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Abstract: Sensing and communication coverage are among the most important trade-offs
in Wireless Sensor Network (WSN) design. A minimum bound of sensing coverage
is vital in scheduling, target tracking and redeployment phases, as well as providing
communication coverage. Some methods measure the coverage as a percentage value, but
detailed information has been missing. Two scenarios with equal coverage percentage may
not have the same Quality of Coverage (QoC). In this paper, we propose a new coverage
measurement method using Delaunay Triangulation (DT). This can provide the value for all
coverage measurement tools. Moreover, it categorizes sensors as ‘fat’, ‘healthy’ or ‘thin’
to show the dense, optimal and scattered areas. It can also yield the largest empty area
of sensors in the field. Simulation results show that the proposed DT method can achieve
accurate coverage information, and provides many tools to compare QoC between different
scenarios.

Keywords: wireless sensor network; sensing coverage; communication coverage; quality of
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1. Introduction

Wireless Sensor Networks (WSNs) have attracted attention in much research on ad hoc networks. The
many challenges in successful WSN implementation include sensor scheduling, routing, re-deployment
and sensor movement. Since the WSN goal is to sense a phenomenon, in each challenge a fit tool to
measure sensing coverage is important to success.

Sensing coverage is defined [1] as the ratio of the sensible area to the entire desired area. While in the
ideal environment these areas must be equal (Deterministic Coverage), Zhang et al. [2] showed that the
sacrifice of a small amount of coverage (Stochastic Coverage) can increase network lifetime by 3 to 7
times. A gain in network lifetime is very important in WSN, where it is usually impractical to change or
charge the sensors’ batteries, and very costly to deploy new sensors on the field. Stochastic coverage is
widely accepted by researchers and WSN application designers. Like sensing coverage, communication
coverage is a deterministic factor which needs all the active sensors to be able to communicate with one
another. An important issue in any WSN is to check whether the communication coverage is complete
among active sensors.

A WSN mission is usually started by deploying a large number of sensors. A scheduling algorithm
defines different sets of sensors, which must each achieve a lower bound coverage value set in the mission
goal. When one set of sensors is activated, the rest are turned off and wait for their time triggers to
be activated. A scheduling algorithm can increase the lifetime of a WSN by reserving the energy in
redundant sensors.

One class of scheduling algorithm needs global information about sensors and their positions, while
others just work with local information gathered by each sensor about its neighbors. Either way, a good
scheduling algorithm that covers the whole network can prolong the network lifetime. However, different
methods to measure sensing coverage may give various results, which makes comparison hard. The term
of Quality of Coverage (QoC) has not been defined clearly enough to provide a judgment tool between
different coverage algorithms.

In this paper, we propose a new method to determine sensing/communication coverage, which
provides more detailed QoC information than its predecessors about the uniformity of coverage, which
has remarkable influence on network efficiency. This technique, based on Delaunay Triangulation (DT),
is useful in many different challenges of WSN.

Organizationally, Section 2 discusses the research background, prior methods for calculating sensing
coverage, and some previous research in WSN that used DT. Section 3 introduces the proposed coverage
measurement tool. Section 4 provides four methods for analyzing the DT results. The paper concludes

with Section 5.
2. Research Background

There are several ways to define coverage in WSNs, each with advantages and disadvantages. This
section discusses existing calculation methods, and presents other known applications of DT in WSN.
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2.1. Coverage Calculation Methods

The simplest measure of sensing coverage [3,4] divides the mission field into a grid of small squares,
each representing one sensible area that should contain at least one sensor: the exact location of sensors
inside the squares is ignored. The sensing coverage is the percentage of squares with at least one active
sensor inside.

The favorite definition of sensing and communication coverage is the circular model [2,5-8]. In this
model, the sensors have a sensing radius R, whose value could be a constant like R, = 20m [5], or
related to transmission range (R;) by Ry >= R,/v/3 [2] or R, = R,/2 [8].

The circular model with shadowing [1,9,10] is similar, but has an additional radius R, for a region
outside of the guaranteed sensing area, which is still sensible with some probability p > 0. Accordingly,
the sensing coverage integrates over all target locations the probability:

e [f the object is in R, range, it will be sensed with probability 1;
e If the object is between R, and R, it will be sensed with probability p;
e If the object is out of 17, range, it is not sensed.

Another way to quantify sensing coverage is circular probabilistic model [11-13], which is like the

circular model with shadowing effect when R, = 0. It integrates:
e If the object is in the R, range, it will be sensed with probability p;
e The value of p decreases with distance from the sensor.
e [f the object is out of the R, range, it is not sensed.

Soreanu et al. [14] give a non-unit-circular model for measuring the sensing coverage, with an
elliptical sensing area that the sensors can widen or narrow by using different power levels. These
adjustments can significantly improve the network coverage.

Voronoi decomposition [15-18] partitions the points of field into convex ‘area of influence’ polygons
around their nearest sensors. All previous work has used this as a clustering system to determine sensor
scheduling: coverage was still quantified using the circular model.

To the best of our knowledge, the probabilistic circular and non-unit-circular models, like Voronoi
decomposition, are used to determine whether or not a phenomenon can be detected, rather than to
quantify the overall coverage of a sensor network. Only the grid-based and the circular models are the
only methods so far that are employed to determine how much of the desired area is sensible.

2.2.  Delaunay Triangulation in WSNs

To quantify the Quality of Coverage (QoC) in the empty spaces between sensors requires a spatial
segmentation algorithm whose characteristics reveal the QoC information. Among the choices are the
Voronoi algorithm, the Gabriel graph [19] and triangulation methods. Voronoi creates a polygon around
each sensor. The Gabriel graph is a subgraph of the Delaunay triangulation edge graph, so its edges

divide the plane into larger polygons. A triangulation algorithm creates a graph of edges between sensors,
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which segment the plane into triangles, where many mathematical procedures are more practical than on
polygons with different numbers of vertices.

The Delaunay Triangulation (DT) is a geometrically optimized triangulation. It has many applications
in computer science, such as three dimensional (3D) modeling of objects and graph analysis. In WSN,
Wu et al. [20] used DT to find the largest free space inside a network for the next deployment target;
Wang et al. [21] found an optimal sensing coverage radius for each sensor for stochastic coverage with
reduced energy usage; Vu et al. [22] corrected Wang et al. [21], with a focus on optimizing sensing radii
for border sensors. Moreover, Calinescu [23] used DT to propose a localized routing algorithm.

To calculate DT requires global information: the exact position of all sensors in the network.
However, Calinescu [23] proposed a distributed algorithm for an estimated DT, calculated in parallel
in all sensors by their local information about their neighbors. Wang et al. [21] improved this to make
it closer to a DT. Satyanarayana et al. [24-26] based localized DT calculation methods on the same
concept, applied to ad hoc networks. Here we use global information and a classic DT algorithm, but
our different analysis methods may also be used in online decision making for sensors with a localized
DT algorithm.

3. Coverage Measurement Model

The current coverage measurement tools provide the sensible percentage of the desired field F/,
which cannot clarify the uniformity of coverage: how the uncovered areas are distributed. It has been
shown [27] that the uniformity of coverage has a great influence on the efficiency of WSN in target
tracking. Nittel et al. [28] and Ferentinos et al. [29] used a Mean Relative Deviation (MRD) formula to
grade the uniformity of coverage.

This paper defines Quality of Coverage (QoC) in terms of four concepts: the Probabilistic Distribution
Function (PDF) of the distance of each point in the field to its closest sensor (Coverage Resolution
Model); uniformity of coverage; the percentage of the sensors in the dense, perfect or scatter areas; and
the largest empty space between sensors.

Let P be the set of all points in F', S be the set of all sensors, and ||a, b|| indicate the distance from a
to b. The Coverage Resolution Model (CRM) is defined as a function C; as follows:

P — R (D)

p Ci = min ({lp, ;1))

showing the distance of closest sensor to each point in the field. This information enables finding the
overall coverage value based on circular model, the circular model with shadowing effect, and the
circular probabilistic model. It is not an array (since the set P is theoretically infinite) but can be
approximated by one, using a large set of sample points p;. The coverage model proposed in this paper
can find a good estimate for the CRM as well as other QoC information.

The coverage measurement tool proposed here uses partitioning via triangulation to identify the
coverage level in different areas of the field. There are different types of triangulation methods, but
an ‘optimized’ one maximizes the minimum angle of each triangle, making it more nearly equilateral.

Delaunay Triangulation (DT) is an example of this. A triangulation 7'(P) is a Delaunay Triangulation
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of P, denoted as DT'(P), if and only if the circumcircle of any triangle of 7T strictly contains no other
point of P. For more information about DT algorithms and application, see [30,31].
For a network with more than three sensors, DT is an optimal triangulation with the properties:

1. The outer polygon of the triangulation for a set of points is convex.

2. Each sensor is connected by triangle edges to its closest neighbors.

3. If no three sensors lie on one shared straight line, each has degree at least two.
4. The circumcircle of each triangle contains no other sensor.

Several methods [31] can find a DT, such as an incremental algorithm, or divide and conquer. They all
need global information (all sensors’ positions), making DT more applicable to global WSN applications.
However, local WSN applications can use DT as a benchmark measurement tool, to compare results
with other scheduling algorithms. Moreover, current localized DT algorithms, the results of this research
could be used for online decision making. Figure 1 shows a random deployment of sensors, with circular
coverage model (Figure 1(a)), Voronoi diagram (Figure 1(b)) and DT (Figure 1(c)).

Figure 1. A Sample With Different Coverage Model Approaches.
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3.1. Modification in DT

To use the DT as a WSN coverage measurement tool, we add two rules before generating the DT
graph. The first rule adds extra sensors at the corners of the field, assumed convex (in our examples,
a square), since as in Figure 1(c), the outer polygon of the coverage model may not cover all the field.
Since the outer polygon in DT is always convex, additional sensors on the field corners lead to a full
triangulation of the field as in Figure 1(d). Secondly, if three sensors cannot create a triangle because
they are collinear, we move one of them by a random multiple of 0.5 m to let the DT create a triangle.

4. Analysis Methods

This paper proposes five QoC parameters to analyze the DT. The first step finds local and global
communication coverage of a network. The second divides sensors into three categories: in dense,
scattered or perfect areas. The third extracts information from DT which easily shows the coverage
values for circular model with and without shadowing effect and probability, as well as uniformity of
coverage. The last finds the biggest empty area between sensors as a comparison parameter among
network planning applications.

4.1. Network Coverage Analysis

The term ‘network coverage’ is used for both sensing and communication. Communication network
coverage is the ability to send and receive packets to and from all the active sensors in the field. When
each sensor has at least one neighbor in its communication range, local communication coverage is
satisfied. When a sensor can send information to all active sensors in the field, via other sensors, general
communication coverage is achieved. Both local and global communication coverage are very important
for a WSN. Network Coverage Analysis (NCA) is a good tool to examine both.

To test local communication coverage, we use the Probabilistic Distribution Function (PDF) of just the
closest neighbor for each sensor, as provided by DT. This shows among other things, how many sensors
are completely alone, with no neighbor close enough. Figure 2(a) shows a distribution histogram of
nearest neighbors, for a random placement network of 600 sensors in a 1,000 m x1,000 m field. The
largest nearest-neighbor distance is about 100 m, while a majority of sensors are at 20 to 30 m from
their nearest neighbors. The complementary Cumulative Distribution Function (CDF) plot (Figure 2(b))
shows that about 10% of sensors are more than 50 m from any neighbor. This information is clearly
useful in examining communication coverage. For instance, if the communication range for sensors is
50 m, then 10% of sensors have no neighbor in contact, and the local communication coverage is 90%.

Global communication coverage is the ability of each sensor to send information to all others. If
a network fails this, its sensors divide into multiple intra-communicating segments, between which no
message can pass. NCA must check the global coverage, and the number of such segments. This may be
done by a spanning tree algorithm, on the graph of DT with triangle edges longer than transmission range
deleted. For example, Figure 3(a) shows global communication segmentation on a 1,000 m x 1,000 m
field where NV = 180 sensors with 100 m communication range are randomly deployed. Figure 3(b)
shows how increasing N can reduce the number of communication segments.
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Figure 2. The Nearest Neighbor Distance.
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Figure 3. Global Communication Coverage.
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4.2.  Sensor State Analysis

Number of Segments

[
>

bo

—_

—_
o

200

200 300
Number of Sensors

100

500

(b) Segment count versus sensor density

3169

A WSN usually starts by deploying many sensors in the mission field, but activating them all wastes

their energy as their coverage areas may have large overlaps. To avoid this problem, a scheduling pattern

turns some off. The overall coverage value can test the scheduling pattern, but further information may

help to explore the weaknesses of the scheduling algorithms.

Sensor State Analysis (SSA) is based on the number of close neighbors. Using this information, we

categorize sensors in three groups:

e Sensors with many close neighbors (Fat Sensors)

e Sensors with enough close neighbors (Healthy Sensors)
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e Sensors with few close neighbors (Thin Sensors)

The best thresholds for the close neighbor count in distinguishing these may depend on the
application, but as the square and hexagonal sensor placements have ideal coverage, we count a sensor
with 4 to 6 close neighbors as a healthy node. More than 6 indicates a fat sensor, and fewer than 4 thin
one. A high fat sensor count shows that some sensors in that area could be moved or turned off to save
energy. A high thin sensor count indicates uncovered areas, and some redeployment or re-activation is
needed to ensure coverage. Figure 4 color-codes the Fat, Healthy and Thin sensors for sensing coverage
ina 1,000 m x 1,000 m field with 30 m sensing range Figure 4(a) or 40 m range Figure 4(b). Sensors in
dense and non-dense environments are easily recognizable.

Figure 4. Fat, Healthy and Thin Sensors.
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4.3.  Coverage Resolution Analysis

The next information retrieved from DT is Coverage Resolution Analysis (CRA), whose aim is a good
estimate for CRM. Any three mutual neighbors 51, S; and S5 create a triangle 7". The farthest point from
them inside 7' is the center C' of its circumcircle. Let d, be the distance from S to Ss, and d,, the distance
from either to C. Equidistant S;, Sy and S3 make 7" equilateral, with a ratio d,/ds; = 1/ V3 ~ 0.58:
deviation from this indicates a less optimal triangle. CRA uses sensor distances to circumcircle centers
as a stand-in for those to every point in the field from its nearest sensor.

For CRA, we propose these steps. First, find the neighbors by a DT algorithm. Next, calculate the
average value of d,/d, for each triangle. These values are used as samples for the distances of all points
of the field to their nearest sensors. The results show that the histogram of distribution of these sample
points is very close to CRM (Figure 5). Moreover, it can be shown that the R-Square goodness of fit
from CRA to true CRM is quite close to the perfect fit value 1. Table 1 is based on 1,000 random samples
for each sensor density, in a 1,000 m x 1,000 m field.
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Figure 5. Comparing CRA with CRM.
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Table 1. The Goodness of Fit for CRM.

Sensor No. R-Square Mean R-Square Variance

100 0.9383 0.0016
200 0.9416 0.0018
300 0.9386 0.0015
400 0.9391 0.0019
500 0.9332 0.0014
600 0.9345 0.0012
700 0.9251 0.0022
800 0.9201 0.0025
900 0.9098 0.0026
1000 0.8977 0.0027

4.4.  Uniformity of Coverage

Uniformity of coverage was quantified in [28,29] by the Mean Relative Deviation (MRD) formula:.

Zz‘]\il |pSz B pSl

MRD =
N.ps

2)

where pg is the spatial density of the field and pg, is the spatial density for the i portion of the field. The
sets S; and S; for 7 # j may intersect, and a bigger intersection makes Equation 2 more precise. We call
this the window effect. Moreover, increasing the number N of samples leads to more accurate results.
However, by [28,29], increasing N and window size add dramatically to computational complexity.

To explore the window effect on Equation 2, we studied a 1,000 m x 1,000 m field with 600 randomly
placed sensors. The window size is from 100 m x 100 m to the maximum 1,000 m x 1,000 m, and each
step moves the window 1 m in x or y, for all possible N = 1,000,000 locations in the field.
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Figure 6. The effect of window size on MRD.
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As shown in Figure 6, window size has a significant effect in Equation 2, so it is not wise to reduce it
to save computation. To compare this method with our proposed algorithm, we show that even with the
maximum window size (the whole field), Equation 2 is less precise than our method.
We define Uniformity of Coverage (UoC) as the relative standard deviation of the length of lines
connected to each vertex (sensor).

UoC = o0,/5 3)
= 22k )
N

where [; ;, is the distance between connected sensors ¢ and £, and 7y, is the number of lines.

Smaller is better for both UoC and MRD, and zero means absolute uniformity. The best known
uniform distributions are grid and hexagonal deployments. For hexagonal deployment UoC is zero, as
every line connected to each sensor has the same length and so their standard deviation is zero. To
compare UoC and MRD we choose a random deployment and a grid deployment of 600 sensors in a
1,000 m x 1,000 m field, and apply two different changes to test the sensitivity of the algorithms. First,
one sensor is deleted to see any changes in UoC and MRD. Then, one sensor is moved, to test the
sensitivity of each algorithm to small movements.

As Table 2 shows, MRD detected no change in uniformity value in either grid and random deployment
when the sensor moved about 1m. The UoC increase detects that moving a sensor in the grid deployment
reduces uniformity. Moreover, one would expect a grid deployment to have higher uniformity value than
a random one, but the MRD results do not reflect that: for random deployment the MRD is 0.1105, and
for grid deployment 0.1168. Again, one expects removing a sensor from a grid deployment to reduce
uniformity, but the MRD result is the opposite.

Thus, UoC is more sensitive and more accurate for measuring the uniformity of coverage than the

MRD measure proposed in [28,29].
4.5. Largest Empty Circle

One feature of an optimized triangulation is that no vertex v is inside the circumcircle of any triangle
whose corners do not include v. So, the circumcircle of a DT triangle is the largest empty space among
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Table 2. Comparing UoC and MRD methods.

Random Deployment Grid Deployment

UoC MRD UoC MRD
Normal 0.6325 0.1105 0.0644 0.1168
Movement (1 m) 0.6324 0.1105 0.0646 0.1168

Movement (10 m) 0.6321 0.1104 0.0650 0.1168
Removing one sensor | 0.6321 0.1101 0.0654 0.1160

three vertices, or in other words, three sensors. This concept has already been used by [20], as the Largest
Empty Circle (LEC), to determine the best position for the next sensor deployment. Here, we propose
this property to find the largest uncovered area in a WSN.

To find the LEC of a WSN in a field F, first find the circumcircle of every triangle in F', then trim
those which extend outside F'. The biggest area among all circles is the LEC, a good benchmark to
compare QoC among different applications. Its radius shows the deepest point in the field, farthest from
the nearest sensors. If this value is lower than the sensing coverage, an application knows for sure that it
fully covers the mission field.

Figure 7 shows two scenarios with very close circular coverage, but unequal LEC value.

Figure 7. LEC Position And Size in Sample 1 And Sample 2.
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5. Conclusions

Proper information about the coverage in a Wireless Sensor Network could have high impact on the
algorithms designed to provide it. Older coverage measurement tools just provide a simple ratio of
covered to desired area. Finding the shape of the coverage on the field could help researchers to create
more uniform coverage and to prolong the network lifetime. In this paper, we have proposed a new
measurement scheme, based on DT, which gives detailed information about the areas between sensors,

distance between sensors, and fat, healthy and thin sensors. This information can improve understanding
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of the coverage properties of different coverage promising algorithms, and comparison among them.
This work is funded by Fundamental Research Grant Scheme (FRGS) under project number 78458.
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