometric calibration and radiometric correction on land cover classification accuracy is 
investigated. The feasibility of the proposed methods and their impact on the derived 
products are demonstrated through experimental results using real data. 
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1. Introduction 

The importance of geometric calibration and radiometric correction of active remote sensing data 
has been emphasized for Japan Earth Resources Satellite-1 Synthetic Aperture Radar (JERS-1 SAR) [1], 
RADARSAT [2], European Remote-Sensing Satellite Synthetic Aperture Radar (ERS SAR) [3], and 
Advanced Land Observation Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS 
PALSAR) [4]. Different rigorous geometric and radiometric correction models were developed by 
considering the scanning geometry, backscattering mechanism, and terrain induced distortions [5]. It 
has been shown that these factors have significant influence on the derived data products. LiDAR 
systems have similar operational principles to RADAR and SAR systems. Laser energy is emitted and 
the backscattered energy from the object space is recorded by the LiDAR system. The backscattered 
energy and the time delay between the signal emission and reception are used to derive a 3D point 
cloud, which is represented by the XYZ coordinates and the intensity I representing the peak 
backscattered laser energy from the object. Due to systematic errors in the LiDAR system parameters 
and measurements, geometric calibration and radiometric correction of the positional and intensity data 
are essential to ensure the best accuracy of the delivered products. 

The geometric calibration of LiDAR systems aims at estimating and removing all the systematic 
errors from the point cloud coordinates such that only random errors are left. Systematic errors in the 
LiDAR data are mainly caused by biases in the system parameters, e.g., biases in the mounting 
parameters relating the system components (lever arm and boresight angles) and biases in the 
measured ranges and mirror angles. The elimination/reduction of such systematic errors or their impact 
has been the focus of the LiDAR research community in the past few years. The existing approaches 
can be classified into two main categories: system-driven (calibration) and data-driven (strip 
adjustment) procedures. This categorization is mainly related to the nature of the utilized data and 
mathematical model. System-driven (calibration) procedures are based on the physical sensor model 
relating the system measurements/parameters to the ground coordinates of the LiDAR points. These 
procedures incorporate the system’s raw data or at least the trajectory and time-tagged point cloud for 
the estimation of biases in the system parameters with the help of the LiDAR point positioning 
equation. In this paper, the term “raw data” is used to denote all the quantities present in the LiDAR 
point positioning equation (i.e., position and orientation information as well as the measured range and 
scan angle for each pulse). Moreover, the utilized sequence of rotation angles, which define the system 
attitude and boresight angles, have to be clearly specified. The access to the system raw measurements 
is usually restricted to LiDAR system manufacturers. Such a restriction has triggered the development 
of methods that only utilize the XYZ coordinates of the LiDAR point cloud. These methods are 
classified as data-driven (or strip adjustment) procedures [6-9]. The major drawback of such methods 
is the mathematical model employed to relate the LiDAR strips and the reference frame. The effects of 
systematic errors in the system parameters are usually modeled by an arbitrary transformation function 
between the laser strip and the reference frame coordinate systems. Depending on the nature of the 
inherent biases in the LiDAR system parameters, the utilized transformation function might not be 
appropriate. 

As already mentioned, rigorous geometric calibration procedures are based on the physical 
mathematical model (i.e., LiDAR point positioning equation) that involves the raw data [10-12] or at 
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least the trajectory and time-tagged point cloud [13-15]. In spite of the relaxed data requirements 
in [13-15], these methods have some shortcomings. For instance, in [13] and [14], only biases in the 
boresight angles are estimated during the calibration procedure. Moreover, the parameters describing 
the utilized surface in [13] are estimated within the calibration procedure. Thus, the number of 
estimated parameters depends on the extent of the area being utilized in the calibration procedure. The 
introduced procedure in [14] estimates the boresight angles using observed discrepancies between 
conjugate surface elements in overlapping LiDAR strips. The discrepancies are obtained through a 
matching procedure that uses interpolated data. The implemented matching procedure does not lead to 
accurate estimates of the horizontal discrepancies when compared to the estimated vertical 
discrepancy. Therefore, the estimated biases in the boresight pitch and heading angles are of lower 
accuracy than the boresight roll angle since the former lead to horizontal discrepancies while the latter 
leads to horizontal as well as vertical discrepancies among overlapping strips. In [15], point primitives 
are utilized to establish the correspondence between overlapping strips. Due to the irregular nature of 
the LiDAR points, the identification of distinct and conjugate points in overlapping strips is quite 
difficult and not reliable. Moreover, this method assumes that the true ground coordinates can be 
derived by averaging the coordinates of tie points in overlapping strips. The averaging process will not 
lead to the correct estimate of the LiDAR point in the presence of some systematic errors. Finally, the 
above studies did not elaborate on the required flight configuration and control requirement for a 
reliable and economic calibration technique. 

Radiometric correction of the LiDAR data is a relatively new research area. It aims at converting 
the recorded intensity data into the spectral reflectance of an object. The radar equation has been 
proposed for radiometric correction of the LiDAR intensity data in [16] and [17]. The radar equation 
considers the effects of the measured laser range, angle of reflection, and atmospheric attenuation to 
retrieve the surface reflectance in the near infrared red (NIR) spectrum. Radiometric calibration of 
LiDAR data is proposed by researchers at the Finnish Geodetic Institute in a number of recent 
publications [18-20]. This work is based on the utilization of reference targets (e.g., Spectralon 
reference plates) and ground features (e.g., beach sand and asphalt) to calibrate the LiDAR intensity 
data by comparing the measured reflectance with in situ measurements from spectroradiometer and 
NIR digital camera. The study has established that the homogeneity and the size of the calibration 
targets play a critical role in the radiometric calibration. Effects of the system parameters such as the 
aperture size [21] and the automatic gain control [22] have been also investigated. Practical methods 
were developed to eliminate the effects of these parameters through absolute correction and relative 
calibration approaches. 

Despite the previous research on geometric calibration of LiDAR systems and radiometric 
correction of the intensity data, the impact of these approaches on the quality of the derived products is 
still an open research area. This paper presents methods for geometric calibration and radiometric 
correction of airborne LiDAR data while evaluating their effect on the geo-positional accuracy and 
classification of the intensity data. The geometric calibration involves a quasi-rigorous procedure for 
the estimation of biases in the system parameters. The geo-positioning accuracy of the adjusted point 
cloud is assessed based on quantifying the degree of compatibility between LiDAR and control 
surfaces before and after the calibration process. The radiometric correction utilizes the radar equation 
to determine the spectral reflectance of objects. Then, land cover classification is conducted. Accuracy 
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assessment with checkpoints acquired from an orthophoto is used to assess and compare the 
classification results from the original and the geometrically calibrated and radiometrically corrected 
datasets. 

2. Geometric System Calibration 

In this section, the proposed geometric calibration procedure for the estimation of biases in the 
system parameters is described. This method, which is denoted as “Quasi-Rigorous” since it only 
requires the time-tagged point cloud and trajectory position data, utilizes LiDAR data in overlapping 
strips. Biases in the system parameters are estimated by reducing discrepancies between conjugate 
surface elements in overlapping strips and control data, if available.  

The proposed method will be explained in the following subsections. First, the mathematical model 
relating conjugate surface elements in overlapping LiDAR strips as well as overlapping LiDAR and 
control surfaces in the presence of systematic errors is derived. Based on the analysis of the derived 
mathematical model, remarks regarding the necessary flight and control configuration for LiDAR 
system calibration are outlined. The established mathematical model for the calibration procedure is 
derived based on point primitives (i.e., conjugate points in overlapping point cloud data). However, 
point-to-point correspondence cannot be assumed due to the irregular/semi-random nature of the 
LiDAR points. In this work, conjugate point and Triangular Irregular Network (TIN) patch pairs are 
proposed as primitives. A modification to the traditional Gauss Markov Stochastic model that would 
allow for the utilization of these conjugate primitives while using the established point-based 
mathematical model is finally described. 

2.1. Mathematical Model 

The coordinates of the LiDAR points are the result of combining the derived measurements from 
each of its system components, as well as the mounting parameters relating such components. The 
relationship between the system measurements and parameters is embodied in the LiDAR point 
positioning equation [23-24], Equation (1). The position of an object point Ԧܺீ is derived through the 
summation of three vectors ሺ Ԧܺ௢, ሬܲԦீ , and ݎԦ) after applying the appropriate rotations (ܴఠ,ఝ,఑, ܴ௱ఠ,௱ఝ,௱఑, 
and ܴௌഀఈ ௌഁఉ ) (refer to Figure 1). In this equation, Ԧܺ௢ is the vector from the origin of the ground 

reference frame to the origin of the Inertial Measurement Unit (IMU) coordinate system, ሬܲԦீ  (lever arm 
vector) is the offset between the IMU and laser unit coordinate systems (w.r.t. the IMU body frame), 
and ݎԦ is the laser range vector whose magnitude is equivalent to the distance from the laser firing point 
to its footprint. It should be noted that Ԧܺ௢ is derived through the Global Positioning System/ Inertial 
Navigation System (GPS/INS) integration process while considering the lever arm vector between the 
IMU body frame and the phase centre of the GPS antenna. The term ܴఠ,ఝ,఑ stands for the rotation 
matrix relating the ground and IMU coordinate systems—which is derived through the GPS/INS 
integration process. The term ܴ௱ఠ,௱ఝ,௱఑  represents the rotation matrix relating the IMU and laser unit 
coordinate systems—which is defined by the boresight pitch ሺ߱߂), roll ሺ߮߂), and heading ሺߢ߂) angles 
(considering the y-axis of the IMU body frame aligned along the flight direction), while the term ܴௌഀఈ ௌഁఉ refers to the rotation matrix relating the laser unit and laser beam coordinate systems with ߙ and ߚ being the mirror scan angles. ܵఈ and ఉܵ  are the scale factors of the angles measured by the 
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scanner, while ݎ߂ is a systematic error in the measured range. The involved quantities in the LiDAR 
point positioning equation are all measured during the acquisition process except for the mounting 
parameters (i.e., the lever arm and boresight angles), the scan angles scale factors, and the range error; 
these parameters are usually determined through a calibration procedure. 

Figure 1. Coordinate systems and involved quantities in the LiDAR point positioning equation. 

 
 Ԧܺீ = Ԧܺ௢ ൅ ܴఠ,ఝ,఑ ሬܲԦீ ൅ ܴఠ,ఝ,఑ܴ௱ఠ,௱ఝ,௱఑ܴௌഀఈ ௌഁఉ ൥ 00െሺݎ ൅  ൩ (1)(ݎ߂

Ԧܺீ = Ԧܺ௢ ൅ ൥ܿߢݏ݋ െ݇݊݅ݏ ݇݊݅ݏ0 ߢ ݏ݋ܿ 00 0 1൩ ൥ΔܺΔܻΔܼ൩ ൅ ൥ܿߢݏ݋ െ݇݊݅ݏ ݇݊݅ݏ0 ߢݏ݋ܿ 00 0 1൩ ൥ 1 െΔߢ Δ߮Δߢ 1 െΔ߱െΔ߮ Δ߱ 1 ൩ ൥െሺݎ ൅ Δ݊݅ݏ(ݎሺܵ0(ߚെሺݎ ൅ Δݏ݋ܿ(ݎሺܵߚ)൩
= Ԧܺ௢ ൅ ൥ܿߢݏ݋ െ݇݊݅ݏ ݇݊݅ݏ0 ߢ ݏ݋ܿ 00 0 1൩ ൥ܼ߂ܻ߂ܺ߂൩ ൅ ൥ܿߢݏ݋ െ݇݊݅ݏ ݇݊݅ݏ0 ߢݏ݋ܿ 00 0 1൩ ൥ 1 െߢ߂ ߢ߂߮߂ 1 െ߱߂െ߮߂ ߱߂ 1 ൩ ቈݖ0ݔ቉ (2) 

where 
,ܺ߂ – ,ܻ߂ are the components of the lever arm vector ሬܲԦீ ܼ߂ , 
– z is the vertical coordinate of the object point with respect to the laser unit coordinate system,  
– x is the lateral coordinate of the object point with respect to the laser unit coordinate system, 

which is the lateral distance (with the appropriate sign) between the LiDAR point in question and 
the projection of the flight trajectory onto the ground. 

The LiDAR point positioning mathematical model presented in Equation (1) can be simplified to 
the form in Equation (2) after considering the following assumptions: linear scanner, vertical system, 
and small boresight angles. For a linear scanner, the mirror is rotated in one direction only, leading to 
zero values for ߙ and ܵఈ. To simplify the utilized symbols, the scale factor ఉܵ will be represented here 
forth by ܵ. One should note that in Equation (2), we consider the convention of right-forward-up  
(X-Y-Z) coordinate systems for the laser unit and IMU body frame with the Y-axis aligned along the 
flight direction. The deterministic LiDAR equations for point positioning (Equations (1) and (2)) can 
be represented in a symbolic form by Equation (3). This equation indicates that the true coordinates of 
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a given point Ԧܺீሺܶ݁ݑݎ) is derived using the true values for the system parameters ݔ௧ and noise free 
measurements ݈௡௙. However, if we only have access to biased system parameters ݔ௕ as well as noisy 
measurements ݈௡, the bias/noise contaminated coordinates of a given point Ԧܺீሺܾ/݊) can be expressed 
by Equation (4). The expression in Equation (3) can be rewritten in the form in Equation (5), where ݔߜ 
denotes the biases in the system parameters and ݁ denotes the noise in the measurements: Ԧܺீሺܶ݁ݑݎ) = ݂ሺݔ௧, ݈௡௙) (3) Ԧܺீሺܾ/݊) = ݂ሺݔ௕, ݈௡) (4) Ԧܺீሺܶ݁ݑݎ) = ݂ሺݔ௕ െ ,ݔߜ ݈௡ െ ݁) (5)

Equation (5) can be expanded using Taylor’s series to the form in Equation (6) after ignoring 
second and higher order terms. This equation can be rewritten according to the form in Equation (7), 
which indicates that the bias/noise contaminated coordinates Ԧܺீሺܾ/݊) is equivalent to the summation 
of the true coordinates Ԧܺீሺܶ݁ݑݎ) and other terms that describe the impact of biases in the system 
parameters and noise in the system measurements. Starting from Equation (2), the mathematical 
expression for the impact of biases in the system parameters on the derived ground coordinates ߜ Ԧܺீ  is 
given in Equation (8): Ԧܺீ ሺܶ݁ݑݎ) ൎ ݂ሺݔ௕, ݈௡) െ ߲݂ ⁄ݔ߲ |௫್,௟೙ݔߜ െ ߲݂ ߲݈⁄ |௫್,௟೙݁ = Ԧܺீሺܾ/݊) െ ݔߜܣ  െ (݊/Ԧܺீሺܾ (6) ݁ܤ = Ԧܺீ ሺܶ݁ݑݎ) ൅ ݔߜܣ ൅ ݁ܤ = Ԧܺீሺܶ݁ݑݎ) ൅ ߜ Ԧܺீ ൅  (7) ݁ܤ

ߜ Ԧܺீ = ൥ܿܺ߂ߜ ߢݏ݋ െ ݇݊݅ݏ ܻ߂ߜ ൅ ߢ݊݅ݏ ݖ ߱߂ߜ ൅ ߢݏ݋ܿ ݖ ܺ߂ߜ ߢ݊݅ݏ ߮߂ߜ ൅ ݇ݏ݋ܿ ܻ߂ߜ െ ߢݏ݋ܿ ݖ ߱߂ߜ ൅ ߢ݊݅ݏ ݖ ܼ߂ߜ߮߂ߜ െ ߮߂ߜ ݔ ൩ 

൅ ቎െߢ߂ߜ ݔ ߢ݊݅ݏ െ ݇ݏ݋ܿ (ߚሺܵ݊݅ݏ ݎ߂ߜ ൅ ߢ߂ߜ ݔ ݇ݏ݋ܿܵߜ ߚ ݖ ߢݏ݋ܿ െ ߢ݊݅ݏ (ߚሺܵ݊݅ݏ ݎ߂ߜ ൅ ߢ݊݅ݏ ݖ ߚ െܵߜ (ߚሺܵݏ݋ܿ ݎ߂ߜ െ ݔ ߚ ܵߜ ቏ 

(8)

Having two conjugate points in overlapping strips, which will be denoted by subscripts A and B 
hereafter, the difference between the bias/noise contaminated coordinates of these points can be 
expressed by Equation (9). Since we are dealing with conjugate points in overlapping strips, the true 
coordinates of the respective points in strips A and B, i.e., Ԧܺீಲሺܶ݁ݑݎ) ܽ݊݀ Ԧܺீಳሺܶ݁ݑݎ), should be 
identical. Therefore, Equation (9) would reduce to the form in Equation (10), where ݁ is the combined 
vector of random errors. Using the established form of the impact of the biases in the system 
parameters on the ground coordinates (ߜ Ԧܺீ in Equation (8)), the discrepancy between the bias/noise 
contaminated coordinates of conjugate points in overlapping strips would take the form in 
Equation (11). In a similar fashion, if we are dealing with conjugate points in a LiDAR strip and 
control data, the difference between the coordinates of the control point and the bias/noise 
contaminated coordinates of the LiDAR point in the strip denoted by the subscript B can be expressed 
according to the form in Equation (12). Equations (11) and (12) are the final linear observation 
equations when dealing with overlapping strips and control data. Using conjugate points in 
overlapping LiDAR strips and control data, these equations allow for the recovery of biases in the 
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system parameters (ܺ߂ߜ, ,ܻ߂ߜ ,ܼ߂ߜ ,߱߂ߜ ,߮߂ߜ ,ߢ߂ߜ ,ݎ߂ߜ  ,Once these biases have been estimated .(ܵߜ
the adjusted coordinates of the LiDAR points can be derived according to Equation (13): Ԧܺீಲሺܾ/݊) െ Ԧܺீಳሺܾ/݊) = Ԧܺீಲ ሺܶ݁ݑݎ) ൅ ߜ Ԧܺீ஺ ൅ ஺݁ െ Ԧܺீಳሺܶ݁ݑݎ) െ ߜ Ԧܺீ஻ െ ݁஻ (9) Ԧܺீಲሺܾ/݊) െ Ԧܺீಳሺܾ/݊) = ߜ Ԧܺீ஺ െ ߜ Ԧܺீ஻ ൅ ஺݁ െ ݁஻ = ߜ Ԧܺீ஺ െ ߜ Ԧܺீ஻ ൅ ݁ (10) Ԧܺீಲሺܾ/݊) െ Ԧܺீಳሺܾ/݊) = ൥ሺܿߢݏ݋஺ െ ܺ߂ߜ(஻ߢݏ݋ܿ െ ሺߢ݊݅ݏ஺ െ ஺ߢ݊݅ݏሺܻ߂ߜ(஻ߢ݊݅ݏ െ ܺ߂ߜ(஻ߢ݊݅ݏ ൅ ሺܿߢݏ݋஺ െ 0ܻ߂ߜ(஻ߢݏ݋ܿ ൩ 

൅ ቎ ሺߢ݊݅ݏ஺ݖ஺ െ ߱߂ߜ(஻ݖ஻ߢ݊݅ݏ ൅ ሺܿߢݏ݋஺ݖ஺ െ ߮߂ߜ(஻ݖ஻ߢݏ݋ܿ െ ሺߢ݊݅ݏ஺ݔ஺ െ ஺ݖ஺ߢݏ݋െሺܿߢ߂ߜ(஻ݔ஻ߢ݊݅ݏ െ ߱߂ߜ(஻ݖ஻ߢݏ݋ܿ ൅ ሺߢ݊݅ݏ஺ݖ஺ െ ߮߂ߜ(஻ݖ஻ߢ݊݅ݏ ൅ ሺܿߢݏ݋஺ݔ஺ െ ஺ݔെሺߢ߂ߜ(஻ݔ஻ߢݏ݋ܿ െ ߮߂ߜ(஻ݔ ቏ 

൅ ቎െሾܿ݇ݏ݋஺ ݊݅ݏሺܵߚ஺) െ ݎ߂ߜ஻)ሿߚሺܵ݊݅ݏ ஻ߢݏ݋ܿ ൅ ሺܿߢݏ݋஺ݖ஺ߚ஺ െ (஺ߚሺܵ݊݅ݏ ஺݇݊݅ݏെሾܵߜ(஻ߚ஻ݖ஻ߢݏ݋ܿ െ ݎ߂ߜ஻)ሿߚሺܵ݊݅ݏ ஻ߢ݊݅ݏ ൅ ሺߢ݊݅ݏ஺ݖ஺ߚ஺ െ (஺ߚሺܵݏ݋െሾܿܵߜ(஻ߚ஻ݖ஻ߢ݊݅ݏ െ ݎ߂ߜ஻)ሿߚሺܵݏ݋ܿ െ ሺݔ஺ ஺ߚ െ ஻ݔ ܵߜ(஻ߚ ቏ ൅ ݁ 

(11)

Ԧܺீ಴೚೙೟ೝ೚೗ െ Ԧܺீಳሺܾ/݊) = ൥െܿߢݏ݋஻ ܺ߂ߜ ൅ ܺ߂ߜ஻ߢ݊݅ݏെܻ߂ߜ஻ߢ݊݅ݏ െ ܼ߂ߜെܻ߂ߜ஻ߢݏ݋ܿ ൩ 

൅ ൥െߢ݊݅ݏ஻ݖ஻ ߱߂ߜ െ ߮߂ߜ ஻ݖ஻ߢݏ݋ܿ ൅ ߱߂ߜ ஻ݖ஻ߢݏ݋ܿߢ߂ߜ஻ݔ஻ߢ݊݅ݏ െ ߮߂ߜ ஻ݖ஻ߢ݊݅ݏ െ ߮߂ߜ ஻ݔߢ߂ߜ ஻ݔ஻ߢݏ݋ܿ ൩ 

൅ ቎ܿߢݏ݋஻ ݊݅ݏሺܵߚ஻)ݎ߂ߜ െ ஻ߢ݊݅ݏܵߜ ஻ߚ஻ݖ஻ߢݏ݋ܿ ݎ߂ߜ (஻ߚሺܵ݊݅ݏ െ ஻ߚ஻ݖ஻ߢ݊݅ݏ ݎ߂ߜ (஻ߚሺܵݏ݋ܿܵߜ ൅ ஻ݔ ஻ߚ ܵߜ ቏ ൅ ሺ݁஼௢௡௧௥௢௟ െ ݁஻) 

(12)

൥ ෨ܻܺ෨ܼ෨൩஼௢௥௥௘௖௧௘ௗ = ൥ܼܻܺ൩஻௜௔௦௘ௗ െ ቎ܿߢݏ݋ መܺ߂ߜ െ ߢ݊݅ݏ መܻ߂ߜ ൅ ߢ݊݅ݏ ݖ መ߱߂ߜ ൅ መܺ߂ߜ ߢ݊݅ݏመ߮߂ߜ ݖ ߢݏ݋ܿ ൅ ߢݏ݋ܿ መܻ߂ߜ െ ߢݏ݋ܿ ݖ መ߱߂ߜ ൅ መܼ߂ߜመ߮߂ߜ ݖ ߢ݊݅ݏ െ መ߮߂ߜ ݔ ቏ 

െ ቎െ߂ߜ ݔ ߢ݊݅ݏመߢ െ ݎመ߂ߜ(ߚሺܵ݊݅ݏ ߢݏ݋ܿ ൅ ߜ ߚ ݖ ߢݏ݋ܿ መܵܿ߂ߜ ݔ ߢݏ݋መߢ െ ߢ݊݅ݏ ݎመ߂ߜ(ߚሺܵ݊݅ݏ ൅ ߢ݊݅ݏ ݖ ߚ ߜ መܵെܿݏ݋ሺܵߚ) ݎመ߂ߜ െ ݔ ߚ ߜ መܵ ቏ 

(13)

The procedure for estimating the quantities ሺݔ, ,ݖ  in Equations (11) and (12) using the (ߚ and ߢ
available data (time-tagged point cloud and trajectory positions) can be summarized as follows: 

(I) For a LiDAR point mapped at time ݐ, we identify trajectory positions within a certain time 
interval ሺݐ െ Δݐ, ݐ ൅ Δݐ); 

(II) Then, a straight line is fitted through the selected trajectory positions to come up with a local 
estimate of the trajectory. After defining the local trajectory, the necessary quantities can be 
estimated as follows: 
 coordinate of the LiDAR point with respect to the laser unit coordinate-ݔ which is the ,ݔ 

system, i.e., the lateral distance with the appropriate sign between the LiDAR point in 
question and the projection of the flight trajectory onto the ground, can be determined by 
computing the normal distance between the LiDAR point and the interpolated trajectory 
that have been projected onto the ground; 
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ݖ  , which is the vertical coordinate of the LiDAR point with respect to the laser unit 
coordinate system, can be determine by subtracting the elevation of the laser beam firing 
point at time t, given by the interpolated flight trajectory, from the LiDAR point elevation; 

 which is the trajectory heading, can be computed once we have the local estimate of the ,ߢ 
trajectory and its direction (defined by the neighboring trajectory positions); and 

 β, which is the scan angle, can be computed by simple trigonometric operation using the 
estimated lateral distance ݔ and the trajectory height above ground ݖ. 

2.2. Remarks Regarding the Necessary Flight and Control Configuration for LiDAR Calibration 

Analyzing the mathematical expressions for the discrepancies between bias/noise contaminated 
coordinates of conjugate points in overlapping strips—Equation (11)—as well as the discrepancies 
when dealing with control data—Equation (12), one can make the following 
observations/recommendations regarding the preferred flight and ground control configuration for 
reliable estimation of biases in the system parameters: 

1. Using only overlapping strips, one cannot estimate the vertical bias in the lever arm ܼ߂ߜ—this 
term is absent in Equation (11). Such inability is caused by the fact that a vertical bias in the 
lever arm produces the same effect regardless of the flying direction, flying height, or scan 
angle—refer to Equation (8). In other words, a bias in the vertical component of the lever arm 
would not lead to discrepancies among overlapping strips regardless of the flight configuration. 

2. The impact of the range bias ݎ߂ߜ is flight direction independent for parallel flight lines (i.e., the 
impact is identical for flight lines flown in opposite directions). As can be seen in Equation (8), 
the range bias affects the coordinates of the points in the vertical direction (major component) 
as well as the planimetric component across the flight direction (minor component)— sinሺܵߚ) ا cosሺܵߚ)  in the range of the utilized scan angles (e.g., א ߚ   ሾെ25°, ൅25°ሿ ). 
Therefore, the vertical discrepancy is expected to be more useful than the planimetric 
discrepancy for the estimation of the range bias. However, the vertical discrepancy – which is 
caused by the range bias—among overlapping strips will be almost zero since cosሺܵ1 ≈(ߚ for 
the above mentioned scan angle range. Therefore, the estimation of the range bias would be 
quite difficult to estimate by evaluating/observing the discrepancies among overlapping strips. 

3. The impacts of biases in the boresight heading angle ߢ߂ߜ and the mirror angle scale ܵߜ are 
flight direction independent for parallel flight lines (i.e., the impact is identical for flight lines 
flown in opposite directions). 

4. Having opposite flight lines with 100% overlap is optimal for the recovery of the planimetric 
biases in the lever arm (ߜΔܺ,  Δܻ) as well as the biases in the boresight pitch and roll anglesߜ
,Δ߱ߜ)  Δ߮). In such a case, the impact of these biases on the strip-pairs will be doubled whileߜ
the discrepancies arising from other biases will be eliminated. 

5. The impact of biases in the lever arm on the introduced discrepancies is independent of the 
flying height. However, the impact of the biases in the boresight angles increases with an 
increase in the flying height. Moreover, for a given flight height and relatively flat terrain  
(i.e., ݖ஺ ܽ݊݀ ݖ஻ are almost constant in the overlap area), there is a strong correlation between 
the biases in boresight pitch ߜΔ߱ and the planimetric component of the lever arm in the flight 
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direction ߜΔܻ. To avoid such a correlation, it is recommended to have opposite flight lines with 
100% overlap ratio captured at different flying heights. Larger height difference between the 
flight pairs would be recommended as long as the point density in the higher flight lines is not 
too low to jeopardize the ability of identifying conjugate primitives.  

6. Having two parallel flight lines with less than 100% overlap is necessary for the estimation of 
the bias in the boresight heading angle ߜΔߢ. For such a case, biases in the lever arm would not 
lead to any discrepancies among overlapping strips. Moreover, biases in the boresight pitch and 
roll angles (ߜΔ߱ and ߜΔ߮, respectively ) would not lead to any planimetric discrepancies 
among conjugate points in overlapping strips. The bias in the boresight heading angle ߜΔߢ 
would cause a constant planimetric discrepancy among overlapping strips (along the flight 
direction). The bias in the boresight roll angle ߜΔ߮ would cause a constant vertical discrepancy 
among overlapping strips. An increase in the lateral distance between the parallel strips would 
lead to larger discrepancies, which in turn will have a positive impact on the reliability of the 
boresight heading and roll bias estimation (for parallel flight lines in the same direction, ݔ஺ െ  .(஻ = lateral distance between the stripsݔ

7. To estimate biases in the vertical component of the lever arm ߜΔܼ and range measurement ߜΔݎ, 
control information is necessary. For these biases, vertical control would be sufficient since it 
will allow us to observe the discrepancy between the LiDAR and the control surfaces in the 
vertical direction—refer to Equation (12). Having said that, one should note that there will be 
high correlation between the impacts of these biases. As can be observed in the third line in 
Equation (12), the impact of the range bias (ܿݏ݋ሺܵߚ) ݎ߂ߜ) is almost constant in the range of the 
utilized scan angles (i.e., ܿݏ݋ሺܵߚ)  ൎ  1  for א ߚ  ሾെ25°, ൅25°ሿ ) and therefore, it will be 
correlated with the impact of the bias in the vertical component of the lever arm (െߜΔܼ). To 
avoid such a problem, one can rely on in-situ measurements of the vertical lever arm and only 
solving for the range bias during the calibration process. 

8. For reliable estimation of the bias in the mirror angle scale ܵߜ, well distributed data in the 
across flight direction should be used (this distribution will exhibit the nonlinear discrepancy 
pattern associated with this bias as can be seen in Equations (11) and (12)). 

Based on the above discussion, one can conclude that the optimal/minimal flight and control 
configuration for the estimation of the system parameters consists of three overlapping pairs and one 
vertical control point. More specifically, two strip pairs, which are captured from two flying heights in 
opposite directions with 100% overlap, and two parallel flight lines, which are flown in the same 
direction with the least overlap possible, are needed. As for the parameters to be estimated, due to high 
correlation, it is not recommended to simultaneously solve for the vertical bias in the lever arm ܼ߂ߜ 
and the range error ߜΔݎ.  

2.3. Least Squares Adjustment Model and Primitives 

The mathematical model that has been developed so far is based on the availability of conjugate 
points in overlapping strips, Equation (11), or a LiDAR strip and a control surface, Equation (12). 
Assuming that such conjugate points exist, observations representing the discrepancy between these 
points follow the traditional Gauss Markov Stochastic model in Equation (14). The Least Squares 
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Adjustment (LSA) procedure aims at estimating the unknown parameters, which minimize the sum of 
squares of weighted residuals in Equation (15), which would lead to the solution in Equations (16–19) [25]: : ݕ = ݔܣ ൅ ݁         ݁~ሺ0, (ߑ ݁ݎ݄݁ݓ ߑ =  ௢ଶܲିଵ (14)ߪ

where 
 ,is the nx1 vector of observations (discrepancies between conjugate points) ݕ –
 ,is the mx1 vector of unknowns (biases in the system parameters) ݔ –
 is the nxm design matrix, and ܣ –
– ݁ is the nx1 vector of random noise, which is normally distributed with a zero mean and variance-

covariance matrix Σ 
 ௢ଶ is the a-priori variance factorߪ –
– ܲ is the weight matrix of the noise vector ்݁ܲ݁ = ݉݅݊|௫ (LSA Target Function) (15)ݔො = ሺܣ்ܲܣ)ିଵݕ்ܲܣ = ܰିଵݕ்ܲܣ  (Solution Vector) (16)݁̃ = ݕ െ ොሽݔሼߑො  (Predicted Residuals) (17)ݔܣ = ଵି(ܣ்ܲܣො௢ଶሺߪ = ො௢ଶߪො௢ଶܰିଵ  (Variance-Covariance Matrix) (18)ߪ = ሺ்݁̃ܲ݁̃)/ሺ݊ െ ݉)  (A-posteriori Variance Factor) (19)

For LiDAR data, there is no point-to-point correspondence between overlapping strips or between a 
given strip and a control surface. Therefore, the abovementioned LSA solution cannot be used to come 
up with an estimate of the biases in the system parameters. Therefore, the following subsections will 
deal with the necessary modification to the stochastic model in Equation (14) to allow for the 
estimation of biases in the system parameters without having conjugate points in overlapping strips. 
First, we will discuss the conjugate primitives that could be identified in overlapping LiDAR strips 
(point-patch pairs). Then, we will discuss the modification of the stochastic model that would allow for 
the utilization of these conjugate primitives for the estimation of biases in the system parameters. 

2.3.1. Proposed Primitives 

In this research, one of the strips, denoted by S1, is represented by the original points while the 
second strip, denoted by S2, is represented by triangular patches, which can be derived from a TIN 
generation procedure. When control surface is used, it will be represented by the original control points 
(due to its sparse nature) and the LiDAR strips will be represented by triangular patches. It is important 
to note that the utilized discrete control points do not need be identifiable in the LiDAR surfaces. 
Having TIN patches with varying orientation (slope and aspect) overlapping the control points will 
contribute towards better estimation of all biases. The correspondence between points in S1 and patches 
in S2 is established using the closest patch procedure as shown in [26-27]. In this procedure, a TIN 
patch is deemed conjugate to a given point if it is the closest patch to this point. In addition, the point-
patch separation (normal distance n) should not exceed a pre-defined threshold. Finally, the point 
projection onto the patch should be located inside the TIN patch (Figure 2a). 
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Figure 2. (a) Point-patch correspondence procedure and (b) the additional unknown vector 
D following the calibration procedure. 

 
(a) (b) 

For a given point-patch pair, we will assume that one of the vertices of the TIN patch in S2 is 
conjugate to the corresponding point in S1. Note that any vertex of the TIN patch can be selected, as 
will be clarified in the next section. The TIN vertex in S2 and the point in S1 for a point-patch pair are 
denoted as pseudo-conjugate points (Figure 2b). Starting from Equation (9), the mathematical model 
describing the discrepancy between pseudo-conjugate points will take the form in Equation (20). The 
stochastic model describing the discrepancy in Equation (20) can be represented by the Gauss Markov 
Stochastic model in Equation (21). The difference between this model and the one in Equation (14) is 
the additional unknown vector D resulting from using non-conjugate points along a point-patch pair 
(Figure 2b). It should be noted that the additional unknown vector D is in the plane of the TIN patch 
under consideration (i.e., the component of this vector along the normal to the TIN patch is zero): Ԧܺீಲሺܾ/݊) െ Ԧܺீಳሺܾ/݊) = Ԧܺீಲ ሺܶ݁ݑݎ) ൅ ߜ Ԧܺீ஺ െ Ԧܺீಳሺܶ݁ݑݎ) െ ߜ Ԧܺீ஻ ൅ ݁= ߜ Ԧܺீ஺ െ ߜ Ԧܺீ஻ ൅ ܦ ൅ ݁ (20) 

where: 

ܦ – = Ԧܺீಲሺܶ݁ݑݎ) െ Ԧܺீಳሺܶݕ (݁ݑݎ = ݔܣ ൅ ܦ ൅ ݁    ݁~ሺ0, (ߑ ݁ݎ݄݁ݓ ߑ =  ௢ଶܲିଵ (21)ߪ

2.3.2. Modified Least Squares Adjustment 

The main objective for the development of the modified LSA is to deal with the model in 
Equation (21) while eliminating the unknown vector D from the parameters to be estimated. To 
explain the modification process, we will start by changing the stochastic properties of the random 
noise vector as represented by Equation (22). As it can be seen in this equation, the unknown vector D 
belongs to the null space of the modified weight matrix ܲ`. Such a condition signifies that the modified 
weight matrix is not positive-definite (i.e., the inverse matrix ܲ`ିଵ  does not exist). Therefore, the 
modified variance-covariance matrix will be represented as follows: Σ`ሼ݁ሽ =  ௢ଶ ܲ`ା, where the plusߪ 
sign indicates the Moore-Penrose pseudoinverse). Starting from the modified variance-covariance/weight 
matrix and the LSA principles, the solution will be derived below: ߑ`ሼ݁ሽ = ௢ଶ ܲ`ାߪ  where ܦ`ܲ = 0  (22) 

n
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Using the modified weight matrix, the LSA target function can be redefined as per Equation (23). 
Since the additional unknown vector D belongs to the null space of the modified weight matrix 
(i.e., ܲ`ܦ = 0), then the LSA target function in Equation (23) reduces to the form in Equation (24). 
Thus, the solution ݔො to the LSA target function is defined by Equation (25), refer to Appendix A for 
more details. Using the law of error propagation, the variance-covariance matrix of the solution 
vector Σሼݔොሽ is shown in Equation (26), refer to Appendix A for the detailed derivation: ்݁ܲ`݁ = ሺݕ െ ݔ ܣ െ ݕሺ`்ܲ(ܦ െ ݔ ܣ െ (ܦ = ݉݅݊|௫,஽ LSA Target Function (23)்݁ܲ`݁ = ሺݕ െ ܣ ݕሺ`்ܲ(ݔ െ ܣ (ݔ = ݉݅݊|௫ LSA Target Function (24)ݔො = ሺܣ`்ܲܣ)ିଵݕ`்ܲܣ = ܰିଵݕ`்ܲܣ Estimated Unknowns (25)ߑሼݔොሽ = ௢ଶܰିଵ Variance-Covariance Matrixߪ (26)

The last step is to estimate the a-posteriori variance factor ߪො௢ଶ by deriving the expected value of the 
sum of squares of weighted predicted residuals. Starting from Equation (27), one can derive an 
estimate for the a-posteriori variance factor according to Equation (28), where q is the rank of the 
modified weight matrix ܲ` – refer to Appendix A for the detailed derivation: ܧ൫்݁̃ܲ`݁̃൯ = ݕሼሺܧ െ ොݔܣ െ ݕሺ`்ܲ(ܦ െ ොݔܣ െ ሽ(ܦ = ݕ൛ሺܧ െ ݕො)்ܲ`ሺݔܣ െ ො)ൟݔܣ = ሺݍ െ ො௢ଶߪ ௢ଶ (27)ߪ(݉ = ሺݕ െ ݕො)்ܲ`ሺݔܣ െ ݍො)/ሺݔܣ െ ݉) (28)

In summary, from an implementation point of view, the LSA solution to the stochastic model in 
Equation (29) can be derived using Equations (25), (26) and (28). This solution is similar to that of the 
traditional Gauss Markov model (Equations (16), (18) and (19)) with the exception that the redundancy 
is evaluated as the difference between the rank of the modified weight matrix and the number of 
unknowns. Thus, the modification in the weights of the noise vector allows for the elimination of the 
additional unknown vector D while having almost no impact on the traditional LSA (i.e., the solution 
is obtained using the traditional solution for the Gauss Markov Model in the absence of the additional 
unknown vector): ݕ = ݔܣ ൅ ܦ ൅ ݁      ݁~൫0, ൯`ߑ ݁ݎ݄݁ݓ `ߑ = ௢ଶܲ`ାߪ ܽ݊݀ ܦ`ܲ = 0 (29) 

So far, we established that by modifying the weight matrix to satisfy the condition in Equation (22), 
one can derive an estimate of the biases in the system parameters while dealing with non-conjugate 
points along corresponding point-patch pairs. The question now is how to derive the modified weight 
matrix ܲ`. This can be established according the following procedure. First, one starts by defining a 
new coordinate system (ܷܸܹ), where the ܷܸ axes are aligned along the TIN patch involved in the 
current point-patch pair (i.e., W is parallel to the TIN patch normal). The relationship between the ܻܼܺ 
and ܷܸܹ coordinates—assuming that the two systems share the same origin—can be expressed by 
Equation (30). The rotation matrix ܯ can be defined using the direction of the normal to the TIN patch 
as well as the direction of the ܷ and ܸ axes along the TIN plane (one should note that the choice of the ܷ or ܸ directions is quite arbitrary): ൥ ܷܹܸ ൩ = ܯ ൥ܼܻܺ൩ (30) 
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The weight matrix of the transformed coordinates in the ܷܸܹ system can be derived from the law 
of error propagation according to Equation (31). This weight matrix is then modified according to 
Equation (32): 

௎ܲ௏ௐ = ܯ ௑ܲ௒௓்ܯ = ൥ ௎ܲ ௎ܲ௏ ௎ܲௐ௏ܲ௎ ௏ܲ ௏ܲௐௐܲ௎ ௐܲ௏ ௐܲ ൩ (31) 

 ௎ܲ௏ௐ` = ൥0 0 00 0 00 0 ܲௐ൩ (32)

Finally, the modified weight matrix in the ܻܼܺ coordinate system is defined by Equation (33). 
Using the modified weight matrix in Equation (33), one can show that  ௑ܲ௒௓` ܦ  = 0 —Refer to 
Equations (34) while noting that the ܦ vector is aligned along the TIN plane (refer to Figure 2b). It 
should be noted that the weight modification will be carried out for all the TIN patches of the 
established correspondences; whether for point-patch pairs in overlapping strips or point-patch pairs in 
LiDAR and control surfaces:  ௑ܲ௒௓` = ்ܯ ௎ܲ௏ௐ` `௑ܲ௒௓  (33) ܯ ܦ = `௎ܲ௏ௐ ்ܯ ܯ ൥ܻܼ݀ܺ݀݀൩ = ்ܯ ௎ܲ௏ௐ` ൥ܷ݀݀0ܸ ൩ = ்ܯ ൥0 0 00 0 00 0 ܲௐ൩ ൥ܷ݀݀0ܸ ൩ = 0 (34)

In summary, the proposed Quasi-rigorous calibration procedure proceeds as follows: 

1. The correspondence between points in S1 and patches in S2 is established using the closest 
patch procedure as explained in [26] and [27]. 

2. For each conjugate point-patch pair from overlapping LiDAR strips, (e.g., patch vertex Ԧܺீಳሺܾ/݊) in S2 and point Ԧܺீಲሺܾ/݊) in S1), one can write the observation equations similar to 
those in Equation (11). 

3. When a control surface is used, it is represented by the original points (due to its sparse 
nature) and the LiDAR strips are represented by triangular patches. Then, for each 
conjugate point-patch pair, one can write the observation equations similar to those in 
Equation (12). It is important to mention that the observation equations can be written for 
all LiDAR strips which overlap with the control surface. 

4. For each conjugate point-patch pair, the weight of the observed discrepancy vector  ሺ Ԧܺீಲሺܾ/݊) െ Ԧܺீಳሺܾ/݊)) should be modified using Equations (31–33). 
5. The established correspondences and the corresponding observations with their modified 

weight matrices are used to derive an estimate of the system biases. Then, the estimated 
system biases are used to reconstruct an adjusted point cloud using Equation (13).  

6. Following the reconstruction of the LiDAR point cloud, the correspondence between 
point-patch pairs might change. Therefore, a new set of correspondences has to be 
established. The new correspondences are then utilized to derive a better estimate of the 
system biases.  

7. Such a procedure is repeated until the corrections to the estimated calibration parameters 
are almost zero. 
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One should note that each pair of pseudo-conjugate points provides three observations of the form 
in Equation (11) or Equation (12). However, these three observations increase the redundancy by only 
one (the rank of the modified weight matrix for these three equations is one—refer to Equation (32)). 
In other words, the three observations would increase the redundancy by three if and only if the 3D 
discrepancy between the pseudo-conjugate points is considered. After the weight modification process, 
the 2D discrepancy between the pseudo-conjugate points along the TIN plane (the unknown vector ܦ) 
is ignored during the minimization process. Therefore, only the discrepancy between the  
pseudo-conjugate points along the TIN normal is only minimized during the modified LSA (thus, the 
three observations only increase the redundancy by one). Since the modified LSA only minimizes the 
normal distance between a point in S1 and the corresponding TIN in S2, the topography in the overlap 
area should have different slope and aspect values to ensure reliable estimates of the bias parameters. 

2.4. Impact of the Geometric Calibration on the Relative and Absolute Accuracy 

The impact of the geometric calibration on the relative accuracy of the LiDAR point cloud can be 
assessed by checking the degree of compatibility between conjugate surface elements in overlapping 
strips before and after reconstructing the point cloud using the estimated biases. In this work, the 
compatibility will be evaluated qualitatively and quantitatively. The qualitative evaluation will be 
performed by visual inspection of profiles generated using the original and adjusted point cloud to 
check any improvements in the quality of fit between overlapping strips. The quantitative assessment, 
on the other hand, will be performed by computing the necessary 3D transformation parameters for the 
co-alignment of overlapping strips before and after the calibration procedure. For the computation of 
the 3D transformation parameters, the proposed Iterative Closest Patch (ICPatch) procedure in [26] 
and [27] will be employed. 

The impact of the geometric calibration on the absolute accuracy can be evaluated by quantifying 
the degree of compatibility between LiDAR and control surfaces before and after the calibration 
process. From an implementation point of view, such a procedure would not always be feasible due to 
the control surface requirement. In this work, linear features extracted from the LiDAR data before and 
after the calibration process are used for the geo-referencing of an image block covering the same area. 
The absolute accuracy of the derived ground coordinates from the geo-referenced image block is 
evaluated using a check point analysis. The adopted methodologies for linear features extraction and 
their utilization for the photogrammetric geo-referencing are detailed in [27] and [28], respectively. 

3. Radiometric Correction and Land Cover Classification 

The physical properties of the laser energy are considered with respect to the sensor configuration 
and environmental parameters using the radar equation, which is proposed to model the power of the 
received signal [29]. The radar equation can be presented as follows: 

௥ܲ = ௧ܲܦ௥ଶ4ݎߨସߚ௧ଶ  (35) ߪ௔௧௠ߟ௦௬௦ߟ

In this equation, the received signal power Pr depends on the transmitted signal power Pt, receiver 
aperture diameter Dr, range from the sensor to the target r, laser beam width βt, system-specific factor 
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ηsys, atmospheric transmission factor ηatm, and target (backscattering) cross-section σ, which depends 
on the target characteristics and is defined as follows: ߪ = Ωߨ4  ௦ (36)ܣ௦ߩ

In the above equation, Ω is the scattering solid angle, As is the target area, and ρs is the target 
spectral reflectance.  

The radiometric correction aims at converting the intensity value I into the spectral reflectance ρs by 
considering the parameters described in the radar equation. It is assumed that the intensity I represents 
the peak value of Pr and the LiDAR data providers linearly transform Pr into 8 bit values to represent 
the intensity data, which is used in the radar equation [17]. The receiver aperture diameter Dr, laser 
beam width βt, and system-specific factor ηsys are considered to be constant during the flight mission. 
The range r of each laser pulse is the distance between the instantaneous location of the sensor and the 
target. This range is critical for the radiometric correction since the attenuation of the laser energy is 
directly proportional to the distance of travel [19]. The scattering solid angle is derived as the cosine of 
the angle between the surface normal and the direction of the laser pulse [30] based on the assumption 
of a Lambertian reflectance. The transmitted laser energy Pt, though is usually unknown, can be 
assumed as constant or can be related to the pulse repetition frequency (PRF) [20]. The atmospheric 
attenuation ηatm depends on the temperature, pressure, and humidity during the flight survey. These 
parameters can be obtained from the nearest weather observatory station. Details on the radiometric 
correction process can be found in [31]. 

Land cover classification is conducted to evaluate the impact of the geometric calibration and the 
radiometric correction of the LiDAR data on the final data products. Two datasets are prepared from 
the original and modified LiDAR data after geometric calibration and radiometric correction. Each set 
of data includes the interpolated digital surface model and the interpolated intensity. Four land cover 
classes (tree, grass, soil and built-up area) are identified in both datasets. Using the same training sites, 
Maximum likelihood classification is conducted on both datasets and finally the classification results 
are evaluated by conducting an accuracy assessment using check points, which can be generated from 
an orthorectified aerial photo. The overall accuracy and kappa coefficient are used to evaluate the 
classification results. 

4. Study Area and Dataset 

A real LiDAR dataset was acquired to test the feasibility of the proposed methods. The study area 
covers the British Columbia Institute of Technology (BCIT) located at Burnaby, British Columbia, 
Canada (122°59’W, 49°15’N). The area contains buildings and parking lots connected by sidewalks 
and paved road segments. Individual shrubs and open spaces covered by grass can also be found in the 
surveyed area. The LiDAR mission was conducted on July 17, 2009 from 14:37 to 15:15 local time. 
The day of the mission was a sunny day with a temperature of 29.8 °C. The visibility and the pressure 
were 48.3 km and 101.81 kPa, respectively, as delivered by the National Climate Data and Information 
Archive from Environment Canada. The LiDAR sensor used was a Leica ALS50 operating at a 1.064 
μm wavelength with 0.33 mrad beam divergence. The captured LiDAR data consists of six strips that 
cover a 1 km by 2 km area. The configuration of the flight lines is shown in Figure 3. The acquired 
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data consists of a 3D point cloud with multiple returns in LAS format together with the trajectory data. 
The average point density of the LiDAR data acquired using the flying height H1 (1150 m) is  
1.5 points/m2 while for the flying height H2 (540 m) the average point density is 3.7 points/m2. In the 
surveyed area, thirty-seven control points were established by a GPS survey. These control points were 
used for the geometric calibration and check point analysis to evaluate the absolute accuracy of the 
adjusted point cloud.  

Figure 3. Flight and control configuration of the LiDAR dataset. 

 

5. Results and Discussion 

5.1. Geometric Calibration 

In addition to testing the feasibility of the proposed geometric calibration procedure, we would like 
to investigate whether the calibration results are significantly different when using more overlapping 
strip-pairs than the minimum recommended configuration as discussed in Section 2.2. Table 1 shows 
the different investigated scenarios. Experiment “I” utilizes all the available overlapping strip-pairs  
(4 overlapping strip-pairs) without any control information. Experiment “II”, on the other hand, 
utilizes all the available overlapping strip-pairs and 37 vertical ground control points. Experiment “III” 
utilizes the 4 overlapping strip-pairs with only 1 vertical control point. Finally, experiment “IV” 
utilizes the minimum recommended overlapping strip-pairs configuration (3 overlapping strip-pairs) 
and 37 vertical ground control points. 
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Table 1. Experiments description (used overlapping strip-pairs and number of control points). 

Experiment Overlapping Strip-Pairs Number of Control Points 
I 1&2, 3&4, 4&5, 5&6 0 
II 1&2, 3&4, 4&5, 5&6 37 
III 1&2, 3&4, 4&5, 5&6 1 
IV 1&2, 4&5, 5&6 37 

 
As already mentioned, for the estimation of the biases in the vertical component of the lever arm ሺߜΔܼ) and range measurement ሺߜΔݎ), control information is necessary. However, they cannot be 

estimated simultaneously due to the high correlation among them. Therefore, in the calibration 
process, we only solve for the range bias while relying on the field/in-situ measurements for the 
vertical component of the lever arm. For reliable estimation of the bias in the mirror angle scale ሺߜS), 
well distributed data in the overlapping area in the across flight direction was manually selected for the 
calibration process. Table 2 reports the estimated biases in the system parameters for the different 
experiments. One can note in Table 2 that a significant bias in the boresight roll angle ሺߜΔ߮) is 
detected in all experiments (refer to the highlighted cells in Table 2). One can also observe a  
non-negligible bias in the boresight pitch angle ሺߜΔ߱). By comparing experiments “I” and “II”, we 
can observe compatible results for the estimated mounting parameters. This is expected, since the 
addition of vertical control information will mainly contribute to the estimation of the range bias. 
When comparing experiments “II” and “III”, we can note that with the reduction in the number of 
utilized GCP, the estimated range bias is not significantly changed. Hence, one can conclude that a 
single vertical GCP would be sufficient for the estimation of the range bias as long as it is observed in 
several strips (in this dataset, the control point was visible in 5 strips). Finally, experiment IV shows 
that the recommended minimum flight configuration is capable of producing reliable estimates for the 
biases in question. In experiment IV, the estimated parameters, which are showing the largest variation 
when compared to the estimated parameters in experiments I, II, and III, are the boresight pitch and 
heading biases. This can be attributed to a correlation of 0.63 between the boresight heading and pitch 
biases and a correlation of 0.72 between the boresight heading bias and the planimetric component of 
the lever arm in the along-flight direction. In experiments I, II, and III, these correlations are close to 
zero. This increased correlation can be explained by the fact that the overlapping strip-pair 5&6, which 
is the overlapping strip-pair whose configuration contributes most towards the estimation of the 
boresight heading bias (i.e., parallel strips flown in the same direction), didn’t have enough features in 
the overlapping region with topography/buildings exhibiting varying slope and aspect. Therefore the 
addition of one more overlapping strip-pair improved the results. 

Table 2. Estimated biases in the system parameters for the different experiments. 

Experiment 
 ࢄઢࢾ
(m) 

 ࢅઢࢾ
(m) 

 ઢ࣓ࢾ
(") 

 ࣐ઢࢾ
(") 

 ࣄઢࢾ
(") 

 ࣋ઢࢾ
(m) 

 ܁ࢾ

I 0.01 0.00 −29.5 −88.7 3.0 - 0.0002656 
II 0.00 0.00 −29.0 −91.0 3.6 0.118 0.00010377 
III 0.01 0.00 −29.5 −89.6 3.5 0.142 0.00009348 
IV 0.02 0.05 −38.8 −90.7 −32.1 0.115 0.00003607 
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5.2. Impact of the Geometric Calibration on the Relative and Absolute Accuracy 

To evaluate the impact of the geometric calibration on the relative accuracy, the compatibility of 
overlapping strips before and after the calibration procedure (using the different experiment scenarios) 
is assessed. The compatibility of the point cloud is evaluated qualitatively and quantitatively. The 
qualitative evaluation is performed by visual inspection of profiles generated using the original and 
adjusted point cloud to check any improvements in the quality of fit between overlapping strips. The 
improvement in the strips compatibility is illustrated in Figure 4, which shows a profile covered by 
strips 1 (in blue), 2 (in red), 3 (in green), and 4 (in magenta) along the X direction before and after the 
calibration procedure using the different scenarios. The quantitative assessment, on the other hand, is 
performed by computing the necessary 3D transformation parameters for the co-alignment of 
overlapping strips before and after the calibration procedure. The computed transformation parameters 
are reported in Table 3. As it can be seen in this table, large discrepancies can be observed before the 
calibration procedure, especially in the across flight direction between strips flown in opposite 
directions (XT direction for strips 1&2, and YT direction for strips 3&4 and strips 4&5—refer to the 
circled cells in Table 3). This is expected since a larger bias was estimated in the boresight roll angle, 
which mainly affects the across-flight direction, i.e., constant shift across the flight direction and a 
rotation around the flight direction [27]. One can also observe significant improvement after the 
calibration procedure for such strips in the across and along flight directions (refer to the highlighted 
cells in Table 3) due to the accurate estimation of the biases in the boresight roll and pitch angles. On 
the other hand, minor improvement can be observed for strips 5&6. This is due to the fact that for 
strips flown in the same direction the boresight roll bias only causes a constant vertical shift between 
conjugate surfaces elements with a much smaller magnitude while the boresight pitch bias would not 
lead to any discrepancies.  

The qualitative and quantitative evaluations demonstrate compatible results from the different 
investigated scenarios. One should finally note that the range bias, which was removed in the 
experiments using control information, does not lead to significant discrepancies among conjugate 
surface elements in overlapping strips. Therefore, we cannot evaluate the introduced improvement 
when adding the range bias in the calibration process by checking the compatibility among 
overlapping strip-pairs. Such an analysis is done next in the absolute accuracy verification. 
For all investigated scenarios, significant improvement in the planimetric accuracy can be observed 
(refer to the highlighted cells). This can be explained by the fact that the main detected bias in the 
studied dataset is in the boresight roll and pitch angles, which mostly affect the horizontal accuracy. 
One can also note that when reducing the number of utilized overlapping strip-pairs (experiment IV), 
the results are not negatively affected. For the experiments using control information (experiments II, 
III, and IV), where we solved for the range bias, we can observe that the bias value in the vertical 
direction has been significantly reduced (refer to the circled values in Table 4). Similar to what has 
been established in the relative accuracy evaluation, increasing the number of ground control points 
did not improve the absolute accuracy. 
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Figure 4. Profiles along the X direction over a building covered by strips “1” (in blue), “2” 
(in red), “3” (in green), and “4” (in magenta); (a) Before the calibration procedure;  
(b) After the calibration procedure using the configuration in “I”; (c) After the calibration 
procedure using the configuration in “II”; (d) After the calibration procedure using the 
configuration in “III”; and (e) After the calibration procedure using the configuration 
in “IV”. 
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Table 3. Discrepancies between overlapping strips before and after applying the calibration parameters estimated using the different scenarios. 

Before Calibration 
After Calibration 

I II III IV 

1&2 

XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) 
1.1073 −0.2994 −0.0062 0.1078 0.0305 −0.0483 0.0976 0.0266 −0.0495 0.1025 0.0297 −0.0489 0.0845 0.0211 −0.0489 

ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) 
0.0008 −0.0535 −0.0039 0.0011 −0.0047 −0.0042 0.001 −0.0032 −0.0041 0.001 −0.004 −0.0041 0.0011 −0.004 −0.0038 

3&4 

XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) 
−0.1734 −0.371 −0.0195 −0.0105 0.0629 −0.0057 −0.0098 0.0467 −0.0042 −0.01 0.0378 −0.0044 0.0046 0.0589 −0.0038 

ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) 
−0.0414 −0.0003 0.0005 −0.0046 −0.0007 0.0023 −0.0003 −0.0008 0.0022 −0.0014 −0.0007 0.0026 0.001 −0.0008 0.0024 

4&5 

XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) 
0.1498 0.5741 −0.0802 −0.0116 0.0145 −0.0229 −0.0107 0.0128 −0.024 −0.0106 0.0024 −0.0244 −0.1032 0.0212 −0.0265 

ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) 
0.0528 0.0002 0.0025 −0.0064 0.0009 0.0025 −0.0053 0.0009 0.0026 −0.0049 0.0009 0.0026 −0.0027 0.0008 0.0025 

5&6 

XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) 
0.0338 0.1237 0.0768 0.0369 0.0704 −0.0281 0.0375 0.0606 −0.0281 0.0379 0.0536 −0.0271 −0.002 0.0702 −0.0248 

ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) ω(deg) φ(deg) κ(deg) 
0.0078 −0.0009 −0.0081 −0.0035 −0.0009 −0.0088 −0.0008 −0.0009 −0.0087 −0.0012 −0.0009 −0.0088 0.0011 −0.0009 −0.0087 
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Table 4. RMSE analysis of the photogrammetric check points using extracted control 
linear features from the LiDAR data before and after the calibration procedure. 

 
Before Calibration

After Calibration 
 I II III IV 

Mean ΔX (m) −0.03 0.00 0.01 0.03 −0.01 
Mean ΔY (m) −0.18 0.04 0.03 0.04 −0.01 
Mean ΔZ (m) 0.15 0.13 0.02 −0.01 0.02 

σX (m) 0.11 0.06 0.06 0.06 0.06 
σY (m) 0.15 0.06 0.07 0.06 0.07 
σZ (m) 0.17 0.17 0.18 0.17 0.17 

RMSEX (m) 0.11 0.05 0.06 0.06 0.06 
RMSEY (m) 0.23 0.07 0.07 0.07 0.07 
RMSEZ (m) 0.23 0.22 0.17 0.17 0.17 

RMSETOTAL (m) 0.34 0.23 0.20 0.19 0.19 

5.3. Radiometric Correction 

To assess the impact of radiometric correction, the variance-to-mean ratio of the intensity values for 
the whole dataset are plotted against the surface slope before and after the radiometric correction 
(Figure 5). The variance-to-mean ratio represents the inverse of the signal-to-noise ratio where small 
amount of variance-to-mean ratio implies less noise within the data. Therefore, a reduction in the 
variance-to-mean ratio indicates a reduction in the noise within the intensity values. The purpose of 
plotting this ratio against the slope is to evaluate the variation of the intensity values with respect to the 
different topographic conditions. As can be seen in Figure 5, the variance-to-mean ratio is reduced 
after the radiometric correction by approximately 20% to 30% (therefore, improved signal content is 
achieved by the radiometric correction). In general, the reduction is larger when dealing with slopes of 
30° or less. For slopes greater than 30°, less pronounced reduction can be observed. This can be 
explained by the fact that the majority of features with slope greater than 30° belong to tree clusters 
where high variance of the intensity value is expected due to the irregular tree canopy. 

Figure 5. Variance-to-mean ratio of the intensity data (before and after radiometric 
correction) for different slopes. 
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To further assess the impact of the radiometric correction, the intensity values before and after 
radiometric correction are compared for different land cover classes that have been identified with the 
help of an overlapping orthophoto of the study area. This comparison is conducted to check whether 
the proposed procedure would have any impact on the homogeneity and separability of the 
investigated classes. Table 5 shows the mean and standard deviation of the intensity values for four 
land cover classes, which are used to investigate if there is any overlap of intensity values amongst 
different land cover features. In the original intensity data, there is an overlap amongst all the land 
cover classes. After radiometric correction, the mean values of the built-up areas, grassland, and soil 
are reduced by 17% to 24%. The standard deviation values are also reduced for these three classes by 
20% to 47%. There is also significant change in the intensity and standard deviation values for the 
grassland and tree classes. For the tree class, the standard deviation after radiometric correction is 
significantly increased (from 9.3 to 44.2) and the mean intensity value changed from 21.4 to 82.7. 
Despite this significant increase in the standard deviation of the intensity value after radiometric 
correction, the intensity range of the tree class does not have any overlap with the other three land 
cover classes. These results indicate that the homogeneity within most of the specified land cover 
classes is enhanced and the separability amongst all the different land cover classes is improved. 

Table 5. Mean and standard deviation of the intensity data for different land cover classes 
before and after radiometric correction. 

 Before Correction After Correction 
Built-Up Area 13.9 ± 4.1 10.6 ± 3.3 

Grassland 40.6 ± 9.5 32.7 ± 5.7 
Soil 24.7 ± 5.1 20.5 ± 2.7 
Tree 21.4 ± 9.3 82.7 ± 44.2 

5.4. Impact of the Geometric Calibration and Radiometric Correction on Land Cover Classification 

Using more than 1,000 check points that have been identified with the help of an orthophoto over 
the study area, we compared the four-land cover classification results (Tree, Built-up Area, Grass, and 
Soil) with the manual classification of the check points. Tables 6 and 7 show the confusion matrix, 
overall accuracy, and kappa coefficient of the classification results for the original and the 
geometrically calibrated/radiometrically corrected LiDAR data.  

Table 6. Confusion matrix of the classification results using original LiDAR dataset. 

 Tree Built-up Grass Soil Total KC 
Tree 130 40 20 18 208 0.464 

Built-up 119 386 12 16 533 0.486 
Grass 34 26 59 43 162 0.294 
Soil 20 16 10 61 107 0.502 

Total 303 468 101 138 1010  
Overall Accuracy = 63.0% Average Kappa Coefficient (KC) = 0.442 
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Table 7. Confusion matrix of the classification result using geometrically calibrated and 
radiometrically corrected LiDAR dataset.  

 Tree Built-up Grass Soil Total KC 
Tree 153 23 12 4 192 0.725 

Built-up 62 399 23 23 507 0.593 
Grass 37 35 94 26 192 0.402 
Soil 11 24 19 65 119 0.486 

Total 263 481 148 118 1010  
Overall Accuracy = 70.4%  Average Kappa Coefficient (KC) = 0.558 

The overall classification accuracy using the intensity from the original LiDAR data is about 63.0%. 
After geometric calibration and radiometric correction, the overall accuracy increased to 70.5%. The 
kappa coefficient has also increased from 0.442 to 0.558. Considering each individual land cover class, 
the kappa coefficient of the tree and built-up features are found to be always lower than 0.5 using the 
original LiDAR dataset. After geometric calibration and radiometric correction, the kappa coefficient 
of the tree class increases from 0.464 to 0.725 and the kappa coefficient of the built-up class increases 
from 0.486 to 0.593. This improvement in the classification results is due to the high separability of the 
intensity values between different class features after the radiometric correction. A slight improvement 
of the kappa coefficient of the grass class can also be detected after the geometric calibration and 
radiometric correction. It can be also observed that the proposed process helps in reducing the 
confusion between grass and tree classes in LiDAR data classification. 

Figure 6. Comparison of classification results of original and the geometrically calibrated 
and radiometerically corrected LiDAR dataset. 
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Figure 6 shows the orthophoto used in the accuracy assessment process and the classification results 
of the intensity data before and after the geometric calibration and radiometric correction of the 
LiDAR data.  

One can note a significant impact of the geometric calibration and radiometric correction in the tree 
class areas. In Figure 6a, the tree cluster along the main road is misclassified as built-up area using the 
original intensity data. However, the intensity values of tree clusters have significantly increased after 
radiometric correction. This leads to correct classification result as shown in Figure 6b since the 
difference of intensity values between built-up area and tree has increased after radiometric correction. 
In figure 6c, the roof top in the study area is entirely misclassified as tree in the result from the original 
intensity data. The results are improved after using the geometrically calibrated and radiometrically 
corrected intensity data (Figure 6d). Generally, the results show that the geometric calibration and 
radiometric correction of the airborne LiDAR data has a significant positive impact on the 
classification process, which would ultimately lead to better feature extraction and object recognition. 

6. Conclusions and Recommendations for Future Work 

In this research, methodologies for the geometric calibration and radiometric correction of the 
LiDAR system and collected data have been presented. The introduced geometric calibration 
procedure is denoted as the Quasi-rigorous due the fact that few reasonable assumptions are made for 
its development. This method only assumes that we are dealing with an almost vertical LiDAR system, 
which is quite realistic for flight missions with a steady platform. To conduct such a calibration, we 
require time-tagged point cloud and trajectory position data. In contrast to the position and orientation 
information requirement for each pulse in the rigorous calibration, the Quasi-rigorous procedure only 
requires a sample of the trajectory positions at a much lower rate. Access to this type of data is not a 
concern. Since this calibration procedure derives approximations of some of the system raw 
measurements, the proposed procedure can provide as a by-product the necessary information for the 
radiometric correction of the LiDAR intensity data when system raw measurements are not available 
(i.e., improved scan mirror angles and ranges). It is important to mention that the introduced method is 
based on appropriate primitives (point-patch pairs) and do not require pre-processing of the LiDAR 
data. Moreover, the developed procedure provided a detailed analysis of the optimum flight and 
control configuration for reliable estimation of residual biases in the system parameters. The impact of 
the calibration process on the relative and absolute accuracy has been verified. The impact on the 
relative accuracy was evaluated by assessing the degree of compatibility between conjugate surface 
elements in overlapping strips before and after the geometric system calibration. The qualitative and 
quantitative assessments have demonstrated a significant improvement in the quality of fit between 
overlapping strips. The impact on the absolute accuracy was assessed by using the LiDAR data for 
photogrammetric georeferencing before and after performing the proposed geometric calibration 
procedure. The outcome of the photogrammetric reconstruction was evaluated through check point 
analysis. Significant improvement in the horizontal and vertical accuracy was demonstrated after 
removing the effect of estimated biases in the system parameters. Radiometric correction of the 
intensity data is also conducted on the geometrically calibrated LiDAR data to reduce the effects of 
atmospheric attenuation and scanning configuration. A physical model based on the radar equation is 
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used for radiometric correction of the intensity data. The correction considers the system parameters, 
topographic effect, and atmospheric attenuation. After the radiometric correction, the homogeneity of 
the land cover classes is improved and the variance-to-mean ratio of the intensity data is reduced. It 
also enhances the separability amongst the different land cover classes. Finally, land cover 
classification is performed to investigate the impacts of the geometric calibration and radiometric 
correction on the classification process. A 7.5% accuracy improvement has been achieved in the 
classification results after conducting the proposed procedures. 

Future work will focus on more testing using real datasets from operational systems. Also, the 
quasi-rigorous geometric calibration will be extended to include the attitude information in the 
calibration process. Furthermore, an automated procedure for the identification of useful areas within 
the data for reliable and faster estimation of the parameters will be implemented in the geometric 
calibration process. In addition, radiometric correction and land cover classification will be 
investigated by using full-waveform LiDAR data as it provides additional information (such as the 
transmitted laser pulse, the echo width, the cross section of the echo, etc.) comparing to the traditional 
multi-return LiDAR data. It is expected that the full-waveform LiDAR data will improve the point 
cloud density and the dimensionality of feature space leading to better classification and segmentation. 
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Appendix A  

Modified Least Squares 

1. Model ݕ = ݔܣ ൅ ܦ ൅ ݁      ݁~൫0, ൯`ߑ ݁ݎ݄݁ݓ `ߑ = ௢ଶܲ`ାߪ ܽ݊݀ ܦ`ܲ = 0 (A.1) 

2. LSA Target Function ߶ሺݔ, ,ݔሺ߶ (ܦ (ܦ = ்݁ܲ`݁ = ሺݕ െ ݔܣ െ ݕሺ`்ܲ(ܦ െ ݔܣ െ (ܦ = ݉݅݊|௫,஽ (A.2) 

Since ܲ`ܦ = 0: ߶ሺݔ, (ܦ = ߶ሺݔ) = ்݁ܲ`݁ = ሺݕ െ ݕሺ`்ܲ(ݔܣ െ (ݔܣ = ݉݅݊|௫ (A.3) 

Expanding Equation (A.3) we get: ߶ሺݔ) = ሺݕ െ ݕሺ`்ܲ(ݔܣ െ (ݔܣ = ݕ`்ܲݕ െ ݔܣ`்ܲݕ െ ݕ`்ܲܣ்ݔ ൅ ݔܣ`்ܲܣ்ݔ = ݉݅݊|௫ (A.4) 

Equation (A.3) can be simplified to: ߶ሺݔ) = ݕ`்ܲݕ ൅ ݔܣ`்ܲܣ்ݔ െ ݕ`்ܲܣ்ݔ2 = ݉݅݊|௫ (A.5) 

3. Solution Vector ݔො 

The solution vector ݔො  that minimizes ߶ሺݔ)  can be obtained by differentiating ߶ሺݔ)  w.r.t. ݔ  and 
equating it to zero: ߲߶߲ݔ = ݔܣ`்ܲܣ2 െ ݕ`்ܲܣ2 = 0 (A.6) ݔො = ൫ܣ`்ܲܣ൯ିଵݕ`்ܲܣ = ܰିଵݕ`்ܲܣ   where ܰ  (A.7) ܣ`்ܲܣ =

4. Variance-covariance matrix of the solution vector ߑሼݔොሽ 

Using the law of error propagation, the variance-covariance matrix of the solution vector Σሼݔොሽ can be 
obtained as follows: ߑሼݔොሽ=ߪ௢ଶܰିଵ்ܲܣ`ܲ`ାܲ`ିܰܣଵ (A.8) 
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Since for a pseudo inverse, ܲ`ܲ`ାܲ` = ොሽݔሼߑ [32] `ܲ = ௢ଶܰିଵܰܰିଵߪ =  ௢ଶܰିଵ  (A.9)ߪ

5. A-posteriori variance factor ߪො௢ଶ 

The a-posteriori variance factor ߪො௢ଶ is obtained by deriving the expected value of the sum squares of the 
weighted predicted residuals: ܧ൫்݁̃ܲ`݁̃൯ = ݕሼሺܧ െ ොݔܣ െ ݕሺ`்ܲ(ܦ െ ොݔܣ െ ሽ (A.10)(ܦ

Since ܲ`ܦ = 0, Equation (A.10) gets the form: ܧ൫்݁̃ܲ`݁̃൯ = ݕ൛ሺܧ െ ݕො)்ܲ`ሺݔܣ െ ො)ൟ (A.11)ݔܣ

Expanding Equation (A.11) while using the derived solution for ݔො in Equation (A.7) we get:  ܧ൫்݁̃ܲ`݁̃൯ = ݕ`்ܲݕ൛ܧ െ ൟ (A.12)ݕ`்ܲܣଵିܰܣ`்ܲݕ

Given that the trace of a scalar equals to the scalar, i.e., tr(S) = S and that the trace operation is 
commutative, i.e., tr(AB) = tr(BA) [32], Equation (A.12) can be manipulated as follows: ܧ൫்݁̃ܲ`݁̃൯ = ൯்ݕݕ`൫ܲݎݐ൛ܧ െ ൟ (A.13)(்ݕݕ`்ܲܣଵିܰܣ`ሺܲݎݐ

Based on the properties that tr(A) + tr(B) = tr(A+B) and that ܧሼݎݐሺܣ)ሽ =  Equation ,[32] (ܣሺܧݎݐ
(A.13) can be rewritten as follows: ܧ൫்݁̃ܲ`݁̃൯ = (்ݕݕሺܧൣ`ܲݎݐ െ ൧(்ݕݕሺܧ`்ܲܣଵିܰܣ = ௡ܫ൫`ܲݎݐ െ (A.14) (்ݕݕሺܧ൯`்ܲܣଵିܰܣ

where I୬ is an ݊݊ݔ identity matrix. 

The term ܧሺ்ݕݕ) can be derived from the variance-covariance matrix of the observations vector ߑሼݕሽ 
as follows: ߑሼݕሽ = ௢ଶܲ`ାߪ = ݕሼሺܧ െ ݔܣ െ ݕሺ(ܦ െ ݔܣ െ ሽ (A.15)்(ܦ

Expanding Equation (A.15) we get: ܧሺ்ݕݕ) = ௢ଶܲ`ାߪ ൅ ሺݔܣ ൅ ݔܣሺ(ܦ ൅ ்(ܦ = ௢ଶܲ`ାߪ ൅ ்ܣ்ݔݔܣ ൅ ்ܦݔܣ ൅ ்ܣ்ݔܦ ൅ (A.16) ்ܦܦ

Substituting Equation (A.16) in Equation (A.14) yields: ܧ൫்݁̃ܲ`݁̃൯ = ܫ൫`ܲݎݐ െ ௢ଶܲ`ାߪ൯ൣ`்ܲܣଵିܰܣ ൅ ்ܣ்ݔݔܣ ൅ ்ܦݔܣ ൅ ்ܣ்ݔܦ ൅ ൧ (A.17)்ܦܦ

Given that P`ܦ = 0, Equation (A.17) can be simplified to: ܧ൫்݁̃ܲ`݁̃൯ = ܫ൫`ܲݎݐ௢ଶߪ െ ା`ܲ`ܲݎݐ௢ଶߪ=൯ܲ`ା`்ܲܣଵିܰܣ െ (A.18) ܣ`ାܲ`ܲ`்ܲܣଵିܰݎݐ௢ଶߪ

Based on the property that ݎݐሺܤܣ) = (ܤܣሺ݇݊ܽݎ  (given that ܤܣ  is idempotent) and ݇݊ܽݎሺܤܣ) ൑min ሺܣ݇݊ܽݎ, (ሺܲ`ܲ`ାݎݐ :the following can be stated ,[32] (ܤ݇݊ܽݎ = (ሺܲ`ܲ`ା݇݊ܽݎ = ݉݅݊൫ܲ݇݊ܽݎ`, ା൯`ܲ݇݊ܽݎ = `ܲ݇݊ܽݎ = (A.19) ݍ

Given that ݎݐሺܲ`ܲ`ା) = `and that ܲ`ܲ`ାܲ (as shown in Equation (A.19)) ݍ = ܲ`, Equation (A.18) can 
be simplified to: ܧ൫்݁̃ܲ`݁̃൯ = ݍ௢ଶߪ െ ݍ௢ଶߪ=ଵܰିܰݎݐ௢ଶߪ െ ௠ܫݎݐ௢ଶߪ = ݍ௢ଶߪ െ ௢ଶ݉ (A.20)ߪ

where m is the number of unknown parameters.  
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Finally, we can get the expression for the a-posteriori variance factor ߪො௢ଶ as follows: ߪො௢ଶ = ݍ൫்݁̃ܲ`݁̃൯ሺܧ െ ݉)  (A.21)
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