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Abstract: For mobile imaging systems in head mounted displays and tele-operation 

systems it is important to maximize the amount of visual information transmitted to the 

human visual system without exceeding its input capacity. This paper aims to describe the 

design constraints on the imager and display systems of head mounted devices and  

tele-operated systems based upon the capabilities of the human visual system. We also 

present the experimental results of methods to improve the amount of visual information 

conveyed to a user when trying to display a high dynamic range image on a low dynamic 

range display. 

Keywords: high dynamic range; tone mapping; sensor design; human factors; head 
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1. Introduction 

Imagers are commonly designed with the goal of producing a system with the lowest power, widest 

dynamic range, fastest frame rates, etc. However with frame rates of >10,000 fps [1,2] and dynamic 

ranges >160 dB [3-5], one must ask what are the best capabilities one can desire in an imager? In 

general it is hard to answer such an open ended question as it is highly dependent on the application of 
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the imager, but if we restrict our focus to imaging systems where the output is viewed by a person in 

real-time, one can determine specific constraints for the design of the sensor based on the capabilities 

of the human visual system (HVS) [6,7]. It is also important to know what the capabilities of the 

display are as it is the only way to present the information captured by the sensor to the user and any 

limitations in it may adversely affect the amount of information that can be presented to the viewer. 

This limits our intended scope of imagers to night vision goggles, infrared imagers, and other  

multi-spectral imagers used by people, tele-operation systems such as remote controlled bomb disposal 

units, UAV’s, and cars with night vision HUD or rear view cameras. This paper also has application to 

some extent any sort of head mounted device even ones where the camera exists solely in software and 

the displayed scenes are virtual.  

There have been other papers that discuss the physiological properties of the HVS and how they 

may affect the design of a sensor or a display, but most of these papers talk very little about the 

specifics about the resulting constraints on the sensor or the display and spend most of the document 

describing how the HVS works. In this paper we determine the most desirable sensor and display 

system in terms of describing a system that maximizes the amount of visual information captured and 

sent to the user. To do this we focus on sensors and displays that match the perceptual capabilities of 

the HVS using data gathered from psychophysical studies.  

The rest of this paper is broken into two sections first we describe different sensor properties that 

are affected by the perceptual limitations of the HVS and what the best sensor system should be in 

order to maximize the amount of visual information captured that could be shown to the viewer. For 

this section we assume a display that can show all the information the sensor captures. The second half 

of this paper focuses on the necessary capabilities of a display to ensure that is able to show all the 

visual information the sensor captures. We also describe work we have done to maximize the amount 

of visual information shown to a viewer when the dynamic range of the display is much lower than the 

dynamic range of the visual information. 

2. Sensor Constraints 

The goal, as we see it, of image sensors used in tele-operation and head mounted devices is to try 

and capture the same amount of visual information as a persons can capture from a scene. The simplest 

way to do this is to match the capabilities of the sensor with that of the HVS. To this end we describe 

the perceptual limits and physical properties where relevant, of the HVS.  

2.1. Spatial Resolution 

Contrast sensitivity tests show black and white gratings of varying intensity and spatial frequency in 

order to determine the highest spatial frequency where a person can still perceive changes in shading for 

different contrast levels. From these experiments contrast sensitivity curves have been created along with 

models of the contrast sensitivity of an average person. From this we can say that the highest spatial 

frequency a person can perceive is 60 cycles/degree regardless of the change in contrast [6,8,9]. This 

then suggests that sensors should have a maximum resolution of ~14,400 × 24,000 pixels, if the entire 

FOV of the HVS is covered [10]. 
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It is often noted that the spatial resolution of the eye is not uniform throughout the retina. Near the 

center of the eye in the fovea the spatial resolution of the eye is highest and that resolution drops off 

quickly as eccentricity increases, at a rate of approximately 1/x as shown in Figure 1. A person is able 

to view a scene as if it is all viewed at the highest resolution everywhere by quickly moving their fovea 

over the entire visible area. This means that a sensor that has a pixel density of 120 pixels/degree is 

actually capturing more information than the average HVS is able to. Such a sensor system can reduce 

the amount of information it must capture and then transmit by using a foveated design [10-12]. The 

pixel density at the periphery of a future foveated sensor system could be 1–2 orders of magnitude 

lower than the pixel density at the center of the sensor system. This would reduce the total number of 

pixels and the overall amount of information that needs to be transmitted. However the overall system 

would be come more complex as it would then require a way to move the fovea of the sensor over the 

visible area and an eye-tracking system in order to sync the motion of the viewer’s eye with the 

movement of the sensor over the visible area.  

Figure 1. Psychophysical data for the human eye and Optical and Retinal limits of  

vision. Psychophysical data obtained using drifting gratings at various spatial frequencies, 

but for a fixed temporal frequency, 8 Hz. Reproduced with permission from [9]. 

 

2.2. Temporal Resolution 

There have been numerous experiments conducted on the human eye to try and measure and 

characterize the temporal sensitivity of the HVS. These experiments show that the sensitivity of the eye 

is highly dependent on the size, speed, brightness, and location of the visual stimulus [6,13-16]. 

However for the design of an arbitrary image sensor matched to the perceptual capabilities of the HVS 

the most important temporal parameter is simply what is the highest temporal stimulus a person can 

perceive. This is captured from critical flicker frequency experiments, which present two impulses of 
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light to the eye separated by a small period of time. The shortest delay between impulses that a person 

can detect is then one over the critical frequency. Figure 2 shows the profile of temporal sensitivity of 

a person with approximately average temporal sensitivity. From the CFF data the maximum frequency 

the average person can detect is <80 Hz. This then imposes a maximum frame rate on any image 

sensor and says that past 80 Hz a person will be unable to detect any visual stimulus change. This 

constraint is a very simple one in terms of existing sensors. Most sensor systems shoot for a minimum 

of 30 fps already as standard and the fastest sensors can operate many orders of magnitude faster than 

this [1,2]. So existing sensor systems only need to operate at a rate 2–3 times faster than they already 

do to be matched to the temporal capabilities of the HVS.  

Figure 2. Temporal sensitivity for two different eccentricities (0 and 45 degrees) 

Reproduced with permission from [17].  

 

2.3. Dynamic Range 

The HVS is highly adaptable to changes in illumination level; the difference between the darkest 

stimulus the HVS can detect and the brightest one, given enough time to adapt to these different 

stimulus levels can span over 12 orders of magnitude, 240 dB, as shown in Figure 3. The HVS cannot 

detect visual stimuli at these illumination levels at the same time however. The HVS may require a few 

seconds to over a half an hour to adapt to changes in the average illumination level and detect the 

desired stimuli. This is akin to the ability of most image sensors to adapt to the average illumination by 

changing their exposure time, aperture size, and system gain. For a standard off the shelf camera 

exposure times can change by over 7 orders of magnitude, while state of the art imagers have reported 

changes up to 10 orders of magnitude, which is close but still well below the capabilities of the  

HVS [3-5]. The ability of imagers to adapt to illumination level to match that of the HVS is important 

however what is at least equally as important for matching the capabilities of the HVS is to have the 

same in scene dynamic range as the average person. 
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Figure 3. Dynamic Range of the Visual System Adapted from [18]. 

 

 

A person’s in-scene dynamic range is the ratio between the brightest and darkest stimuli a person 

can detect at a given adaptation level. Models of adaptation in the photoreceptor, which agree well 

with electrophysiological data, show that at a given adaptation level the photoreceptor responds to 

changes in illumination spanning up to 70 dB as shown in Figure 4 [6]. These models generally have 

an ‘S’ like and can be described using the Michaelis-Menten equation [19]. This suggests that an 

imager sensor needs to not only be able to adapt to illuminations by over 12 orders of magnitude, but 

that it must be able to detect illumination levels that differs by over 70 dB within the same scene. A 

number of imagers report dynamic ranges of 160 dB or higher [3-5]; however it is often unclear if this 

is for a specific exposure or adaptation setting representing the full dynamic range or if this is the  

in-scene dynamic range. Many biologically inspired imagers that use time to first spike and spike rate 

encoding have no real sensor level exposure control and so their full dynamic range is also their  

in-scene dynamic range, which is often greater than the in-scene dynamic range of the HVS, but less 

than the full dynamic range of the HVS.  

Figure 4. Model of Response of photoreceptor at different adaptation levels. Adapted from [6].  

 

3. Display Constraints 

The ideal display for a sensor is one that can show all of the visual information that the image 

sensor has captured and does not exceed those capabilities. Most of the properties of that display then 

will simply have the same characteristics as that of the sensor. For instance the temporal resolution of 

the display should match that of the sensor also the spatial resolution should equal the maximum 

resolution of the sensor. In fact the resolution of the sensor should be set to match the resolution of the 

display, while the resolution of the display should be set to the maximum resolving power of a person 

with normal eye sight at the expected viewing distance. For an LCD screen in a tele-operation system 
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where a person is 12–18 inches away from the screen the maximum display density should be  

22 pixels/mm, while for a HMD such as NVG or infrared imager the display is usually only 25 mm 

away and the display, and thereby sensor pixel density should be 126 pixels/mm to in order to present 

as much visual information as possible. However, there are also several parameters that are relevant to 

a display that simply are not explicitly part of the sensor design such as color and field of view, which 

are addressed below.  

3.1. FOV 

The resolution of HDTV screens report highest resolution of 1,920 × 1,080 pixels, while the latest 

LCD screens have resolutions of 2,560 × 1,600 pixels. If a person were to view either of these screens 

at a distance where a pixel occupied ~1/60°, the standard measure of the resolving power of the human 

eye, the screens would only cover a region 29° × 17° for the HDTV and 37° × 30° for the LCD screen. 

This is far below the field of view of the human eye and below the recommended viewing areas for 

tasks often employed while using tele-operated systems or HMD’s such as interacting with the 

environment and estimating relative motion, though the LCD is close to the 40° FOV recommended 

for target identification tasks [20,21].  

The human eye, while fixated on a specific location, can see an area covering 160° horizontally and 

130° vertically. If the eye does not remain fixed, but the head does it can cover an angle of 200° 

horizontally and 130° vertically. It may be a long time before sensors and displays can cover the entire 

visual area that the eye can see at the maximum spatial resolution, but many tasks can be accomplished 

with smaller viewing areas with negligible loss in performance time. There have been many 

psychological and psychophysical tasks geared at understanding how much area of the environment 

people need to see in order to perform different tasks and research has found that in general for most 

visual acuity levels a wider field of view is preferred over an increase in visual acuity. It has not been 

shown exactly where optimum balance between visual field and visual acuity are, but based on the 

studies that have been done the optimum field of view is between 70–150 degrees, with 70–90 degrees 

recommended as a good default setting, this is tempered by the fact that a visual acuity of at least 

20/200–20/80 has been shown to be sufficient for most tasks, though 20/40 is required for some 

driving tasks [20]. 

3.2. Color 

Most displays can show millions to billions of different color, but at how many colors can a person 

actually detect? First a few brief words about color. Within the retina there are two types of 

photosensitive cells, cones and rods. Rods are monochromatic cells, since they are unable to 

distinguish between wavelengths of light. Cones on the other hand are color sensitive cells, though 

they are sensitive only to illumination levels in the mesopic and photopic ranges,  
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wavelengths is broad enough that the curves for the three types of cones overlap for many 

wavelengths.  

Overall the photoreceptors in the human eye are sensitive to a narrow band of wavelengths within 

the electromagnetic spectrum, namely 400 nm to 700 nm. The eye interprets what wavelength of light 

it is seeing based on the magnitude of the response of the long, medium, and short wavelength cones. 

Display and sensors both generally present and capture, respectively, a combination of red, green, and 

blue light. However the RGB color space is not perceptually uniform especially since the eyes are not 

equally sensitive to red green and blue light. In order to present a more linear color space, with respect 

to the color sensitivity of the human eye, the CIE (Commission Internationale de l’Eclairage) 

developed the CIELAB and CIELCH charts using these charts a color is specified by 3 variables, 

L*(luminance), a*(redness-greenness), b*(blueness-yellowness) or L*, Chroma, and hue. For a given 

color the region of color space that appears to be the same color using a JND test is approximately in 

the shape of an ellipsoid. The Color Measurement Committee, created a tolerance chart that specifies 

the region around a given color in which all the colors around it appear to be the same. The CMC 

tolerance chart operates on the CIELCH color space and gives a L, C, and H value for a given 

L, C, and H value. This defines an area in which the color is perceptually no different than the L, C, 

and H color. This then allows the CIELCH color space to be divided into small ellipsoids. The total 

number of ellipsoids in the entire color space is estimated to be over 7 million, Figure 5. 

Figure 5. Color Measuring Committee Tolerance chart. 

 

3.3. Dynamic Range 

It will eventually be possible to create displays that have a dynamic range equal to that of the full 

dynamic range of the HVS, however for a standard image the dynamic range of that image is only 

going to span the in-scene dynamic range of the sensor, which should match the in-scene dynamic 
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range of the HVS of ~3.5 log units or 4 orders of magnitude as shown in Figure 4. If the display 

dynamic range is much higher than this then visual information may be presented to the user that they 

cannot detect because that region of the image is too dark or too bright for the current adaptation level 

of the eye. Most displays however have dynamic ranges well below the in-scene dynamic range of the 

HVS, and so are unable to display all of the high dynamic range information captured by the sensor. 

The HVS however is not overly sensitive to absolute levels of illumination, but it detects relative 

changes in brightness or contrast. Thus it is possible to show most of the visual information from a 

high dynamic range image in a low dynamic range version using dynamic range compression 

algorithms.  

4. Dynamic Range Compression through Tone Mapping 

The problem of trying to display an image that has a dynamic range greater than that of the display 

is not a new one and has been an active area of research in the computer graphics and image 

processing fields for several years. The research that has been conducted has been mainly concerned 

with compressing a HDR image and displaying it on a low dynamic range display, essentially trying to 

convert a 32 bit image or higher into an 8 or 10 bit one, while trying to make the displayed image 

appear perceptually similar to the HDR image and/or aesthetically pleasing. The various compression 

methods that have been developed are referred to generally as tone mapping algorithms [19]. However 

a perceptually similar image does not necessarily maximize the amount of visual information shown to 

the user. Because of this potential difference we wanted to develop a tone mapping algorithm that 

actually maximized the amount of visual information displayed to the viewer. To get an idea of what 

types of tone mapping algorithms work best for this goal we ran a psychophysical experiment 

comparing well known tone mapping algorithms. These algorithms were chosen based on their 

popularity, their potential to be implemented in a mobile vision system, and to ensure a representative 

sampling of the different types of tone mapping algorithms. Based on the results of the first 

experiment, described below, we decided to modify the bilateral filter tone mapping algorithm, one of 

the algorithms compared in the experiment, to try and improve the amount of visual information it 

showed. In the second psychophysical experiment our modified algorithm was tested against the top 

four performing algorithms from the first experiment to determine if it actually did improve the 

amount of visual information shown. The following sections describe the first and second experimental 

procedures, results, and a discussion of those results.  

4.1. Psychophysical Study 

Tone mapping algorithms have historically been designed to create images perceptually similar to 

their HDR source and/or aesthetically pleasing; which does not necessarily maximize the amount of 

visual information shown, but as a starting point we decided to see how well they actually did achieve 

this new metric anyway. The tone mapping algorithms that were included in the study were the Log 

Adaptation algorithm by Drago [22], the Histogram Adjustment algorithm by Ward [23], the Retinex 

algorithm by Jobson [24], the Photographic tone mapping operator by Reinhard [25], and the Bilateral 

Filter algorithm by Durand and Dorsey [26]. These algorithms were chosen as a representative 

sampling of the field of tone mapping algorithms [19]. They were also selected because of their low 



Sensors 2011, 11                

 

 

1597 

computational complexity, in comparison to others of their type, and their susceptibility to creating 

visual artifacts. Beyond just understanding, which types of tone mapping algorithms presented the 

most amount of visual information we also intended to use the features of the algorithms that 

performed the best in the first experiment to design a new tone mapping algorithm that further 

increased the amount of visual information presented to the user. This meant that the algorithms we 

choose for the first experiment also had to meet the constraints of the algorithm we wanted to develop. 

Namely, that it presented as much visual information and was of low computational complexity, so 

that it could be implemented in a future mobile vision system. To this end two of the algorithms we 

chose belonged to the simplest class of tone mapping algorithms, known as global tone mapping 

algorithms. Global tone mapping algorithms are algorithms that directly mapping the value of a pixel 

in a HDR image to the value of a pixel in the compressed version. This mapping is independent of the 

pixels location in the image. The two algorithms we used were the log adaptation and histogram 

adjustment tone mapping algorithms. The other class of tone mapping algorithms that exist are known 

as local tone mapping operators. Local tone mapping operators use the local illumination and/or 

gradient information around each pixel in the HDR image to determine the value of that pixel in the 

compressed image. Local tone mapping operators are usually significantly more computationally 

complex versus global tone mapping algorithms, but they are often more adaptable to different types of 

images and generally produce better results. The three local tone mapping operators we used for 

experiment 1 were the Retinex, the photographic tone mapping operator, and the bilateral filter. 

4.2. Study Setup and Procedure 

In order to conduct the psychophysical testing, using the various image processing algorithms we 

developed, we needed an experimentation room to run these experiments. To do this we designed and 

built a visual perception lab, Figure 6, which houses multiple HDTV’s on which different types of 

visual information can be presented. The room has been designed so that only the visual stimuli during 

an experiment comes from the TV’s, and reflections are reduced by covering the walls and ceiling in 

low matte black foam material and carpeting the floor. The image of the Visual Perception lab in 

Figure 6 shows that the visual stimuli can be displayed on one or more of six HDTVs. The central 

screens cover the 40° central horizontal axis and 60° central vertical axis of the subject’s field of view 

while the two peripheral screens are mounted on a swiveling axis to increase the sense of immersion of 

the subject and increase the horizontal FOV to 97°.  

Figure 6. A Picture of the Visual Perception Lab. 
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We conducted both experiments in the Perception Laboratory that we designed, but for these 

experiments we only needed 3 of the available 6 monitors. All of the monitors that weren’t involved in 

the test were kept off during testing. Participants sat in an adjustable chair, approximately 70–75 inches 

from the screen. For both experiments five tone mapping algorithms were compared and contrasted. 

We used ten HDR images for each experiment of different scenes and ran them through the five 

algorithms to generate fifty test images, which we used in the different experiments. Each experiment 

consisted of two parts an object detection task, as an objective measure of each algorithm, and a paired 

comparison task, as a subjective measure.  

4.3. Experiment 1 

For the first experiment, thirty students and individuals from communities around The Johns 

Hopkins University were used as test participants. Participants were between the ages of 18 and 35, 

had a minimum visual acuity of 20/30. Their vision was tested using an OPTEC® 5000 vision tester 

and were paid $20.00 per hour for their participation. They were also asked to fill out a standard 

demographic questionnaire. For the first experiment the following tone mapping algorithms were used 

to generate the test images. The Log Adaptation algorithm by Drago [22], the Histogram Adjustment 

algorithm by Ward [23], the Retinex algorithm by Jobson [24], the Photographic tone mapping 

operator by Reinhard [25], and the Bilateral Filter algorithm by Durand and Dorsey [26] Figure 7.  

Figure 7. Example images generated using the different tone mapping algorithms. 

 

 

For experiment 1 the first task was the objection detection task Figure 8(a). For this task, one image 

was presented at eye level on the center monitor of the perception lab. By the end this session each 

participant viewed 10 of the 50 images—1 image generated from each of the 10 HDR images; he/she 

did not see the same scene more than once. The choice in images used was controlled so that every 

algorithm had generated two of the images shown. Each image was displayed for 60 seconds and the 

participant’s task during that time was to identify as many objects as possible in as much detail as they 

could. The list of objects the participant could identify was open-ended; meaning any item in the scene 

was potentially an object. Also the participants were asked to identify regions that appeared to have no 

Bilateral Filter 

Log Adaptation 

Histogram Adjustment 

Photographic Tone Mapping 

Retinex 
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objects, featureless sections. The thinking behind this was algorithms that displayed more detail than 

others would allow participants to identify more objects or would allow them to identify objects in 

greater detail than others. Conversely lower performing algorithms would have more instances of 

blank or featureless regions.  

Figure 8. Visual Perception Study Images. (a) An example image from the target detection 

task. (b) Is an example image of the paired comparison task. 

 

(a)      (b) 

 

Participants used a computer mouse to move a cursor so that it pointed at the object they were 

identifying while verbally saying the name of the object. Each test session was also video recorded for 

later analysis. The video recorder was placed behind the observer, so that the screen image and the 

mouse cursor were visible on the recording, but the participants face was not recorded. The number of 

objects correctly identified was determined from viewing the video tapes after testing. Participants did 

not receive feedback on their performance during testing. A correctly identified object was defined as 

any object that was selected using the mouse and verbally identified by a statement that accurately 

described the selected object.  

The second task was a paired comparison task Figure 8(b). For this paired comparison task two 

images, of the same scene, but generated using different tone mapping algorithms, were presented side 

by side at eye level. Both images were presented on the center monitor. Images were displayed as a 

split image on a single monitor so that video settings were consistent across the two images being 

compared. Each participant had to make 100 comparisons to complete this task. Every algorithm was 

paired with every other algorithm for a given scene, totaling 10 comparisons per scene. The 10 scenes 

and 10 comparisons per scene resulted in 100 comparisons. For the pairs of images shown the decision 

to show one image on the right or the left of the TV was randomized. Participants were asked to 

compare pairs of images and select the image they believed had the most amount of visible detail. For 

this task we created a graphical user interface in MATLAB to present the images and allow the 

participants to make a choice between the two images. This served as the only record of the 

participant’s task, there was no video recording. Upon selection the choice made and the time taken to 

make that selection were recorded for later analysis. This task was a forced choice, the participant had 

to select either the left image or the right image and he/she was allowed to take as much time as 

needed to make that selection, Participants were instructed to try to limit their selection time to one 
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minute or less, but this was only a suggestion. Selection times exceeding one minute were possible and 

did occur occasionally.  

4.3.1. Experiment 1 Results and Discussion 

The dependent measure for the object detection task was the percentage of correctly identified 

targets. For each image, the total number of possible targets was determined by totaling the number of 

distinct objects correctly identified across all participants, regardless of the algorithm. This number 

was used as the maximum number of possible targets for a given image. The percentage of correctly 

identified targets was calculated using the number of correctly identified objects for an individual 

participant and the maximum number of targets for the corresponding image. A mixed model analysis 

of variance indicated there were not any statistically significant differences between algorithms for the 

object detection task. This may have happened because participants would identify the most obvious 

objects first. These objects also happened to be the objects that showed up across algorithms. 

Participants rarely identified objects that appeared when run through one algorithm, but not the other.  

There were significant differences in the paired comparison task however, the results of which are 

tabulated in Table 1. For the paired comparison task the results were collapsed across images to 

determine whether one algorithm was preferred over another regardless of the scene that was being 

viewed. This resulted in 300 comparisons between each pair of algorithms and showed that the 

bilateral filter, Retinex, and photographic tone mapping algorithms were the most preferred. There was 

not a statistically significant difference between the Retinex, bilateral filter, and photographic tone 

mapping algorithms Figure 9. The log adaptation algorithm was preferred less than the bilateral filter, 

Retinex, and photographic tone mapping algorithms. The histogram adjustment algorithm was the least 

preferred in terms of amount of detail that appeared in the final image.  

 

Table 1. Paired Comparison Results, z-statistics and p-values collapsed across participants and scenes. 

 (1) 

Retinex 

(2) 

Histogram 

Adjustment 

(3) 

Photographic 

tone mapping 

(4) 

Bilateral 

Filter 

(5).  

Log 

Adaptation 

Z-stat P-Value 

1 vs. 2 204 96 0 0 0 6.235383 4.51E-10 

1 vs. 3 152 0 148 0 0 0.23094 0.817361 

1 vs. 4 158 0 0 142 0 0.92376 0.355611 

1 vs. 5 193 0 0 0 107 4.965212 6.86E-07 

2 vs. 3 0 102 198 0 0 −5.54256 2.98E-08 

2 vs. 4 0 91 0 209 0 −6.81273 9.58E-12 

2 vs. 5 0 122 0 0 178 −3.23316 0.001224 

3 vs. 4 0 0 150 150 0 0 1 

3 vs. 5 0 0 204 0 96 6.235383 4.51E-10 

4 vs. 5 0 0 0 198 102 5.542563 2.98E-08 
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Figure 9. Diagram summarizing the paired comparison results of the first psychophysical 

experiment. Algorithms are listed from left to right in order of increased preference; in 

terms of how much visual information or detail seemed to be visible by test subjects.  

4.4. Automated Bilateral Filter 

From the results of the first experiment we knew that our new tone mapping algorithm would be a 

local one, however the results did not shed any light on what type of spatial filter our new algorithm 

should be based on. Almost all local tone mapping operators use some type of spatial filter to estimate 

the local features in an image. Since there appeared to be no perceptual differences we looked at the 

computational differences between each algorithm. The Retinex tone mapping operator runs the HDR 

image through three spatial filters, each at a different scale. Unfortunately, the optimal spatial filter 

sizes varies based on image size and the spatial properties of the image, but there is no known a priori 

method to determine what the spatial filter size should be. So an image may need to be filtered at many 

different scales in order to find the proper three spatial filters. The Photographic tone mapping 

operator, unlike the Retinex operator adapts to the spatial properties of each image by iterating through 

a set of center-surround spatial filters of various sizes until an appropriate one is found. This produces 

consistent results without much human intervention, but can take multiple spatial filters may be tried 

before the correct one is found. The bilateral filtering algorithm on the other hand uses only a single 

filter for the entire image. The filter is an edge preserving spatial filter and so effectively adjusts its 

size based on the spatial contrast properties of in the image, without iterating. The draw back of using 

an edge preserving filter is that it is significantly more computationally intensive compared to the 

spatial filters used in the other algorithms. However, Durand and Dorsey came up with a fast way to 

compute an approximate edge preserving spatial filter that is no more computational complex than any 

regular spatial filter [26]. Their method also allows the original HDR image to be sub-sampled up to a 

factor of 20, which significantly reduces the computational cost of algorithm. For these reasons we 

selected to improve and automate the bilateral filtering algorithm.  

A drawback of the bilateral filtering algorithm is that depending on the spatial and illumination 

properties of the HDR image the final image may come out too dark or too bright leaving large regions 

without any detail. Whether the image is too bright or too dark is largely dependent on the scaling 

factor, w, that is used when combining the detail layer with the illumination layer. A simple solution 

then is to choose a default value for w, and then simply linearly scale the pixel values of the resulting 

image so that the brightest pixel is set to the highest illumination value, and the darkest pixel to the 

darkest displayable value. Unfortunately this also often results in sub-par images where images appear 

to be washed out due to a few extremely bright or dark pixels. This is often the case when the 

illumination source, such as a light bulb or the sun itself, appears in the image. The idea behind the 

Log Adaptation Histogram Adjustment 

Retinex 

Photographic Tone Mapping 

Bilateral Filter 

Increased preference 
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automation, comes from the fact that some of the above tone mapping algorithms, such as the 

histogram adjustment and photographic tone mapping algorithm, make pictures look better by 

sacrificing some of the visibility of the pixels in the images. Instead of trying to ensure that every pixel is 

visible the algorithm tries to ensure most of the pixels of the detail layer are visible. This is done by 

controlling the value of the scaling factor, w, such that the average pixel value of the resulting image Ld is 

in the middle of the range of displayable illumination levels (by default we assume that to be 0.5 or 128).  

1
( ) ( )

( )
s p s p

p

J f p s g I I I
k s 

      

and ( ) ( ) ( )p s

p

k s f p s g I I


     

 ( , ) exp log( ( , )) log( ( , )) log( ( , ))dL x y I x y J x y w J x y     

  choose w such that , 0.5dmean L x y 
 

Fundamental Equation of the Bilateral Filter Js is the base illumination of pixel s = (x,y), f and g are 

edge stopping functions like a Gaussian or Lorentzian filter function, and w is a scale factor used to 

compress the base illumination layer. The value of Ld is described in terms of pixel values.  

4.5. Experiment 2 

The procedure for the second experiment was very similar to the first, but had the following 

differences. For the object detection task the number of participants was increased to 60 to try increase 

the weight of the statistics per algorithm, but we kept the number of participants for the paired 

comparison task to 30. We also changed the payment of participants to a flat rate of $25 for 

participants who did both the object detection and paired comparison task, and $15 for the participants 

who only did the object detection task. We also changed the procedure of the object detection task by 

creating a list of ten objects for each scene that participants had to identify. Each scene had its own list 

of ten objects and the participants had 30 seconds to try and identify all the targets on the list. The lists 

were created by choosing targets that appeared to show up well for some algorithms, but not for others.  

For the second experiment we kept the four algorithms from the previous experiment that 

performed the best, the Retinex, photographic tone mapping, the bilateral filter, and the logarithmic 

adaption. We also used the modified bilateral filtering algorithm that we developed as the fifth 

algorithm. The apparent improvement, in terms of amount of visible detail, between the standard 

bilateral filter and the modified bilateral filter is shown in Figure 10. 
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Figure 10. (a) Image generated using the bilateral filtering tone mapping algorithm.  

(b) Image generated using the automated version of the bilateral filter tone mapping 

algorithm to increase amount of visual information seen by the viewer. 

  

(a)       (b) 

4.5.1. Experiment 2 Results 

Unfortunately, again results from the object detection task have yet to yield statistically significant 

results, so we have yet to show that there are any objective differences between these five algorithms. 

It is unclear whether the objects used for identification simply weren’t sufficient to indicate the 

differences between the algorithms or that we still had an insufficient number of people to yield any 

significant results. The results of the paired comparison however, bore significant results. A summary 

of the results are shown below, but the most important fact is that the participants preferred the new 

algorithm over any of the other algorithms that were tested, which indicates that the automated 

bilateral filtering algorithm appears to show more detail than any of the other tone mapping 

algorithms. Also, again the global tone mapping algorithm, the logarithmic adaption algorithm, was 

the least preferred in terms of detail. 

Table 2. Experiment 2 Paired Comparison Results, z-statistics and p-values collapsed 

across participants and scenes. 

 (1) 

Retinex 

(2)  

Log 

Adaption 

(3) 

Photographic 

tone mapping 

(4) 

Bilateral 

Filter 

(5) 

Automated 

Bilateral 

Filter 

Z-stat P-Value 

1 vs. 2 166 134 0 0 0 1.847521 0.064672 

1 vs. 3 134 0 166 0 0 −1.84752 0.064672 

1 vs. 4 114 0 0 186 0 −4.15692 3.23E-05 

1 vs. 5 80 0 0 0 220 −8.0829 6.66E-16 

2 vs. 3 0 108 192 0 0 −4.84974 1.24E-06 

2 vs. 4 0 138 0 162 0 −1.38564 0.165857 

2 vs. 5 0 81 0 0 219 −7.96743 1.55E-15 

3 vs. 4 0 0 148 152 0 −0.23094 0.817361 

3 vs. 5 0 0 110 0 190 −4.6188 3.86E-06 

4 vs. 5 0 0 0 83 217 −7.73649 1.02E-14 
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Figure 11. Diagram summarizing the paired comparison results of the second 

psychophysical experiment. Algorithms are listed from left to right in order of increased 

preference; in terms of how much visual information or detail seemed to be visible by test 

subjects.  

5. Conclusion 

The HVS is a highly sensitive, adaptable, and sophisticated sensory system and as the capabilities 

of imagers and displays improve we must be aware of the possibility of overdesigning the sensor or 

display system. The ideal mobile vision system is one that captures and presents as much information 

to the user as they can process without exceeding those limits. This says that the sensor and display 

system should have similar spatial resolution, temporal resolution, dynamic range, etc. as the average 

user’s eyes. We must thereby understand what these capabilities are in order to optimally design 

imager systems intended for human use. Also, by understanding not only the capabilities, but the 

underlying physiology a simpler system can be designed with negligible effective differences. The 

basic example being that the entire visible spectrum can be reproduced using only three wavelengths 

of light, red, green, and blue, at least as far as the HVS is concerned. Understanding the underlying 

physiology of the eye is also what enables tone mapping algorithms to compress the absolute intensity 

information of images with little noticeable differences in the final image. By preserving all of the 

features that are picked up by the low level visual processing cells in the retina most of the intensity 

information can be discarded. The result of our study to develop a tone mapping algorithm that 

presented as much visual information to the viewer as possible for a given dynamic range, 8-bits in our 

case, showed that the automated version of the bilateral filtering algorithm appears to present more 

information to the viewer than current tone mapping algorithms. However this does not prove that it 

outputs the maximum amount of information.  

In order to say whether the automated algorithm is maximal we need a quantitative measure of how 

much information is shown to the user. To do this we plan to develop an ideal observer model to 

estimate how much information is in a tone mapped image in order to maximize the amount of 

information that it presents to the user. With the completion of this model we can show how close to 

maximum our automated bilateral filter is and possibly improve it further.  
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