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Abstract: User-worn sensing units composed of inertial and magnetic sensors are 
becoming increasingly popular in various domains, including biomedical engineering, 
robotics, virtual reality, where they can also be applied for real-time tracking of the 
orientation of human body parts in the three-dimensional (3D) space. Although they are a 
promising choice as wearable sensors under many respects, the inertial and magnetic 
sensors currently in use offer measuring performance that are critical in order to achieve 
and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews 
the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic 
orientation tracking of human body parts; it also gives useful recipes for their actual 
implementation. 

Keywords: human body motion tracking; inertial/magnetic sensing; strap-down inertial 
navigation; sensor fusion; Kalman filtering; quaternion 

 

1. Introduction 

The problem of accurate tracking of the orientation (attitude) of rigid objects is important in several 
domains, among them navigation of man-made vehicles, e.g., air and spacecrafts, robotics and, of 
interest in this paper, ambulatory human movement analysis, which may include a range of interesting 
applications, from monitoring of activities of daily living (ADL) to virtual/augmented reality (VR/AR). 
Several technologies and approaches are available to produce motion tracking systems (trackers), 
which derive orientation estimates from electrical measurements of acoustic, inertial, magnetic, 
mechanical, optical and radio frequency sensors [1]. One increasingly popular approach is based on 
using inertial and magnetic sensors.  
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Several factors explain the popularity of inertial/magnetic sensing. Most current sensing approaches 
for motion tracking need the availability of external sources, e.g., cameras for optical trackers, 
ultrasonic/electromagnetic transmitters for acoustic/electromagnetic trackers. Usually, the sources can 
operate only over relatively short distances, which makes the trackers highly susceptible to 
interference and line-of-sight occlusion (shadowing): hence, proper functioning of these trackers is 
only possible within carefully controlled experimental setups (motion analysis laboratories). This fact 
precludes, for instance, the quantitative assessment of the behaviour of a human subject in unrestrained 
conditions. Conversely, inertial sensors are completely self-contained (sourceless), since they measure 
physical quantities, such as linear acceleration and angular velocity, which are related to the motion of 
the objects where the sensors are fixed; moreover, although magnetic sensing is externally referenced, 
the ubiquitous presence of a magnetic field on earth makes the magnetic source available almost 
everywhere. Recent technological advances in the field of micro-electro-mechanical systems (MEMS) 
have made it possible to manufacture inertial sensors that are relatively low cost, highly miniaturized 
and with limited power consumption. Inertial/magnetic sensors can therefore be considered the most 
valuable opportunity to monitor the ADLs of a human subject outside specialized laboratories, and 
over possibly extended periods of time. However, the measuring accuracies of MEMS inertial sensors 
are still largely inferior to those of the sensors used, e.g., in inertial navigation systems (INSs) for 
aeronautical and military applications [2]. Hence, it becomes of the utmost importance concentrating 
on the development of efficient filtering algorithms for applications of these sensors, together with 
modern solid-state magnetic sensors, in human body motion capture. 

Accurate estimates of the three-dimensional (3D) orientation of a rigid body by inertial/magnetic 
sensing require that the complementary properties of gyros, accelerometers and magnetic sensors are 
purposefully exploited [3]. The orientation can be computed by time-integrating, from known initial 
conditions, the signals from a triad of mutually orthogonal uni-axial gyros (tri-axial gyro), which is 
prone to errors that grow unbounded over time, due to low-frequency gyro bias drifts; on the other 
hand, gyros help achieving accurate orientation estimates for highly dynamic motions. A tri-axial 
accelerometer is capable of providing drift-free inclination estimates by sensing the gravity vector. It 
can be used alone or, when heading estimation is also needed, together with a tri-axial magnetic sensor, 
giving rise to a sensing unit that is referred to in the following as a gyro-free aiding sensor system. 
Serious limitations affect the operation of a gyro-free aiding sensor system. First, the difficulty of 
correctly interpreting the acceleration signals, when the component due to the gravity field (vertical 
reference) coexists with the component related to the motion of the object. Hence, the vertical 
reference is reliable only for static or slowly moving objects [4]. Second, nearby ferromagnetic 
materials are critically disturbing sources when attempts are made to interpret the signals from a  
tri-axial magnetic sensor as the horizontal reference; this problem becomes especially acute within 
man-made indoor environments [5,6]. Sensor fusion techniques are needed in order that the gyro-free 
aiding sensor system allows bounding the gyro bias drift errors; in turn, the gyros can be used to 
smooth the orientation estimates provided by the gyro-free aiding sensor system. Ideally, the filtering 
algorithm would be also capable of estimating gyro biases, as well as biases in the sensors of the  
gyro-free aiding sensor system.  

The main purpose of this paper is to review important methods for the design of these filtering 
algorithms. Section 2 surveys main sensing approaches proposed by researchers active in biomedical 
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engineering, biomechanics and related fields. Section 3 provides the reader with background 
information about mathematical methods for representing the orientation; the kinematic equations of a 
rigid body and simple numerical methods for their solution are also briefly discussed. Section 4 
reviews the main deterministic and stochastic algorithms for estimating the orientation, with particular 
emphasis on vector matching, linear Kalman Filters (KFs) and the their extended (EKF) version, suited 
for nonlinear models; KFs and EKFs are presented here as special cases of Bayesian filters. Section 5 
discusses the modelling issues behind the implementation of a state-of-the-art EKF, and presents a 
worked-out example related to a head motion tracking trial. The paper concludes with Section 6. 

2. Sensing Approaches 

A number of pioneering contributions in the 60–70s suggested reconstructing the field of motion of 
a rigid body, in terms of both position and orientation (pose), by sampling acceleration values in 
several suitably selected points of it. The rotation of a rigid body with one point fixed requires a 
minimum of three acceleration measurements; at least, three additional acceleration measurements are 
needed to resolve the motion of the fixed point in the 3D-space [7]. Sensor systems composed of 
several accelerometers, suitably arranged in uni-axial, bi-axial, tri-axial clusters, were proposed in [8], 
for applications mainly in the field of impact biomechanics. It was proven that, in the presence of small 
experimental errors, numerical drifts in the pose estimation make systems with six accelerometers 
inherently unstable; even systems with nine accelerometers exhibit critical performance degradation. 
The six-nine sensor configurations were analyzed in depth in [9], to conclude that severe restrictions 
exist in the time duration over which motion tracking is feasible by accelerometry methods in routine 
biomechanical applications. The problem with these configurations is that the angular velocity has to 
be estimated by time-integrating noisy measured angular accelerations, which restricts the time horizon 
for accurate motion tracking. More redundancy is necessary to achieve stability and tolerance to 
positioning/alignment errors of the accelerometers, provided that suitable calibration procedures are 
also implemented. Since angular velocity is not determined by time-integration anymore, kinematically 
redundant systems with twelve accelerometers are reported to yield promising results [10]. 

During the 80–90s, the use of accelerometers in biomechanics was promoted mainly in the clinical 
assessment of gait: under the simplifying assumption of a gait motion planar model, a minimal 
configuration set composed of two leg-mounted single-axis accelerometers with parallel sensitive axes 
would suffice to determine the angular acceleration of the leg. In the attempt to circumvent the 
problem of numerical integration drift, pairs of accelerometers on each segment were used to resolve 
the relative angle between two segments, namely the joint angle, without time-integration [11]. These 
accelerometer-based angle sensors were discussed in [12], where the most important error sources 
were analyzed in detail, namely not fulfilling the gait motion planar model and the rigid-body 
condition by external fixation of body-mounted sensors. The potential of accelerometers as sensors 
that are capable of measuring the inclination of human body parts in gait analysis has been emphasized 
in later research, e.g., [13]. Very interesting is the work in [14], where the authors used one tri-axial 
accelerometer to measure inclination during dynamic tasks without requiring additional sensors. A  
KF-based algorithm was designed to estimate the different acceleration components, namely gravity 
and inertial acceleration, plus the accelerometer bias, using a simple model of the human motion 
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dynamics. Since the procedure of bias compensation in the KF-algorithm works only in the direction 
of gravity, the bias estimate in all measurement directions turns out to be reasonably accurate only 
when the accelerometer is rotated over large angles. In any case, the method was shown to outperform 
the method based on low-pass filtering the accelerometer signals [4,15], especially as the speed of 
motion increased. 

Toward the end of the 90s and in the early years of this century, the emergence on the consumer 
market of miniaturized MEMS gyros, with good metrological specifications and low cost, opened a new 
way to think about the role of inertial sensing in human body motion tracking and analysis [15,16]. At 
the time when solid-state magnetic sensors also found their way on the consumer market [17], 
miniaturized, fully integrated inertial/magnetic measurement units (IMMUs) became finally available 
for use in strap-down INSs. In a strap-down INS the signals produced by the inertial/magnetic sensors 
are resolved mathematically in a computer, prior to the calculation of navigational information [18]. 
Using a computer to resolve the inertial/magnetic data reduces the mechanical complexity of an INS, 
as it is implemented in the classical applications of inertial navigation technology, i.e., stable platform 
technique, thus decreasing the cost and size of the system and consequently increasing its reliability. 
The processing speeds of modern computers and microcomputers and their low-cost allow conceiving 
efficient implementations of wearable strap-down INSs for human body motion capture.  

However, it is critical to achieve high accuracy in pose determination by strap-down INSs that 
incorporate low-cost inertial/magnetic sensors, since their stand-alone accuracy and run-to-run stability 
are poor. Different applications may involve different accuracy requirements relative to the duration of 
each observation run: in the absence of special precautions, the requirements of human motion tracking 
applications are shown to be violated when the duration of the observation run exceeds just several 
seconds [3]. Nonetheless, during the late 90s inertial tracking with automatic drift correction proved to 
be a highly successful technique for challenging applications in VR/AR, offering low jitter, fast 
response, increased range, and greatly reduced problems due to interference and shadowing [19]. 
InterSense Inc., Billerica, MA, USA pioneered the commercial development of trackers based on 
miniature MEMS inertial sensors. At the time being, few other companies are marketing IMMUs, 
among them: Xsens Technologies B.V. (Enschede, The Netherlands); and MicroStrain Inc. (Williston, 
VT, USA). Several research groups are now active in exploiting them for biomechanical applications, 
with concentration on the design of filtering algorithms, e.g., [20-25].  

Besides being important per se, estimating the orientation is fundamental in the strap-down 
approach to position estimation: in fact, the orientation solution allows the gravity to be cancelled from 
the acceleration signals, in order that the inertial acceleration is double-integrated for position 
estimation (gravity compensation) [3]. If the gravity compensation is not carried out properly, the 
orientation errors add to the positioning errors, to yield a devastating growth of positioning errors that 
are proportional to the cube of the system’s operation time [26]. There appear to be different means to 
deal with these problems, e.g., using externally referenced aids, such as Global Positioning System 
(GPS), and carry out the integration process underlying the combined use of GPS and INS 
technologies using KF techniques, e.g., [27,28]. Another approach is to exploit idiosyncrasies of the 
human motion dynamics by designing algorithms that can keep the drift rate low [29]. The problem of 
position determination is not addressed in this paper.  
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3. Representation and Determination of Orientation: Mathematical Review 

3.1. Representation of Orientation 

For motion on or near the earth surface, at speeds far below orbital velocity, it is convenient to 
describe the orientation of a rigid body using two coordinate systems: the earth-fixed coordinate 
system, specified by the right-handed orthonormal basis { }1 2 3E ,= e e e whose coordinate axes are 
directed in the local north, east and down directions (NED)—for all practical purposes, an inertial 
coordinate system; the non-inertial coordinate system, aka body-fixed coordinate system, specified by 
the right-handed orthonormal basis { }' ' '

1 2 3B ,= e e e  whose coordinate axes are conventionally named 
“out the nose”, “out the right side” and “out the belly” in the aeronautics jargon (Figure 1).  

Figure 1. Earth-fixed frame and body-fixed frame on a toy aircraft. 

 
 

We recall that an orthonormal basis { }T = i j k  
is said to be right-handed if it satisfies: 

, , .× = × = × =i j k j k i k i j  (1) 

where the symbol × denotes the standard vector cross product.  
An arbitrary vector x in the 3D space can be written in the equivalent forms: 

1 1 2 2 3 3
' ' ' ' ' '
1 1 2 2 3 3.

x x x

x x x

= + +

= + +

x e e e

x e e e
 (2) 

The vector x can therefore be represented in terms of the coordinates (or components) with respect 
to either basis: 

[ ]E 1 2 3

' ' '
B 1 2 3 .

T

T

x x x

x x x

=

⎡ ⎤= ⎣ ⎦

x

x
 (3) 
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The subscripts E, B indicate which basis is used for representing the vector x. The representations in 
(3) are related to one another as follows: 

B
B E E.=x Cx  (4) 

The columns of the direction cosine matrix (DCM) B
EC are the representations of the    e i , i = 1,...,3  

with respect to B, while its rows are the representations of the e i
' , i = 1,...,3 with respect to E. The DCM, 

also called orientation (attitude) matrix, and its transpose allow therefore moving vector 
representations from (to) the earth-fixed frame to (from) the body-fixed frame, respectively. The 
orientation matrix is a 3 × 3 orthogonal matrix with unit determinant, which belongs to the  
three-dimensional special orthogonal group SO(3) of rotation matrices. Although the orientation 
matrix is the fundamental representation of the orientation, the orthogonality requirement forces six 
constraints on its nine elements, namely the column (row) vectors have unit norm and are mutually 
orthogonal, yielding that the special orthogonal group SO(3) of rotation matrices has dimension three. 

Lower-dimensional parameterizations of orientation can be derived based on the following 
considerations [30]. As shown in Figure 2, a rotation about the e3-axis through an angle θ  is expressed 
as: 

'
1 1 2
'
2 1 2
'
3 3

cos sin   
sin cos
.                         

θ θ
θ θ

⎧ = +
⎪ = − +⎨
⎪ =⎩

e e e
e e e
e e

 (5) 

Figure 2. Rotation about the e3-axis through an angle θ  (positive counter-clockwise). 

 

The resulting rotation matrix is: 

( )3

0
, 0

0 0 1

c s
s c
θ θ

θ θθ

⋅

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

R e  (6) 

where cθ and sθ are compact notation for cosθ and sinθ, respectively. By analogy with (6), the rotation 
matrices that describe rotations about the e2-axis and the e1-axis through an angle θ  are:  
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( ) ( )2 1

.

0 1 0 0
, 0 1 0 , 0

0 0

c s
c s

s c s c

θ θ

θ θ

θ θ θ θ

θ θ
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R e R e  (7) 

We note that: 

( )
( )
( )

3 1 1 2 1 3 1

3 2 2 1 2 3 2

3 3 3

,  
,
, .                                          

c s c s
c s c s
θ θ θ θ

θ θ θ θ

θ
θ
θ

= − = − ×⎧
⎪ = + = − ×⎨
⎪ =⎩

R e e e e e e e
R e e e e e e e
R e e e

 (8) 

For the vector cross product, an equivalent expression is:  

[ ] ,× = ×u v u v  (9) 

where 
 

u ×⎡⎣ ⎤⎦  is the skew-symmetric matrix: 

[ ]
3 2

3 1

2 1 .

0
0

0

u u
u u
u u

−⎡ ⎤
⎢ ⎥× = −⎢ ⎥
−⎢ ⎥⎣ ⎦

u  (10) 

Be n any unit column vector, and be v⊥ the projection of a column vector v onto the plane 

perpendicular to n (Figure 3). By analogy with (8) we can write: 

( ) [ ]
( )

,
, .                        

c sθ θθ
θ

⊥ ⊥= − ×⎧
⎨ =⎩

R n v v n v
R n n n

 (11) 

For arbitrary vectors a, b and c the Grassman identity yields: 

( ) ( ) ( ) .× × = ⋅ − ⋅a b c a c b a b c  (12) 

The symbol  denotes the standard vector dot product. Equation (12) allows deriving the general 
decomposition of v into components that are parallel (vP) and perpendicular (v⊥ ) to n:  

( ) ( ) ( ) [ ]2 .T
⊥× × = ⋅ − ⋅ → = − × = +n n v n v n n n v v nn v n v v vP  (13) 

In conclusion: 

( ) ( ) ( ) [ ], , .c sθ θθ θ ⊥ ⊥ ⊥= + = + − ×R n v R n v v v v n vP P  (14) 

It follows that two equivalent expressions of the rotation matrix are written (Euler’s formula): 

( ) ( ) [ ]
( ) [ ] ( )[ ]

3
2

3

, 1

, 1 .

Tc c s

s c
θ θ θ

θ θ

θ

θ

⎧ = + − − ×⎪
⎨

= − × + − ×⎪⎩

R n I nn n

R n I n n
 (15) 

where In denotes the n × n identity matrix. 
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Figure 3. The vector v is rotated about the axis n (Euler axis) through an angle of rotation 
θ. Note that the rotated vector ( ),θR n v  

shares the parallel component with v. 

 
 

Euler’s theorem states that the most general motion of a rigid body with one point fixed is a rotation 
by an angle θ (rotation angle) about some axis n (rotation axis), yielding another representation of the 
orientation in terms of the rotation vector: 

.θ= nθ  (16) 

All rotations can thus be mapped to points inside and on the surface of a sphere of radius π in 
rotation vector space (θ ∈]−π, π]). Since points at opposite ends of any diameter of the sphere 
represent the same orientation, the parameterization of orientation through the rotation vector is 
redundant, with four parameters and one constraint enforced on its norm. Moreover, no points of 
singularity exist in the rotation vector space. 

The orientation of the body-fixed frame relative to the earth-fixed frame can also be described using 
the Euler angle formulation, namely in terms of three consecutive rotations through three  
body-referenced Euler angles [31]. Although, in principle, twelve possible ways exist to define three 
independent body-referenced Euler angles, just a subset of them have received attention; we discuss 
here the 3-2-1 rotation sequence, which is the one commonly adopted in the aeronautics community. 
The orientation of the body-fixed frame (nose-wing-belly) relative to the earth-fixed frame (NED) is 
described by performing the three rotations as follows. Start with a body-fixed frame in the reference 
orientation, i.e., one in which all of its body-fixed axes are aligned with the corresponding earth axes; 
first, the body is rotated about the belly axis through an angle ψ usually called heading angle, or yaw 
(ψ ∈ ]−π, π]); second, the object is rotated about the wing axis through an angle ϑ  (elevation angle, or 
pitch attitude) (ϑ ∈]−π/2, π/2]); third, the object is rotated about the nose axis through an angle ϕ 
(bank angle, or roll attitude), so as to match the body-fixed frame (ϕ ∈]−π, π]). We can then write: 

B E

1 0 0 0 0
0 0 1 0 0 .
0 0 0 0 1

c s c s
c s s c
s c s c

ϑ ϑ ψ ψ

ϕ ϕ ψ ψ

ϕ ϕ ϑ ϑ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

x x  (17) 
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The rotation matrix as a function of the three Euler angles is given by: 

( )
.

, ,
c c c s s

s s c c s s s s c c s c
c s c s s c s s s c c c

ϑ ψ ϑ ψ ϑ

ϕ ϑ ψ ϕ ψ ϕ ϑ ψ ϕ ψ ϕ ϑ

ϕ ϑ ψ ϕ ψ ϕ ϑ ψ ϕ ψ ϕ ϑ

ψ ϑ ϕ
⎡ ⎤−
⎢ ⎥= − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

R  (18) 

The gravity vector is therefore represented in the body-fixed coordinate system as follows: 

B

.

0
0

c c c s s s
s s c c s s s s c c s c g s c
c s c s s c s s s c c c g c c

ϑ ψ ϑ ψ ϑ ϑ

ϕ ϑ ψ ϕ ψ ϕ ϑ ψ ϕ ψ ϕ ϑ ϕ ϑ

ϕ ϑ ψ ϕ ψ ϕ ϑ ψ ϕ ψ ϕ ϑ ϕ ϑ

⎡ ⎤ ⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= − + =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥+ − ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

g  (19) 

Equation (19) shows that a body-fixed tri-axial accelerometer does not convey heading information. 
The time rates of change of the Euler angles are related to the components of the angular velocity 

  
ωB = p q r⎡⎣ ⎤⎦

T resolved in the body-fixed frame by the following system of first-order nonlinear 

differential equations [31]: 

                  

dϕ
dt
dϑ
dt
dψ
dt

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

1
sϕsϑ

cϑ

sϕsϑ

cϑ

0 cϕ −sϕ

0
sϕ

cϑ

cϕ

cϑ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

p
q
r

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

 (20) 

Equation (20) can be used to update the orientation of the rigid body in time given the angular 
velocity. As for all unconstrained representations of orientation, Euler angles suffer from singularities, 
commonly referred to as gimbal-lock: for instance, in the case of the 3-2-1 rotation sequence, if the 
pitch angle ϑ  is ± π/2, the last two terms of the first and last rows in (20) go to infinite and the Euler 
angle integration becomes indeterminate. Gimbal lock corresponds to loosing a degree of freedom in 
the rotation matrix (18); for instance, when ϑ  is π/2, the rotation matrix becomes: 

.

0 0 1
, , 0
2

0
s c
c s

ϕ ψ ϕ ψ

ϕ ψ ϕ ψ

πψ ϕ − −

− −

⎡ ⎤
⎢ ⎥⎛ ⎞ =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥−⎣ ⎦

R  (21) 

The rotation depends on the difference ϕ –ψ ; only one degree of freedom therefore exists instead of 
two. In other terms, changes of ϕ and ψ result in rotations about the same axis.  

Finally, since matrix multiplication is not generally commutative, finite rotations in space do not 
commute, unless infinitesimal rotation angles δψ,  δθ, δϕ  are considered, in which case we have: 

( )
.

1
, , 1

1

δψ δϑ
δψ δϑ δϕ δψ δϕ

δϑ δϕ

−⎡ ⎤
⎢ ⎥≈ −⎢ ⎥

−⎢ ⎥⎣ ⎦

R  (22) 
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In fact, the Euler’s formula (15) can be approximated to first order as follows: 

( ) [ ] ( )
3 2

2
3 3 1

2 1 .

1
, 1

1
O

δθ δθ
δ δ δ δθ δθ

δθ δθ

−⎡ ⎤
⎢ ⎥≈ − × + ≈ −⎢ ⎥

−⎢ ⎥⎣ ⎦

R n Iθ θ θ  (23) 

where  δθ = δθ n is the infinitesimal rotation vector, and its components δθ1, δθ2, δθ3 are termed 
infinitesimal angles. 

Finally, another mathematical representation of orientation can be constructed by rewriting the 
Euler’s formula (15) as follows: 

( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2
1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2
4 1 2 3 4 1 2 3 4 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 1 2 3 4 .

2 2
, 2 2

2 2

q q q q q q q q q q q q
q q q q q q q q q q q q q

q q q q q q q q q q q q

⎡ ⎤− − + + −
⎢ ⎥= − − + − + +⎢ ⎥
⎢ ⎥+ − − − + +⎣ ⎦

R q  (24) 

The rotation matrix (24) is formulated as a homogeneous quadratic function of the quantities qi,  
i = 1,...,4, called the Euler-Rodrigues symmetric parameters or quaternion [32]: 

( ) ( ) [ ]2
4 4 3 4, 2 2 ,Tq q q= − + − ×R q q I qq q  (25) 

where: 

1

2 4

3

sin , cos .
2 2

q
q q
q

θ θ
⎡ ⎤

⎛ ⎞ ⎛ ⎞⎢ ⎥= = =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎝ ⎠
⎢ ⎥⎣ ⎦

q n  (26) 

It is commonplace to refer to q as the vector part and to q4 as the scalar part of the quaternion 

4 .
TT q⎡ ⎤= ⎣ ⎦q q  As implied by (26), the rotation quaternion satisfies the simple normalization constraint: 

2
4 1.q + =q  (27) 

The following two basic operations are defined in the quaternion space: 

( )

( )

' ' '
4 4

' ' ' ' ' '
4 4 4 4

addition

multiplication

TT

TT

q q

q q q q

⎡ ⎤⊕ = + +⎢ ⎥⎣ ⎦

⎡ ⎤⊗ = + + × − ⋅⎢ ⎥⎣ ⎦

q q q q

q q q q q q q q

 (28) 

In contrast with quaternion addition, quaternion multiplication is not generally commutative. 
Moreover, by analogy with complex numbers, we define the conjugate of a quaternion; the definitions 
of quaternion norm and inverse follow: 
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2* *
4 4

4
2* 2

4
1

*
1 1 1

2

conjugate

norm

inverse

 such that 1

TTT T

i
i

TT

q q

q q
=

− − −

⎡ ⎤⎡ ⎤= − → ⊗ = +⎣ ⎦ ⎣ ⎦

= ⊗ = + =

⎡ ⎤⊗ = → =⎣ ⎦

∑

q q q q 0 q

q q q q

qq q q 0 q
q

 (29) 

The Euler-Rodrigues formulation predates the discovery of quaternions by Hamilton, who was not 
apparently interested in developing quaternion algebra as means of describing rotational 
transformations [31]. Hamilton’s quaternions can be considered as 4-component extended complex 
numbers of the form: 

1 2 3 4 ,q q q q= + + +q i j k  (30) 

whose imaginary components i, j, k have the computation rules: 

1, , .⊗ = ⊗ = ⊗ = ⊗ ⊗ = − ⊗ = ⊗ = −i i j j k k i j k i j k j i k  (31) 

Alternatively, quaternions can be considered as vectors embedded in the four-dimensional 
Euclidean space R4. The set of quaternions with null vector parts can be identified with R the set of 
quaternions with null scalar part, aka vector quaternions, can be identified with vectors in the 
Euclidean space R3. At last, unit quaternions, namely quaternions with unit norm, lie on the  
three-dimensional sphere S3 with unit radius in R4. Henceforth, the vector presentation is used in place 
of the representation as extended complex numbers. 

The connection existing between unit quaternions and the problem of describing orientations starts 
with examining (24–26). Given the vector quaternion 0 ,

TT⎡ ⎤= ⎣ ⎦p p  the vector quaternion: 

' 1−= ⊗ ⊗p q p q  (32) 

is shown to be p rotated about the n-axis through an angle θ  [32]. Any general three-dimensional 
rotation θ about an arbitrary unit vector n can be therefore described by a unit quaternion. The rule of 
composition of rotations is achieved by multiplying the corresponding quaternions. Let 1q  and 2q  be 
arbitrary unit quaternions. Rotation by 1q  followed by rotation by 2q  is shown equivalent to rotation 
by 2 1⊗q q  

( ) ( ) ( )2 1 2 1= ↔ = ⊗R q R q R q q q q  (33) 

The four-component unit quaternion has the lowest dimension of any globally non-singular 
orientation parameterization. Enforcing the unit norm constraint on a quaternion leaves it with the 
three degrees of freedom consistent with the SO(3) dimensionality. Moreover, the quaternion 
representation is redundant, as the rotation vector. The quaternion −q  represents the same rotation as 
q  a rotation through the angle θ about the n-axis can also be expressed as a rotation through an angle 
−θ about the n’-axis (n’ = −n).  
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3.2. Kinematic Equations Describing the Motion of a Rigid Body 

The kinematic equations that describe the motion of a rigid body capture the relations existing 
between the temporal derivative of the orientation representation and the angular velocity; we have 
already discussed the formulation of these equations in the case that the 3-2-1 rotation sequence of 
Euler’s angles are chosen for representing the orientation, see (20).  

Suppose that the orientation changes with time: ( )B
E ,t tδ+C  i.e., the rotation matrix representing the 

orientation at time t + δt, differs from ( )B
E ,tC the rotation matrix at time t, see (23): 

( ) ( ) ( ) ( ) ( ) ( )2B B
E E 3, , .t t t t t t t t t t Oδ δ δ δ δ+ = + ← + = − × +⎡ ⎤⎣ ⎦C C IΦ Φ θ θ  (34) 

where ( )tδ θ  is the infinitesimal rotation vector. We can write: 

( ) ( ) ( ) ( )
B B

BE E
E .

tt t t
t

t t
δδ

δ δ
×⎡ ⎤+ − ⎣ ⎦= −

C C
C

θ
 (35) 

Taking the limit of (35) as δ t tends to zero, one obtains a system of first-order linear differential 
equations, aka the Poisson’s kinematic equations: 

[ ]B B
E B E .d

dt
= − ×C Cω  (36) 

where ωB is the body-referenced angular velocity, defined as: 

B 0
lim .

t tδ

δ
δ→

=
θ

ω  (37) 

The time dependence of the angular velocity and the rotation matrix is not made explicit in (36)–(37) 
to avoid unnecessary cluttering of the notation. Alternatively, the time evolution of a time-varying 
quaternion with angular velocity ωB is given by the solution to the following system of first-order 
linear differential Equation [32]: 

[ ] ( )B B
B B

B

1 10 ,
2 2 0

TT
T

d
dt

− ×⎡ ⎤
⎡ ⎤= ⊗ = =⎢ ⎥⎣ ⎦ −⎣ ⎦

q q q q
ω ω

ω Ω ω
ω

 (38) 

where ( )BΩ ω
 
is a 4 × 4 skew symmetric matrix. If the angular velocity is time constant, then the 

closed-form solution to (38) with given initial conditions is given by: 

( ) ( ) ( ) ( ) ( ) ( )0 B 0 0 B 0, ; exp .t t t t t t t= = −⎡ ⎤⎣ ⎦q q qΦ ω Ω ω  (39) 

The matrix exponential can be written: 

( ) ( )
0

0
0 B 4 B

0

sin
2, ; cos  + .

2
2

B

B

B

t t
t tt t t t

−⎛ ⎞
⎜ ⎟−⎛ ⎞ ⎝ ⎠= ⎜ ⎟ −⎝ ⎠

I
ω

Φ ω ω Ω ω
ω

 (40) 

It is worth noting that all three-dimensional representations of orientation are invariably associated to 
non-linear kinematic equations; on the other hand, higher-dimensional representations of orientation, 
such as the orientation matrix and the quaternion, present linear kinematic equations, as shown  
in (36–38).  



Sensors 2011, 11                            
 

 

1501

The gimbal-lock singularity and the presence of computationally taxing trigonometric functions in 
the numerical integration of the system (20) are critical elements against the choice of the Euler angles. 
Mathematically, (36) preserves the orthogonality of the orientation matrix, although errors associated 
with its numerical integration can cause some degradation in the orthogonality of the matrix, which 
forces to adopt suitable methods to recover it [33]. Errors associated with numerical integration of the 
kinematic equations for orientation have been analyzed and characterized for both the rotation matrix 
and the quaternion parameterizations, and the superiority of the latter is widely recognized [33,34]. In 
addition to that, another relevant advantage of the quaternion formulation is vastly increased 
computational speed: trigonometric functions are not to be computed, with further savings that are 
provided by the reduced number of floating operations involved in numerically integrating (38) as 
compared with (36) [31].  

The claim that the physical interpretation of the quaternion is much less intuitive than that 
associated with Euler angles does not imply that the quaternion cannot find ample diffusion even in the 
biomechanical community. A systematic development of the kinematics equations is possible in terms, 
equivalently, of direction cosines, the rotation vector, Euler angles, the quaternion, and  
well-established relationships link all these descriptors to one another: at any stage of the processing 
and visualization tasks, one can adopt the descriptor that is more suited to the application specifics. 
Henceforth, we direct our attention exclusively to the quaternion-based formulation of the kinematic 
equations of a rigid body. 

4. Orientation Estimation Algorithms 

Estimating the orientation from body-fixed sensor measurements has a quite long history, in 
particular in applications of spacecraft guidance and control. Over the years, two main approaches 
have emerged: the deterministic (least-squares) approach and the stochastic (Kalman filtering) 
approach. The least-squares approach was originally introduced in 1965, in the so-called Wahba’s 
problem [35], which is a constrained least-squares optimization problem for finding the rotation matrix 
from vector measurements taken at a single time (single-frame method). The Kalman filtering 
approach, first proposed in 1961 for applications of spacecraft guidance and control [36], soon after the 
publication of the seminal paper by Kalman in 1960 [37], is intended to yield minimum-variance 
sequential estimates of orientation and, in principle, of other parameters than orientation, such as 
sensor biases, using information about motion dynamics. Unless suitable generalizations are provided, 
deterministic approaches are unable to incorporate such information [38,39]. 

Estimating the orientation of human body parts from body-fixed inertial/magnetic sensor 
measurements is a relatively novel application. It does not come as a surprise that the same distinction 
as above is made between deterministic and stochastic approaches, as we will see shortly after.  

4.1. Deterministic Single-Frame Approach 

Deterministic single-frame estimation algorithms can be proposed in connection with the operation 
of gyro-free aiding sensor systems. Four variants of the same approach are surveyed here: TRIAD 
(TRi-axial Attitude Determination), QUEST (QUaternion ESTimator), FQA (Factored Quaternion 
Algorithm) and Gauss-Newton (GN) optimization. They can be used to solve Wahba’s problem 
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without the need for an a priori estimate. They all are based on the concept of vector matching, which 
requires, in principle, that measurements of constant reference vectors (e.g., gravity and earth magnetic 
field) are performed. In their original formulation, they are unable to provide sequential estimates of a 
time-varying orientation and of other parameters than the orientation, such as sensor biases. In the 
presence of uncompensated sensor biases, the estimated orientation can be therefore grossly inaccurate.  

Suppose that two nonparallel reference unit vectors v1, v2 are available, e.g., in the direction of the 
gravity field and the earth magnetic field, and resolved in the earth-fixed frame. The corresponding 
observation vectors w1, w2 are measured in the body-fixed frame and normalized in amplitude to one. 
The TRIAD algorithm attempts to solve Wahba’s problem by finding an orthogonal matrix A such that 
the pair (w1, w2) is optimally related to the pair (v1, v2), namely Avi = wi, i = 1, 2, which gives rise to 
an over-determined system of algebraic equations [40]. 

First, two triads of orthonormal reference and observation vectors are constructed: 

1 2
1 1 2 3 1 2

1 2

1 2
1 1 2 3 1 2

1 2

; ;

; ; .

×
= = = ×

×

×
= = = ×

×

r vr v r r r r
r v
s ws w s s s s
s w

 (41) 

Second, the two orthogonal matrices Mref and Mobs are formed, and the optimal estimate of the 
orthogonal matrix A is then computed as follows: 

[ ]
[ ]

ref 1 2 3
obs ref

obs 1 2 3

.T=⎧
→ =⎨ =⎩

M r r r
A M M

M s s s
 (42) 

The main disadvantage of the TRIAD algorithm is that it is sensitive to the order at which the 
algorithm receives the two vector pairs—the pair (v1, w1) is received first in (41). In fact, part of the 
information conveyed by the second vector pair is discarded: the cross products that are needed to 
compute r2 and s2 eliminate any contribution of v2 and w2 relative to the vertical axis. Since the 
accuracy of the orientation estimate is more influenced by the vector pair that is processed first, the 
best choice would be to process first the observation vector of greater accuracy. Another disadvantage 
of the TRIAD algorithm is that it accommodates only two observation vectors. 

The basic QUEST delivers the optimal quaternion that minimizes the loss function: 

( ) 2

1

1 .
2

n

i i i
i

L a
=

= −∑A w Av  (43) 

The loss function (44) can be transformed into a quadratic gain function of the unit quaternion: 

( )( ) TG =A q q K q  (44) 

where K is a 4 × 4 matrix constructed from the reference vectors vi, measurement vectors wi, and 
weighting coefficients ai. The optimal unit quaternion is proven to be the eigenvector of the K matrix 
corresponding to its largest eigenvalue  [40]. 

In contrast with the TRIAD algorithm, the QUEST is capable of accommodating more than two 
observation vectors; moreover, it is optimal with sensors with different accuracies by properly 
selecting the weighting coefficients ai. Although the quaternion produced by the QUEST is unit-norm 
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and globally non-singular, a method is needed for avoiding the singularity that arises when the angle of 
rotation is π. In fact, the QUEST uses a three-dimensional parameterization, namely the Gibbs vector, 
in its derivation: 

4

tan
2g q
θ

= =
qa n  (45) 

The singularity problem is eliminated in the QUEST by employing the method of sequential 
rotations, at the expense of computational cost [40].  

The FQA is specifically created in the attempt to overcome the limitation of both the TRIAD 
algorithm and the QUEST that orientation errors arise from errors in just one of the sensor data [41]. 
Suppose that the two reference vectors are the gravity field, g, normalized in amplitude to one (vertical 
reference); and the earth's magnetic field, or more precisely, the local magnetic field, h, normalized in 
amplitude to one (horizontal reference). Let gm and hm denote the corresponding measurement vectors, 
normalized in amplitude to one. In the FQA, acceleration data are used in computing the pitch and roll 
angles, while local magnetic field data are used only in yaw angle computations. This decoupling 
eliminates the influence of magnetic variations on calculations that determine pitch and roll angles.  

Upon examination of (19), the value of the sine of the pitch angle can be expressed as: 

] ]2sin cos 1 sin , / 2, / 2 .m xgϑ ϑ ϑ ϑ π π= → = − ∈ −  (46) 

From trigonometric half-angle formulas, half-angle values are given by: 

( ) ( )

( )

sin sign sin 1 cos / 2
2

cos 1 cos / 2.
2

ϑ ϑ ϑ

ϑ ϑ

= −

= +
 (47) 

yielding the following expression of the pitch quaternion: 

0 sin 0 cos
2 2

T

p
ϑ ϑ⎡ ⎤= ⎢ ⎥⎣ ⎦

q  (48) 

The values of the sine and cosine of the roll angle can be expressed as: 

sin / cos

cos / cos .
m y

m z

g

g

ϕ ϑ

ϕ ϑ

= −

= −
 (49) 

Exploiting the half-angle formulas, the roll quaternion is given by: 

sin 0 0 cos
2 2

T

r
ϕ ϕ⎡ ⎤= ⎢ ⎥⎣ ⎦

q  (50) 

The values of the sine and cosine of the yaw angle can be determined by matching the magnetic 
field reference vector in the horizontal plane ,

T

x yh h⎡ ⎤⎣ ⎦ normalized in amplitude to one, and the 

measured magnetic vector ,
T

x ym m⎡ ⎤⎣ ⎦  projected from the body-fixed frame to the horizontal plane via 

the pitch and roll quaternions, and normalized in amplitude to one: 
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.

cos
sin

x y x

y x y

m m h
m m h

ψ
ψ

⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (51) 

Exploiting the half-angle formulas, the yaw quaternion is: 

0 0 sin cos
2 2

T

y
ψ ψ⎡ ⎤= ⎢ ⎥⎣ ⎦

q  (52) 

The rule of composition (33) is applied to (48), (50) and (52) to yield the quaternion estimate 
representing the orientation of the rigid body: 

.r p y= ⊗ ⊗q q q q  (53) 

Since the FQA uses three angles to derive the quaternion estimate, it suffers from a singularity, 
which occurs when the pitch angle is ± π/2. In order to circumvent this singularity, a method similar to 
the one proposed in the QUEST algorithm is adopted in the numerical implementation of the FQA. In 
essence, the FQA is very similar to the tilt compensation procedure customarily used in a strap-down 
magnetic compass to derive heading [17], Figure 4. 

The last method reviewed in this Section is the GN optimizer [42]. First, construct the error vector 
as follows: 

( )
( )
( )( )

m

m

A

A
ε

ρ

⎡ − ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦

g q g
q

h q h
 (54) 

where ρ is a suitably chosen weighting factor. Then, the optimal quaternion is computed by 
minimization of the square of the error vector: 

( ) ( )opt
1arg min
2

Tε ε⎧ ⎫= ⎨ ⎬
⎩ ⎭q

q q q  (55) 

Figure 4. Inclination of the strap-down magnetic compass relative to the horizontal plane 
as defined by gravity direction. 

 

The conventional GN method algorithm provides an iterative solution to this problem: 
 (1) Give an initial guess, 0q ; 

 (2) Compute the correction: 

( )
1

;
T T

ε ε ε ε

−
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
⎜ ⎟Δ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

q q
q q q

 (56) 

 (3) Compute the updated quaternion: 
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1 ;i i+ = − Δq q q  (57) 

 (4) Normalize the updated quaternion: 

1
1

1

;i
i

i

+
+

+

=
qq
q

 (58) 

 (5) Return to step (2), and repeat until convergence using the stopping criterion: 

TOL,Δ <q  (59) 

where TOL measures how small the residual of the final solution is to be considered acceptable. 
The main merit of a GN optimizer is recognized in its robust estimation capability, nonetheless the 

intensive calculations required in step (2) and the need for iteratively evaluations until convergence 
may diminish its importance for real-time applications. It is reported that four-five iterations are 
requested for typical values of the sensor measurement noise, when the initialization errors are large. 
Fortunately, during tracking, when errors are much smaller, GN iteration typically converges to 
sufficient accuracy in only one-two steps. Clever algorithms are reported in the literature in order to 
reduce the computational burden of GN optimizers [25,42]. 

For an approach based on single-frame deterministic algorithms to work properly in human motion 
tracking, the acceleration and magnetic measurement vectors are to be determined by the gravity field 
and by the reference magnetic field, respectively. However, this assumption can cause serious errors in 
the orientation solution if any body accelerations and magnetic variations of affect the sensor signals: 
in principle, only slow motions occurring in magnetically clean environments would be allowed. The 
widespread practice of low-pass filtering acceleration signals in order to reduce the effect of dynamic 
motions leads to latency in the estimates produced by the algorithm, with the additional problem of 
how to optimally select the cut-off frequency of the filter. Alternatively, acceleration measurements 
would be screened before their use in the algorithm by computing the absolute value of the difference 
between their norm and the known value of gravity; if the computed value exceeds a preset threshold 
value, the measurement reliability is considered low. As for the impact of magnetic variations on the 
reliability of magnetic measurements, a similar approach can be considered by comparing the norm of 
the sensed magnetic field with the norm of the reference magnetic vector. A more detailed explanation 
of these vector selection techniques is deferred to Section 5.4, after that, in the next Section, stochastic 
estimation algorithms are presented and discussed. 

4.2. Stochastic Estimation Algorithms 

Stochastic estimation algorithms use a model for predicting aspects of the time behaviour of a 
system (dynamic model) and a model of the sensor measurements (measurement model), in order to 
produce the most accurate estimate possible of the system state. KF algorithms lend themselves 
perfectly to this task [37]. There appears to be wide consensus that, e.g., in the VR/AR community the 
KF is recognized “perhaps the perfect tool for elegantly combining multisensory fusion, filtering, and 
motion prediction in a single fast and accurate framework” [43].  

For the sake of generality, our discussion starts here with considering the Bayesian approach to 
dynamic state estimation [44]; KFs represent a special class of algorithms for recursive Bayesian state 
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estimation. The Bayesian approach is based on propagating the probability density function (PDF) of 
the system state in a recursive manner through the application of the Bayes’ rule. The state dynamics is 
modelled as a Markov process: 

( ) ( )1: 1 1| | ,k k k kp p− −=x x x x  (60) 

where x1:k-1 = [x1 x2 ... xk-1] is the collection of the states traversed by the system up to time k-1, 
included. The state at time tk is conditioned only on the previous state and it is independent of the past. 
This allows for a state representation according to the following discrete-time stochastic model: 

( )1 1 1, ,k k k kf − − −=x x w  (61) 

where f is a (linear or non-linear), generally time-variant function mapping the previous state to the 
current state, and wk-1 represents the process noise. Process noise accounts for any mismodelling 
effects or disturbances in the dynamic model. Here the index k is associated to a continuous-time 
instant tk, and the sampling interval Tk-1 = tk – tk-1 may be time-dependent, i.e., function of k. 
Henceforth, we will assume that the sampling interval Ts is constant. 

The system state xk is related to the measurements by the measurement model: 

( ), ,k k k kh=z x v  (62) 

where zk is the measured state of the process at time tk, h is a generally nonlinear time-variant function 
mapping of the state of the system to the measured state zk, and vk represents the measurement noise. 
The random processes wk-1 and vk are assumed to be white, with known PDFs, and mutually 
independent. The initial state x0 is assumed to have a known PDF p(x0) and also to be independent of 
wk-1 and vk. 

The goal of filtering can be stated as finding estimates of the states given z1:k. This requires the 
calculation of the posterior PDF p(xk|z1:k). Suppose that the required posterior PDF p(xk-1|z1:k-1) at time 
tk-1 is available. The prediction stage involves the dynamic model (61) to obtain the prior PDF of the 
state at time tk: 

( ) ( ) ( )1: 1 1 1 1: 1 1| | | .k k k k k k kp p p d− − − − −= ∫x z x x x z x  (63) 

The transitional PDF p(xk|xk-1) is defined by the dynamic model (62) and the known statistics of the 
process noise wk-1. 

The update stage, at time tk when a new measurement becomes available, is based on the Bayes’ 
rule: 

( ) ( ) ( )1: 1: 1| | | ,k k k k k kp p p −∝x z z x x z  (64) 

where the likelihood function p(zk|xk) is defined by the measurement model (62) and the known 
statistics of the measurement noise vk.  

The Equations (63)–(64) give a recursive way to propagate the posterior density. Bayesian filtering 
can thus be seen as a two-stage process, a prediction stage of the new state using (63), and an update 
stage where the prediction is modified by the new measurement using (64). The knowledge of the 
posterior PDF p(xk|z1:k) allows estimating the state, and obtaining measures of the accuracy of these 
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estimates. The Bayesian solution cannot be determined analytically, expect that in a restrictive set of 
cases, including the KF.  

The KF assumes that the posterior density at every time step is multivariate Gaussian, and hence it 
can be completely characterized by the mean vector and the covariance matrix. If the PDF p(xk-1|z1:k-1) 
is Gaussian, the PDF p(xk|z1:k) is proven to be Gaussian provided that: 

• wk-1 and vk are drawn from Gaussian PDFs with known parameters; 
• fk-1(xk-1, wk-1) is a known linear function of xk-1 and wk-1; 
• hk(xk, vk) is a known linear function of xk and vk. 

In other words (61)–(62) can be rewritten as: 

1 1 1

,
k k k k

k k k k

− − −= +
= +

x F x w
z H x v

 (65) 

where Fk-1 (of dimension nx × nx) and Hk (of dimension nz × nz) are known matrices. The additive 
noises wk-1 and vk are mutually independent zero-mean white Gaussian, with known covariance 
matrices Qk-1 and Rk, respectively. Note that the system and measurement matrices Fk-1 and Hk, as well 
as the covariance matrices Qk-1 and Rk, are allowed to be time-variant. For the reader’s convenience, 
the KF equations are reported in Appendix A. 

The Extended Kalman Filter (EKF) is derived for nonlinear systems with additive noise: 

( )
( )
1 1 1

.
k k k k

k k k k

f

h
− − −= +

= +

x x w

z x v
 (66) 

The additive noises wk-1 and vk are mutually independent, zero-mean white Gaussian with known 
covariance matrices Qk-1 and Rk, respectively. The EKF is based on the assumption that local 
descriptions of the nonlinear functions fk-1(xk-1) and hk(xk) can be obtained by approximating them 
using only the first term in the Taylor series expansion. The posterior PDF p(xk|z1:k) is therefore 
approximated by a Gaussian density. The local linearization requires the computation of the Jacobian 
matrices of the dynamic model, the measurement model or both with current predicted states, see 
Appendix A. 

The EKF and its many variants are referred to as analytic approximations because the Jacobian 
matrices Fk-1 and Hk have to be computed analytically. Moreover, it is worthy noting that the EKF 
always approximates the posterior PDF p(xk|z1:k) as a multivariate Gaussian. If the nonlinearity in 
models is severe, the non-Gaussian nature of the posterior PDF p(xk|z1:k) can be pronounced, e.g., it 
can be multimodal, heavily-tailed or skewed: the approximation to first-order is grossly inaccurate and 
the performance of the EKF can therefore be seriously degraded. In general, besides the computational 
costs incurred in the calculations of the Jacobian matrices, other disadvantages of the linearization 
procedure implemented in an EKF concern the sensitivity to initial conditions, biases in the estimation 
errors, critical problems of convergence and filter stability, especially when the sampling interval is 
too small.  

The Unscented Kalman Filter (UKF) is developed with the aim to overcome these limitations [45]. 
The UKF hinges on the assumption that it is easier to approximate a Gaussian distribution than it is to 
approximate an arbitrary nonlinear function. Instead of linearizing using Jacobian matrices, the UKF 
adopts a deterministic sampling approach to capture the estimates of the mean vector and the 
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covariance matrix with a minimal set of sample points; this “capture” is accurate to the second-order 
Taylor series expansion for any nonlinearity. The UKF can be used with non-differentiable functions, 
it does not require the derivation of Jacobian matrices (derivative-free), and is valid to higher-order 
expansions than the standard EKF. Some work concerning applications for aircraft guidance and 
control shows the superiority of UKF over EKF, particularly in the presence of large initialization 
errors [46]. However, this is not usually the case with human body motion tracking applications. This 
is because, mostly, the filter operation starts with the human body being typically at rest within 
magnetically clean regions, and well-calibrated inertial/magnetic sensors, see Section 5. Hence, a  
gyro-free aiding sensor system can feed the EKF with accurate data for initialization at first contact. 
Moreover, there appears to be wide consensus that, in human body motion capture applications, 
although the EKF and the UKF may have roughly the same accuracy, the computational overhead of 
the UKF, the simplicity of the calculations of the Jacobian matrices, and the quasi-Gaussian nature of 
the posterior PDF p(xk|z1:k) contribute to make the EKF a preferred choice, even in the most 
demanding scenarios [47,48]. In order to keep the length of this paper within reasonable limits, UKF 
and more advanced Bayesian filters, namely particle filters [48,49], are not further addressed here. 

5. Designing a Quaternion-Based EKF for Orientation Determination 

In applying Kalman filtering to the problem of inertial orientation tracking there is considerable 
freedom in dynamic and measurement modelling [50]. In this Section the discussion concerns how 
EKFs can be designed when the quaternion is chosen to represent the orientation. The main difficulty 
of using quaternion-based state vector components is in the application of the filter equations. This 
difficulty is due to the lack of independence of the four components of a quaternion, which are related 
by the constraint that the quaternion must have unit norm in order to represent a valid orientation. 
Constraints imposed on the estimated state variables cannot be preserved by EKFs in their standard 
development [51]. 

5.1. Dynamic Modelling 

The most principled way to preserve the unit-norm property of the estimated quaternion is to create 
an algorithm where the error between the true and estimated quaternions is itself a quaternion and is 
multiplied (in the sense of quaternion multiplication) with the a priori quaternion estimate to yield the 
a posteriori estimate [51]. This kind of EKF is called multiplicative EKF (MEKF), which differs from 
the classic additive EKF (AEKF), which employs quaternion subtraction in place of quaternion 
multiplication [52]. An MEKF parameterizes the global orientation with a non-singular unit quaternion, 
while any unconstrained three-dimensional representation is used to represent the orientation 
errors [53]. The dynamic model in an MEKF describes therefore the kinematic equations of a rigid 
body in terms of the relationships existing between the three-dimensional orientation error and the 
angular velocity [46]. Strong similarities exist between the MEKF approach and the so-called  
indirect-state formulation of the Kalman process. In analogy with an MEKF, the indirect-state EKF 
includes a three-dimensional orientation error in the state vector [54]. The potential advantages of an 
indirect-state filter are that the state dimension is smaller as compared with a direct-state filter, with 
subsequent computational savings [50].  
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In spite that MEKFs are theoretically correct in treating the normalization constraint, most reported 
implementations regard the application of AEKFs. AEKFs relax the quaternion unit-norm constraint 
and treat the four components of the quaternion as independent parameters. A method to preserve the 
quaternion unit-norm property is to derive a sort of quaternion measurement model from the non-linear 
equation that expresses the unit-norm property (pseudo-measurement model) [47]. Another popular 
means is to normalize the a posteriori estimate after the measurement update stage (“brute-force” 
approach). Even though it is neither elegant nor optimal, the “brute-force” approach is often the 
preferred choice and is proven to work well [52]. The exemplary EKF developed in the following is 
direct-state, additive and enforces the unit-norm constraint by the “brute-force” approach. 

The dynamic equations for describing the orientation of the parts to be tracked would cause severe 
difficulties in the filter modelling [55], and especially in human body motion capture applications, 
where the inputs, i.e., muscle forces and torques, are unknown inputs [14,42]. The use of gyros as the 
primary means to estimate orientation allows circumventing these problems. Since the angular velocity 
of human body parts is obtained from the gyro data, the kinematic equations of a rigid body can be 
used to obtain the orientation state (model replacement). In other words, it is highly convenient to treat 
gyro data as external inputs to the filter rather than as measurements, and consequently gyro 
measurement noise and bias enter the filter as process noise rather than as measurement noise [22,56]. 
Another advantage of this choice is the reduction in the dimension of the state vector, which may lead 
to minimal-order, computationally efficient filter implementations.  

An additional important feature of stochastic estimation algorithms like the EKFs is that gyro drift 
bias can be estimated by state vector augmentation techniques [57]. Oftentimes, this feature is 
exploited, especially for applications of air and spacecraft attitude estimation, so as to compensate the 
gyros before performing the numerical integration of kinematics equations [36,46,56]. This is very 
important in the case that the only aiding comes from occasional orientation fixes. Drift biases of the 
gyro-free aiding sensor system may be also estimated in the same way [14,22]. In general, however, 
these other biases cannot be estimated simultaneously with the orientation and gyro drift bias due to 
possible problems of system observability [58]. 

Most studies in VR/AR fields employ head motion trackers that directly provide orientation 
measurements. In these cases, quaternions can be used with an EKF to estimate the angular velocity, 
which is needed to predict the future head orientation. Sometimes, angular velocity is measured with 
inertial sensors; the state vector can therefore be augmented with additional components, i.e., the 
angular acceleration [48]. Different motion models are implemented in the filtering algorithm, in order 
to improve the ability of the EKF to predict the head orientation for latency compensation [54,59]. For 
instance, the Constant Velocity (CV) model assumes a simple first-order Gauss-Markov (GM) model 
for each angular velocity component [60]: 

21 2 ,d w
dt
ω σω

τ τ
= − +  (67) 

where w is a Gaussian white noise, with null mean and unit variance, τ is the decorrelation time 
constant of the GM model and σ

2 is a variance factor. The GM model reflects underlying assumptions 
about the nature of human movements, namely, (a) the change of viewing direction is infrequent;  
(b) the angular velocity and acceleration are nonzero only during the infrequent changes in orientation. 
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The decorrelation time constant and the variance factor are tuned in order that the spectral properties of 
the signal generated by the model match those of the angular velocities for paradigmatic motions [42]. 
More sophisticated models are also investigated, which opens the way to an interesting avenue of 
research concerning the development of multiple models of human (head) motion, and multiple model 
adaptive estimation techniques (MMAE) [61].  

In this paper, the application specifics concern orientation measurement devices that use angular 
velocity to estimate orientation using an EKF. At the sampling intervals that are common for these 
devices, say between 100–500 Hz, the angular velocity can be considered constant in the time interval 
between successive measurements, leading to the numerical integration of kinematic equations via 
(39)–(40); the addition of some process noise may further help improving filter stability. 

5.2. Sensor Modelling 

In a fully integrated IMMU, the gyro, the accelerometer and the magnetometer are each tri-axial, 
with mutually orthogonal sensitivity axes. Their output in response to the body angular velocity ωbody, 
acceleration (gravity g and body acceleration abody), and local magnetic field (earth’s magnetic field 
hearth and some local magnetic effect modelled as a time-invariant magnetic vector hext) are: 

( )
( )

B body

B
B E body

B
B E earth ext

               

,

g g g

a a a

h h h

⎧ = + +
⎪

= − + + +⎨
⎪ = + + +⎩

K b v

a K C g a b v

h K C h h b v

ω ω

 (68) 

where g K , a K  and m K  are the matrices of the scale factors (ideally, they are equal to I3);   
g b , a b  and 

  
hbare the bias vectors (ideally, they are null); g v, a v and h v are assumed uncorrelated white Gaussian 
measurement noise, with null mean and covariance matrix 2

3,g gσ= IΣ 2
3a aσ= IΣ and 2

3.h hσ= IΣ  

Equation (68) is a simplified model that does not account for additional error sources, such as  
cross-axis sensitivity, gyro g-sensitivity, nonlinearity, hysteresis and misalignment [62]. It is worthy 
noting that a further simplification is made in the gyro model by omitting the earth’s angular velocity 
of 15°/hour, since state-of-the-art MEMS gyros are unable to sense this component. Their bias stability 
is indeed in the order of 1°/s—the bias stability is usually specified as a 1σ value, and it describes how 
the bias may change over a specified period of time, typically around 100 s, in fixed conditions 
(usually including constant temperature) [26]. 

To proceed in the discussion of the sensor model (68), remind that an accelerometer measures the 
projection along its sensitive axis of the specific force f it is submitted. The specific force additively 
combines the linear acceleration component a, due to body motion, and the gravitational acceleration 
component, –g, both projected along the sensitive axis of the accelerometer, Figure 5. In common 
parlance, the high-frequency component, aka the AC component, is related to the dynamic motion the 
subject is performing, e.g., walking, hand weaving, head shaking, and so forth, while the  
low-frequency component of the acceleration signal, aka the zero-frequency (DC) component, is 
related to the influence of gravity, and it can be exploited to identify static postures [63]. 

The bias and scale factor of inertial and magnetic sensors are functions of environmental conditions, 
in particular ambient temperature; this is especially true for gyros [64]. Temperature effects on 
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accelerometers are of relatively lower quantitative relevance, and they are usually negligible on 
magnetic sensors across the thermal variations that they may encounter in practice. Moreover, scale 
factor drifts of inertial and magnetic sensors usually affect the accuracy of the measurement process to 
a much lesser extent than the bias drifts of these sensors. The influence of temperature on the gyro bias 
drift is particularly significant after that power is applied to gyros, as a result of device self-heating. 
Provided that gyros are allowed warm-up and thermal stabilization for few minutes, then their biases 
tend to change quite slowly with time. In practice, gyro bias errors can be calibrated and compensated 
effectively by so-called “zero attitude updates”, which require keeping the gyros from rotating. It is 
dependent on the nature of the specific application whether occasional rests can be assumed for the 
human body part to be monitored and tracked [65]. As for the scale factor calibration, procedures 
suited for in-field use are available [62,66]. The scale factor and bias errors of accelerometers can be 
calibrated and compensated by so-called “zero-velocity updates”, which require keeping the 
accelerometers from moving, although they are difficult to implement and may require specific 
manoeuvres to work properly [67]. In analogy with accelerometers, the scale factor and electronic bias 
errors of magnetic sensors can be calibrated and compensated effectively by in-field procedures [68]. 
In the case of experimental sessions lasting few minutes, it is quite safe to assume that the scale factor 
and bias errors of inertial and magnetic sensors are null, provided that the sensors are carefully 
calibrated before starting as explained above. 

Figure 5. A single-axis accelerometer measures the projection (in the direction of the 
sensitive axis) of the specific force f resulting from the sum of the inertial acceleration  
a and the equivalent gravity acceleration –g. 

 

The problem of magnetic variations due to ferromagnetic materials in the vicinity of a magnetic 
sensor raises additional modelling considerations. Equation (68) shows that the reference magnetic 
vector is not necessarily the earth’s magnetic field hearth. The presence of any constant field vector hext 
superimposed on hearth does not preclude the possibility of constructing the horizontal reference needed 
for orientation estimation, provided that hext is accurately known. This is in contrast with the need to 
perform ambulatory measurements, without prior knowledge of existence and location of disturbances. 
Moreover, we have to consider dynamic effects that are related to either ferromagnetic objects moving 
in the vicinity of the sensor or to movements of the body-fixed sensor relative to static ferromagnetic 
objects. Because of these dynamic effects, hext turns out to be time-variant and unknown. A strategy to 
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tackle this problem is to assume that a time-variant bias error hb is present in the magnetic sensor 
output. In the dynamic model the kinematics equations are therefore augmented with additional 
equations yielding the model of the behaviour in time of hext by “absorbing” it into a mathematical 
model of the magnetic drift bias, e.g., random-walk or first-order Gauss-Markov models  
(state augmentation). In other terms, the horizontal reference is built and maintained by the EKF itself 
(auto-calibration) [21,22]. 

5.3. Measurement Equations 

The role of aiding sensors is played by accelerometers, taken alone or in combination with magnetic 
sensors. Sometimes, and depending on the requirements of a specific application, the complexity of the 
measurement hardware setup, and the sophistication of the filtering algorithms as well, can be reduced 
to some extent. Simplifying assumptions are quite common in applications to gait analysis [65]. For 
instance, in the case that motion outside the sagittal plane is assumed not to take place, accelerometers 
can be used without magnetic sensors, and, since the acceleration sensitivity axes can be embedded in 
the sagittal plane, simpler bi-axial configurations may suffice. Analogously, uni-axial gyros are enough 
to capture angular velocities when rotations are approximately about a single axis, oriented in the 
medio-lateral direction (orthogonal to the sagittal plane).  

If motion occurs in the 3D space, heading estimation requires a horizontal reference, for which 
construction an IMMU is necessary. Few possibilities exist as for the choice of the measurement 
model. Since we prefer to take the measured angular velocity as an input to the filter, we have to 
decide how to handle acceleration and magnetic measurements. They can be fused together directly 
using any deterministic attitude estimation algorithm, e.g., TRIAD, QUEST, FQA, GN optimizer. An 
advantage of single-frame deterministic algorithms that deliver the quaternion at their output is that the 
measurement equations are linear; with the exception of the GN optimizer, see (57)–(58) in this regard, 
the unit-norm property of the measured quaternion is also preserved. The FQA is a potentially good 
choice, because of the decoupling of magnetic and acceleration data in estimating heading and 
inclination. A difficulty with this approach is in constructing the expression of the measurement noise 
covariance, a problem apparently dismissed in [41]. Analytical expressions of the covariance matrix 
for the TRIAD algorithm and QUEST are derived in [40]: it is proven that the noise in the quaternion 
measurements presents quaternion-dependent covariance matrices. The dependence on the quaternion 
is not a problem per se, since the predicted state can be used in place of the true unknown state. An 
element of complication is that the noisy reference magnetic vector estimated by the EKF must be used 
in the process of vector matching. 

Alternatively, each reference vector component is given a specific measurement equation, which 
helps moving its representation from the earth-fixed to the body-fixed frame via either (24) or the rule 
of composition (33): 

( )
( )

B
E

B
E

a
k k k

h
k k k

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

a gC q 0 v
h h0 C q v

 (69) 

as done, e.g., in [22,24]. The measurement equations are nonlinear, which forces to compute their 
Jacobian matrices when carrying out the linearization process; however, the computations are neither 
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algebraically difficult nor computationally demanding. The derivation of the measurement noise 
covariance matrix is not difficult as well, since it can be expressed directly in terms of the statistics of 
the measurement noise affecting each sensor. 

5.4. Vector Selection 

Another important issue in the EKF design deals with its behaviour when anomalous measurements 
are received. It takes relatively long for an EKF to recover from false measurements when they are 
given the opportunity to contribute to the estimate of the state vector [57]. The best approach to deal 
with this problem would consist of preventing the filter from processing data whose reliability is 
suspected to be low [22,24].  

As for the acceleration, in order to answer the question whether the body-fixed measured 
acceleration vector is suitable for measuring gravity, we would compare its norm with the known value 
of gravity; better yet, we may decide to work directly with the norm of the difference between the 
measured acceleration vector, resolved in the earth-fixed frame, and the gravity. If the deviation 
exceeds some properly chosen threshold value, a sensor glitch, or a contamination due to body motion 
would be suspected. Different actions can be taken: the measured vector is discarded, and the filter 
update is only based on magnetic measurements, unless they too are considered unreliable. This is 
equivalent to temporarily set the acceleration measurement noise variance to some large value, which 
can be considered, to all practical purposes, infinite: 

( )2 B
E 12 ,

,               otherwise,     
a k k aR

a

σ ε
σ

−
−

⎧ − <⎪= ⎨
∞⎪⎩

a C q g
 (70) 

where εa is a suitably chosen threshold. An alternative approach consists of defining a suitable law for 
relating the increase of the acceleration measurement noise variance to the actual deviation of the 
measured acceleration vector from the gravity. According to our experience, the norm-based adaptive 
algorithm (70) works adequately in most practical conditions. Note that the quaternion predicted by the 
filter at time tk-1 is used in (70), in place of the unknown true quaternion at the time instant tk. 

A similar approach can be pursued as for the magnetic measurements. In this case we have to work 
with the difference between the measured magnetic vector, resolved in the earth-fixed frame, and the 
local magnetic reference vector. Sometimes, computing the dip angle is suggested to help improving 
the process; the dip angle is the angle between the magnetic field and the horizontal plane, which 
would be constant for given latitude and longitude. Unfortunately, the dip angle varies very erratically, 
especially within indoor environments, and we find its use somewhat critical. An effective norm-based 
adaptive algorithm applied to the magnetic sensor measurement noise variance is as follows: 

( )2
1 earth 12 ,

,                              otherwise,       

E h
h k B k k hR
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σ ε
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− −
− −
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∞⎪⎩

h C q h b
 (71) 

where εh is a suitably chosen threshold. The problem with this approach is that we must assume that 
the local magnetic reference vector is known, which is not the case unless the magnetic bias  
auto-calibration feature is implemented in the EKF. Note that the magnetic bias predicted by the filter 
at time tk-1 is used in (71), in place of its unknown true value at time tk.  
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A final comment concerns the applications in gait analysis, in the particularly important case that 
the IMMU is placed on the lower limbs, e.g., on the foot instep [65]. Rather than fusing them in an 
EKF, accelerometer data are used just to align the IMMU when the foot is at rest (stance phase of the 
gait cycle), followed by gyro integration during the swing phase of the gait cycle. During the swing 
phase the acceleration signals are indeed dominated by the inertial component, which means that the 
condition implied by (70) is almost never fulfilled. The stride-by-stride gyro integration reset allows 
mitigating the random-walk errors associated with the integration of gyro wideband measurement 
noise. To perform stance detection, we need a variant of the norm-based adaptive algorithm (70), or 
possibly a similar algorithm applied to gyro data: 

( ) [ ]B
E 1 for , 1 ,k i a k g i k K kε ε−

−− < ∪ < ∈ − −a C q g ω  (72) 

where εg is a suitably chosen threshold, and KTs is the given amount of time to detect when the foot is 
at rest.  

5.5. Filter Parameter Tuning  

The parameters to be tuned in an EKF concern the statistical properties assumed for the process 
noise and the measurement noise. Since they are modelled as Gaussian noise, we need to specify the 
possibly time-variant covariance matrices Rk and Qk [57,69]. 

The measurement noise covariance matrix Rk is usually built from an isotropic model of sensor 
behaviour: the sensing elements that form each triad are characterized by the same measurement noise 
variance, hence Rk is proportional to a identity matrix, or it presents a block-diagonal structure. The 
measurement noise variances are estimated by taking samples from the sensors at a stationary location. 
The estimated measurement noise variances can be slightly increased over the on-bench calibration 
values, to help the EKF stability. In this way, for instance, tremulous motions that an accelerometer 
can be subject to or minute magnetic variations that can be observed for even very small sensor 
displacements can be accounted for as noise components in the filter. The EKF is generally quite 
robust to mismodelling errors in the measurement noise covariance matrix.  

Once the structure of the process noise covariance matrix Qk is determined, it can be convenient to 
use scaling parameters that are applied to specific blocks of Qk. The values of the scaling parameters 
can be determined using a non-linear optimization routine for values that optimize the filter behaviour 
in given operating conditions [59]. Some considerations in parameter tuning must be directed to the 
belief attached to the validity of the process model. In assessing the model validity, for instance, we 
have to consider the many gyro error sources besides bias that are not modelled using (68), and the 
assumption that the angular velocity is constant in the time interval between consecutives updates by 
the EKF. In particular, the latter assumption can be criticized either for high dynamic motions, low 
sampling frequencies or both. In any case, it is known that increasing the value of the scaling 
parameters tends to make the filter response more prompt, at the expense of some degradation in the 
accuracy of the state vector estimates when the system’s behaviour is more benign. The filter response 
can also be adjusted by on-line adaptation of Qk. This can be done according to different means, e.g., 
by detecting statistically significant changes in the innovation produced by the filter—fading memory 
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algorithm, [70]. We do not introduce any Q-adaptation in the exemplary EKF presented in this paper. 
In general, it would be said that the EKF is less robust to mismodelling errors in Qk than in Rk. 

A study concerning the EKF performance assessment can be performed on experimental or 
synthetic motion data. With the former approach a series of experiments is performed, where 
monitored subjects are asked to perform paradigmatic motions. The main problem is that the true 
motion signals are unknown, because of the noise present in the measurement data. It is possible to 
smooth the data to some extent and use them as a reference signal, but the risk is to introduce false 
signal features, while removing true ones. With the latter approach, the main problem is whether the 
synthetic signals really capture the exact characteristics of the paradigmatic motions or not. If not, it is 
difficult to predict filter performance when applied to real-life tasks. As neither of these approaches is 
perfect, both analyses are usually performed and attempts are made to relate them to each other.  

Mostly, in order to construct a dataset according to the approach based on experimental motion data, 
the motion is recorded using a gold standard optical tracker. The truth-reference unit quaternion trueq  
can be built from the 3D-position coordinates of a minimum of three markers, using, e.g., the Horn 
algorithm [71]. Quaternion smoothing can be performed by using norm-preserving orientation 
filters [72] or by independently filtering the quaternion components with any standard low-pass filter, 
followed by “brute force” normalization [22]. In order to implement a simulation environment for 
Monte Carlo simulation studies, standard conversion formulas can be applied to construct the 
orientation vector from the unit quaternion [30]. The orientation vector and its time derivative are then 
used to synthesize the angular velocity vector that generates the specified orientation [73]. The sensed 
gravity and magnetic field are computed from resolving gravity and magnetic field into the body frame 
using (32); additive white Gaussian noises with null mean and assigned variance are added to simulate 
the sensor measurements during the motion. Any given disturbance, e.g., body acceleration and 
magnetic variation can also be added into the simulated sensor signals before resolving them in the 
body-fixed frame.  

5.6. Filter Performance Assessment 

The performance metrics can be based on computing 1
true ,−Δ = ⊗q q q  where trueq  and q  are the true 

and the estimated quaternions, respectively. The quaternion Δq  represents therefore the rotation that 
brings the estimated body frame onto the true body frame. The orientation error Δθ is obtained from 
the scalar component of Δq  according to the equation ( )42 arccos .qθΔ = Δ  The performance metrics 
are expressed in terms of the root-mean-square-value of the orientation error (RMSEθ), averaged over 
the number of either the Monte Carlo simulation runs or the experimental trials available. Alternatively, 
a set of estimated and reference Euler angles can be computed from trueq  and q  using standard 
conversion formulas, and the filter performance can be summarized by presenting the RMSEs of the 
Euler angles, again averaged over the number of either the Monte Carlo simulation runs or the 
experimental trials available. An obvious advantage of working with synthetic motion signals is that 
the errors incurred in estimating the state vector components can be compared with the bounds that are 
predicted by the error covariance matrix produced by the EKF. This is a useful feature to assess the 
filter convergence and to diagnose a number of potential problems arising in its numerical 
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implementation. Of course, this possibility is precluded when working with experimental motion 
signals. 

5.7. Exemplary Direct-State EKF 

The dynamic model equation is as follows: 

( )( )1 1 1

1 1 .3

exp q
B k sk k k

h h h
k k k

t T− − −

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

0q q w
b b w0 I

Ω ω
 (73) 

The dynamic model is linear and time-variant. Implicit in the formulation (73) is that the gyro 
biases are negligible. The auto-calibration feature implemented in the filter is limited to handling the 
problem of magnetic variations, by modelling the magnetic bias as a random-walk process driven by 
the zero-mean white Gaussian noise vector h wk . 

The validity of the model part that describes the time-evolution of the unit quaternion depends on 
the assumption that the angular velocity is constant in the time interval [tk-1 tk]. The process noise 
component is: 
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1
q

k −w  describes how the gyro noise enters the state model through a quaternion-dependent linear 
transformation. The process noise component 1

h
k −w  is assumed to have covariance matrix 

2
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2 reflects the a priori belief about the severity of the magnetic 

variations in the given environment.  
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Equation (69) describes the measurement model. The measurement noise covariance matrix is: 
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with: 

   

a R k = Rσ a
2 I3  

h R k = Rσ h
2 I3.

⎧
⎨
⎪

⎩⎪
 (77) 

where the variance terms are determined using (70)–(71) (R-adaptation). Useless to say, when both 
variance terms are set to some extremely large values, i.e., no aiding comes to the filter, the kinematic 
equations are integrated based only on the gyro data. 
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The block diagram of the filter is sketched in Figure 6. The block “project ahead” computes the a 
priori state estimate and error covariance matrix, using (A2)–(A3). The estimation of the rotation 
matrix is carried within this block; this estimate is also used to compute the Jacobian matrix of the 
measurement Equation (69), using (A10), and the Kalman Gain, using (A5)–(A6). The block “update” 
computes the a posteriori state estimate and error covariance matrix, using (A7)–(A8). Remind the 
need for normalizing the updated quaternion at this level, in preparation for the next “project ahead” 
step. The measurement validation tests implement (70)–(71), which is followed by the R-adaptation 
step, via (76)–(77). The iterative nature of the filter allows exploiting the statistics available at any 
time step to start the computations at the next time-step, when a new set of measurements from the 
sensors become available. 

Figure 6. EKF structure. 

 

5.8. Head Motion Tracking Trial 

The dataset for the experiment described in this Section was obtained by collecting 
inertial/magnetic sensor data from the MTx orientation tracker by Xsens Technologies B.V., Enschede, 
The Netherlands. These data were delivered through the USB interface to a host computer at a rate of 
100 Hz together with the unit quaternion time functions estimated by the native Xsens EKF that runs in 
its default setting. The device was placed on top of a 10 cm × 10 cm plate that was screwed on a cyclist 
helmet, and fastened using double-side adhesive tape. The plate orientation was recorded using a  
six-camera Vicon optical tracker with a sampling rate of 100 Hz. A trigger signal was generated by the 
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host computer and enabled time-synchronization of MTx and Vicon data streams. The system 
measured the position of four reflective markers (diameter: 25 mm), placed at the corners of the plate.  

The MTx sensors were calibrated before starting the experimental session and their scale factor and 
bias errors were therefore zeroed for all practical purposes. The initial orientation of the sensor frame 
relative to the reference frame was found by asking the subject to stand still for few seconds at the 
beginning of the trial. The calibration quaternion needed to estimate the reference magnetic vector was 
built during the still time. The subject was then asked to freely move and turn his helmet-capped head 
during the trial, while standing on the spot. The head motion trial lasted slightly more than half a 
minute. The Euler angles time functions delivered by the Vicon system were considered the truth 
reference for the purpose of error estimation.  

The EKF was implemented in Matlab for off-line data processing on a MacBook Air computer. 
Using the virtualization technology from Parallels Desktop 4.0 for Mac, the cycle time for a single 
iteration turned out to be about 2.0 ms, without any particular programming effort made to optimize 
the computational efficiency of the filter. The optimally tuned parameter setting for the EKF is 
reported in Table 1.  

Table 1. Optimally tuned parameter setting for the EKF. The raw magnetic data from the 
MTx are expressed in arbitrary units (a.u.), since they are normalized to earth field strength 
by the manufacturer. 

 

 
 
 
 
 
 

 
The error statistics are reported in Table 2.  

Table 2. Performance assessment. 

 
 
 
 

 
 
The first and last column report the errors incurred by the EKF and the Xsens EKF, respectively. 

The columns 3 to 5 give the errors incurred when the gyro is aided by: accelerometer only (column 3); 
magnetic sensor only (column 4); no sensors (column 5). Suppose that (71) is implemented with εh = 0 
The measurements from the magnetic sensor cannot be incorporated in the measurement update stage 

Process noise statistics   

Gyro standard deviation ,gσ  °/s   0.4
Magnetic bias standard deviation ,bσ a.u. (× 10-3)   0.1
Measurement noise statistics  
Accelerometer standard deviation ,aσ mg 10.0
Magnetic sensor standard deviation ,hσ a.u. (× 10-3)   1.0
Thresholds for R-adaptation  
Acceleration measurements: ,aε mg 40.0
Magnetic sensor measurements: ,hε a.u. (× 10-3) 50.0

RMSE  EKF ε h = 0  ε a = 0  ε a = ε h = 0  Xsens EKF 

Roll angle, ° 0.72 0.89 3.13 0.97 0.94 
Pitch angle, ° 0.83 0.88 1.20 4.91 0.76 
Yaw angle, ° 1.23 3.88 4.30 3.76 1.30 
Orientation angle, ° 1.62 3.96 5.26 6.19 1.72 
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of the EKF; the same occurs when εa = 0, as for the accelerometer, in (70). When both thresholds are 
zero, the gyro-free aiding sensor system is inhibited, and the orientation solution is obtained entirely 
from gyro measurement data. It is apparent that the accelerometer and the magnetic sensor are helpful 
in inclination and heading stabilization, respectively. Without aiding sensors, random-walk integration 
of gyro wideband measurement noise yields seriously degraded performance. These results clearly 
indicate the importance of sensor fusion in improving the accuracy of orientation estimates by 
inertial/magnetic sensing. 

Finally, Figures 7–9 show the time functions of the Euler angles as they are measured from the 
Vicon system; superimposed on them the time functions of the estimation errors incurred by the EKF. 

Figure 7. Roll angle time functions, truth reference and estimation error by the EKF. 

 

Figure 8. Pitch angle time functions, truth reference and estimation error by the EKF. 

 

Figure 9. Yaw angle time functions, truth reference and estimation error by the EKF. 
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6. Concluding Remarks 
 
A comprehensive review of the endless literature on the problem of orientation determination is 

virtually impossible and necessarily incomplete, especially if one wishes to encompass all possible 
applications. We hope this article is interesting to experts and novice alike; the reported information 
would be sufficient to the readers, in order to cook their formulation of a state-of-the-art algorithm for 
3D-orientation estimation using inertial/magnetic sensing in applications of human body motion 
tracking and analysis.  
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Appendix 

In this Appendix we report in short the equatons of both the KF and the EKF. For an excellent 
treatment of these topics, consult [57]. 

1. KF Equations 

Dynamic and measurement models: 

1 1 1

;
k k k k

k k k k

− − −= +
= +

x F x w
z H x v

 (A1) 

(1) Compute the a priori state estimate: 

1 1;k k k
− +

− −=x F x  (A2) 

the superscript—in   x k
− stands for “the a priori estimate at time tk, before the current measurement zk 

is used in computing the a posteriori estimate”; the superscript + in x k −1
+ stands for “the a posteriori 

estimate at time tk, which is computed based on the evidence in the current measurement zk”. 
(2) Compute the a priori error covariance matrix: 

1 1 1 1;
T

k k k k k
−

− − − −= +P F P F Q  (A3) 

(3) Compute the innovation and its covariance matrix: 
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( );k k k k
−= −z H xν  (A4) 

(4) Compute the covariance matrix of the innovation: 

;T
k k k k k

−= +S H P H R  (A5) 

(5) Compute the Kalman gain: 
1;T

k k k k
− −=K P H S  (A6) 

(6) Compute the a posteriori state estimate: 

;k k k k
+ −= +x x K ν  (A7) 

(7) Compute the a posteriori error covariance matrix: 

.k k k k k
+ − −= −P P K H P  (A8) 

2. EKF Equations 

When the dynamic model, the measurement model or both are nonlinear the EKF comes to our 
rescue: 

( )
( )
1 1 1

.
k k k k

k k k k

f

h
− − −= +

= +

x x w

z x v
 (A9) 

The EKF equations differ from the Equations (A1)–(A8) only in the specifications of the matrices 
Fk-1 and Hk: 
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