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Abstract: In this work, a fiber Bragg grating (FBG) sensing system which can measure the 

transient response of out-of-plane point-wise displacement responses is set up on a smart 

cantilever beam and the feasibility of its use as a feedback sensor in an active structural 

control system is studied experimentally. An FBG filter is employed in the proposed fiber 

sensing system to dynamically demodulate the responses obtained by the FBG 

displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer 

(LDV) is utilized simultaneously to verify displacement detection ability of the FBG 

sensing system. An optical full-field measurement technique called amplitude-fluctuation 

electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration 

mode shapes and resonant frequencies. To verify the dynamic demodulation performance 

of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first 

employed to measure the dynamic strain of impact-induced vibrations. Then, system 

identification of the smart cantilever beam is performed by FBG strain and displacement 

sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of 

integrating the proposed FBG displacement sensing system in a collocated feedback 

system is investigated and excellent dynamic feedback performance is demonstrated. In 

conclusion, our experiments show that the FBG sensor is capable of performing dynamic 

displacement feedback and/or strain measurements with high sensitivity and resolution.  
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1. Introduction  

Fiber Bragg grating (FBG) sensors possess many excellent properties such as small size,  

mass-production at low cost, and immunity to electro-magnetic interference (EMI). For more than a 

decade, they have been proven to be sensitive to many physical quantities such as strain, temperature, 

pressure, acceleration, and force [1-3]. Since many FBGs can be inscribed into a single fiber, they also 

have multiplexing ability to detect several different positions in the same structure simultaneously. 

Traditionally, FBG sensors are mounted on or imbedded in structures. Thus, detecting out-of-plane 

point-wise displacement can’t be achieved without work-around methods such as bonding an FBG 

sensor to a cantilever structure to indirectly measure the displacement responses [4,5]. However, 

indirect sensing methods are still not capable of measuring point-wise displacement. Due to the 

different modes of the cantilever structures, indirect sensing methods are also not suitable for dynamic 

measurements.  

To directly utilize an FBG to measure out-of-plane point-wise displacement, a method that can 

point-wisely glue an FBG sensor perpendicular to the surface containing the detecting point is adopted 

in this paper [6]. Since sensors are one of the key elements in smart structures [7], the purpose of this 

work is to investigate the feasibility of integrating the proposed FBG displacement sensing system into 

smart structures for performing active vibration suppression. A smart cantilever beam actuated by a 

piezoelectric actuator is employed to demonstrate the dynamic sensing ability as well as the feedback 

sensing ability of the proposed FBG displacement sensing system.  

The sensing principle of the FBG is based on the shift of the Bragg wavelength resulting from 

variations of environmental physical quantities. Under static or low frequency condition, an optical 

spectrum analyzer (OSA) is usually used to detect wavelength shift [8,9]. However, since the 

demodulating speed of the OSA is limited, wavelength shifts are not able to be recorded in time for 

high frequency signals. On the contrary, demodulating techniques which transfer wavelength shifts to 

energy variations through optical filters are capable of detecting high frequency responses. Optical 

filters such as the long-period fiber grating (LPFG) filters, FBG filters, and chirped FBG filters  

are capable of providing different dynamic sensing ranges and resolutions [10-12]. Among  

above mentioned filters, the FBG filter can provide the highest sensitivity and it possesses high  

signal-to-noise (SNR) ratio due to its smallest full-width at half maximum (FWHM) compared to other 

grating-based filters. Thus, different from the sensing system in [6] which employs an LPFG filter to 

demodulate the displacement responses, this study employs an FBG filter in the sensing system to 

enhance the dynamic sensing performance. 

There are several control algorithms that have been successfully utilized to control flexible smart 

structures [13]. Since the purpose of this study is focused on the dynamic sensing performance of the 

proposed point-wise FBG displacement sensor system in an active structural control application, a 
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velocity feedback control is adopted in this paper to add damping of the smart cantilever beam and 

suppress the vibrations. The proposed FBG displacement sensor and the piezoelectric actuator is set up 

collocated to each other on top and bottom surfaces of the cantilever beam, respectively. Before 

performing experiments, an optical full-field measurement technique called amplitude-fluctuation 

electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes 

and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a 

traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic 

strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is 

performed by FBG strain and displacement sensors. To verify dynamic sensing ability of the proposed 

FBG displacement sensor, a laser Doppler vibrometer (LDV) is simultaneously employed as a comparison 

for the displacement measurement. Finally, since the effect of the velocity feedback for sinusoidal 

waveforms is equivalent to delay the waveforms by some phases, a delay controller is also utilized in 

our work as a comparison for the velocity feedback controller. To our knowledge, this is the first time 

that the proposed FBG displacement sensing system being integrated into a smart structure for 

performing active vibration control. 

This paper is organized as follows. Section 2 summarizes the sensing principle, calibration method, 

and set-up method of the FBG displacement sensor. The model of the smart cantilever beam is 

presented in Section 3. The velocity feedback controller and the delay controller are briefly introduced 

in Section 4. Finally, the experimental setup, performances of the FBG-filter based demodulation 

technique, system identifications performed by FBG strain/displacement sensors, and control results of 

suppressing vibrations of cantilever beam are reported and discussed in Section 5. 

2. FBG Sensing System 

A fiber Bragg grating (FBG) is a periodic distribution of the refractive index along the fiber core. 

From the Bragg’s law, the Bragg wavelength λS of an FBG sensor is given by [14]: 

S eff2nλ = Λ  (1) 

where Λ  is the Bragg grating period and effn  is the effective refractive index of the fiber core. The 

shift in Bragg wavelength due to an applied strain can be expressed as: 

S S0(1 )epλ λ εΔ = −  (2) 

where ε is the strain induced in the fiber, pe is the effective photoelastic coefficient, and λS0 is the 

Bragg wavelength of the grating without the strain field. In order to measure the point-wise 

displacement of a point on a structure subjected to dynamic loadings using an FBG, one end of a fiber 

(of length l0) containing the FBG needs to be fixed to a stationary boundary while the other end is 

fixed to the sensing point. The dynamic displacement of the sensing point on the structure can be 

obtained from the following relation: 

0

0
( ) ( )d

l
d t t zε=   (3) 

The spectrum of the light reflected by the FBG sensor can be approximated by a Gaussian function, 

given by: 
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where RS is the maximum reflectivity of the FBG sensor, σS is the grating full-width at half maximum 

(FWHM). In order to enhance the signal-to-noise (SNR) ratio and the sensitivity, an FBG filter located 

at the output of a broadband source (BBS) is used as a demodulator in the sensing system. If the 

intensity of the BBS is P(λ), the total light power I detected by the photodetector (PD) can be 

expressed as: 

( ) ( ) ( )d ( ) ( )dI P F R P F Rλλ λ λ λ λ λ λ
∞ ∞

−∞ −∞
= ≅   (5) 

where F(λ) is the spectrum of the FBG demodulator. For a broadband source with a relative flat 

spectrum, the power spectrum may be assumed to be a constant as Pλ over the operation range. The PD 

transforms the light intensity to voltage signals.  

Before performing the measurement, calibration of the FBG sensing system is necessary to ensure 

the linearity, maximum sensing output, and sensitivity. The calibrating criteria are based on the 

demodulation behavior of the FBG filter. The transmittance of the FBG filter can be approximated  

by [14-16]: 

F
F

F

2

( ) 1 exp 4ln 2F R
λ λ

λ
σ
−

= − −
    
   

 
(6) 

where λF is the Bragg wavelength of the filter, RF is the maximum reflectivity, and σF is the grating 

FWHM of the FBG filter. Substituting Equations (4) and (6) into Equation (5), the light intensity after 

evaluating the integration is expressed as: 

( )DC P
2

norexpI I I δλ= − − 
   (7) 

In Equation (7), IDC is the DC component of the light source given by: 

S S
DC

4 ln 2

P R
I λπ σ

=  (8) 

Ip is the transmittance light intensity given by: 

F S F S
P

2 2
F S

4ln 2

P R R
I λπ σ σ

σ σ
=

+
 (9) 

and δλnor is a normalized wavelength mismatch defined as: 

nor
2 2
F S

2 ln 2
δλ δλ

σ σ
=

+

 
 
 
 

 (10) 

where S F S0 F Sδλ λ λ λ λ λ= − = − + Δ  is the wavelength mismatch. Hence, the variation of intensity I  will 

depend on the wavelength mismatch. It is noted that if λF of the FBG filter attached to a translation 

stage is adjusted to the left of λS before the measurement, the PD output electrical signal will increase 

as the FBG sensor is elongated and decrease as the FBG sensor is compressed. For the case that small 

dynamic strain is applied, the response of the FBG sensor is linear and the wavelength-to-intensity 
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conversion factor K  depending on the operation point can be derived from Equation (7) as: 

( )P nor
nor

nor
2d

2 exp
d( )

I
K I δλ

δλ
δλ= = − 

 
 (11) 

The maximum wavelength-to-intensity conversion factor Knor,max can be obtained by setting 

dKnor/d(δλnor) = 0, where Knor = K/2IP. The normalized wavelength mismatch at Knor,max is 1 / 2  which 

indicates that an optimal operation point of δλ is: 

2 2
F S

OPT S0 F S,OPT
8ln 2

σ σ
δλ λ λ λ

+
= − + Δ =  (12) 

If the optimal operation condition, i.e., δλOPT, is matched, then the maximized PD output can be 

obtained. Meeting of the optimal operation condition is a method to calibrate the FBG sensor before 

the experiment. An optical spectrum analyzer (OSA) can be employed to monitor the optimal operation 

condition during the experiment. In this paper, the proposed FBG displacement sensor with high 

sensitivity is used to detect and feedback the displacement responses of a smart cantilever beam. Since 

the cantilever beam is actuated by a piezoelectric actuator near the fixed end of the cantilever beam, 

we can apply a sinusoidal voltage input to the piezoelectric actuator at the first resonant frequency of 

the cantilever beam to excite the vibration and slightly adjust the translation stage of the FBG filter to 

prevent the displacement waveform from saturation. 

To set up an FBG as an out-of-plane FBG displacement sensor, one end of the FBG displacement 

sensor is glued to a vertical translation stage and the other end of the FBG is glued to the sensing point 

on the surface of the cantilever beam with a mix of epoxy resin and hardener. Since FBGs are very 

sensitive to the longitudinal strain, the set-up method mentioned above allows an FBG to be capable of 

measuring the out-of-plane dynamic displacement of the cantilever beam with high sensitivity. The 

illustration of the set-up method for the proposed FBG displacement sensor is shown in Figure 1. 

Details regarding the FBG displacement sensor set-up method can be found in Chuang and Ma [6]. 

Figure 1. Illustration for the set-up method for the displacement FBG sensor. 

 

3. Model of the Smart Cantilever Beam 

In this section, the model of the smart cantilever beam is briefly presented [17-19]. Due to the fact 

that the proposed point-wise FBG displacement sensor is very sensitive, it is attached near the fixed 
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end of the cantilever beam to avoid saturations of measurement results. Since the thickness is small 

compared to the length and width of the cantilever beam, the effects of shear deformation and rotary 

inertia can be neglected. First, consider the free strain εa of the actuating layer when a voltage va is 

applied to a piezoelectric material polarized in z direction as: 

31
a a

a

d
v

t
ε =  (13) 

where d31 is the piezoelectric constant of the piezoelectric material, ta is the thickness of the 

piezoelectric actuator. Assume bonding between the actuator and the beam is perfect and the strain 

distribution is linear across the thickness of the beam, the strain distribution can be decomposed into 

flexural component and longitudinal component as: 

0( )y yε α ε= +  (14) 

The stress distribution inside the piezoelectric actuator is: 

0( ) ( )a a ay E yσ α ε ε= + −  (15) 

where Ea is the Young’s modulus of the piezoelectric material. The stress distribution inside the beam is: 

( )b by E yσ α=  (16) 

where Eb is the Young’s modulus of the beam. By applying the moment equilibrium about the center of 

the beam: 

/ 2 / 2

/ 2 / 2
( ) d ( ) d 0b b a

b b

t t t
b at t

y y y y y yσ σ
+

−
+ =   (17) 

and the force equilibrium along the longitudinal axis of the beam: 

/2 /2

/2 /2
( )d ( )d 0b b a

b b

t t t
b at t

y y y yσ σ
+

−
+ =   (18) 

we can obtain ε0 and a, in which:  

2 4 3 2 2 3 2 4

6 ( )

(4 6 4 )
b a b a b a

a
b b a b b a b a b a a a

E E t t t t

E t E E t t t t t t E t
α ε+

=
+ + + +

 (19) 

where tb is the thickness of the beam. The induced moment ( , )M x t  in the beam can be expressed as:  

1 2( , ) ( , ) ( )[ ( ) ( )],b b a a a aM x t E I C v x t C v t u x x u x xα= = = − − −  (20) 

where u stands for the unit step function, 1x  and 2x  are coordinates of the left and right ends of the 

piezoelectric actuator, and Ib is the moment of inertia of the beam and: 

2
31

2 4 3 2 2 3 2 4

6 ( )

(4 6 4 )
b b a b b a

a
b b a b b a b a b a a a

d I E E t t t
C

E t E E t t t t t t E t

+=
+ + + +

 (21) 

From the Euler-Bernoulli beam theory, the governing equation of motion of the cantilever beam 

actuated by a piezoelectric patch is given by: 

22

2 2

( , )( , ) ( , )2 2
a

b b b a2 2

v x tw x t w x t
E I A C

x x t x
ρ

  ∂∂ ∂ ∂+ = 
∂ ∂ ∂ ∂  

 (22) 
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where w(x,t) is the out-of-plane displacement of the beam from its equilibrium, ρ is the mass density, and 

Ab is the cross-sectional area of the beam. The boundary conditions of the cantilever beam are given by: 

2 3

2 3
(0, ) (0, ) ( , ) ( , ) 0w t w t w L t w L t

x x x

∂ ∂ ∂= = = =
∂ ∂ ∂

 (23) 

where L is the length of the cantilever beam. The out-of-plane displacement w(x,t) can be expanded as 

an infinite series of eigenfunctions in the form: 

1

( , ) ( ) ( )i i
i

w x t x q tφ
∞

=
=  (24) 

where ( )i xφ is the mode shape, also known as eigenfunction, satisfying the ordinary differential 

equations. From the following orthogonality properties: 

0
( ) ( )d

L
i j ijx x xφ φ δ=  (25) 

4
2

40
( ) ( )d

L b b
i j i ij

b

E I d
x x x

A dx
φ φ ω δ

ρ
=  (26) 

where ijδ  is the Kronecker delta function. From the boundary conditions of the cantilever, the mode 

shape is given by: 

( )cos cosh
( ) cosh cos sinh sin

sin sinh
i i

i i i i i i
i i

x x
x C x x x x

x x

β βφ β β β β
β β

 +
= − − − + 

 (27) 

where iβ are the roots of the following characteristic equation: 

1 cos cosh 0i ix xβ β+ =  (28) 

The resonant frequencies iω  of the smart cantilever beam are evaluated from 2b b
i i

b

E I

A
ω β

ρ
= . 

Multiplying the governing equation of the Euler-Bernoulli beam by ( )j xφ and integrating over the 

length of the beam, we have: 

24

4 20 0 0
1 1

( , )1
( )( ( )) ( )d + ( ) ( ) ( )d ( )d

L L Lb b a
i i j i i j a j

b bi i

E I v x td
q t x x x q t x x x C x x

A Adx x
φ φ φ φ φ

ρ ρ

∞ ∞

= =

∂=
∂

     (29) 

From the orthogonality properties Equations (25) and (26), the property of Dirac delta function, and 
with the assumption that the voltage va(x,t) is constant in the range 1 2[ ,  ]x x , we have: 

2
2

20

1 20

2 1

( , )1
( ( ) ( )) ( )d  

1
                            = [ ( ) ( )] ( ) ( )d    

                           [ ( )- ( )] ( )                         

L a
i i i a i

b

L
a a i

b

a
i i a

b

v x t
q t q t C x x

A x

C x x x x v t x x
A

C
x x v t

A

ω φ
ρ

δ δ φ
ρ

φ φ
ρ

∂
+ =

∂

′ ′− − −

′ ′=







          1,...,i = ∞

 (30) 

By adding natural damping of the beam, the governing equation ( )iq t for the smart cantilever beam 

can be written as follows: 
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2
2 1( ) 2 ( ) ( ) [ ( ) ( )] ( )             1,...,a

i i i i i i i i a
b

C
q t q t q t x x v t i

A
ς ω ω φ φ

ρ
′ ′+ + = − = ∞   (31) 

In this study, a simple but effective negative velocity feedback controller is employed to suppress 

vibrations of the smart cantilever beam as well as to demonstrate dynamic sensing performance of the 

proposed FBG displacement sensor system. In velocity feedback control, the displacement responses 

obtained by the FBG sensor are differentiated and fed back to the piezoceramic actuator. The structure 

of the velocity feedback controller can be written as follows: 

( ) ( )a iv t Gq t= −   (32) 

where G  is the constant control gain. Equation (31) can then be rewritten as: 

2
2 1( ) 2 [ ( ) ( )] ( ) ( )  0                     1,...,a

i i i i i i i i
b

C
q t G x x q t q t i

A
ς ω φ φ ω

ρ
 

′ ′+ + − + = = ∞ 
 

   (33) 

Thus, it is obvious that velocity feedback control has the effect to add damping of the flexible 

structure and can be used to suppress the vibration. 

In this study, the velocity feedback controller is developed in Simulink and implemented by a 

dSPACE DS1104 system with a sampling frequency set to 50 kHz. Figure 2 shows the Simulink 

program in which the exciting and control process are combined into one program. First the smart 

cantilever beam is excited by the piezoceramic actuator to the steady state at the first or second natural 

frequency. During the steady-state vibration, actuator’s input is terminated suddenly to induce free 

vibration. At the same time, feedback loop is connected to apply control algorithms to suppress the 

vibration of the cantilever beam. 

Figure 2. Simulink program for active vibration control. 

 

4. Experimental Results and Discussion  

Figure 3 shows the schematic diagram of the FBG sensing system. A broadband source (BBS) with 

a wavelength ranging from 1,520 to 1,570 nm transmits light to an isolator, which is used to prevent 

the light from reflecting back to the light source. Then the light beam enters an FBG filter to form a 
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transmittance spectrum. The FBG filter is attached to a translation stage so that the dip transmittance of 

the filter can be adjusted to meet the optimal demodulation condition. Finally the light beam is coupled 

to a directional circulator and reflected back to the corresponding photodetector (PDA10CS, InGaAs 

amplified detector, Thorlabs, Inc.) on the output channel. The electrical signals are fed back into  

the dSPACE DS1104 hardware to perform the active vibration suppression. The original Bragg 

wavelength of the FBG sensor is 1,560.82 nm. The FBG sensor used in our experiment is fabricated 

with FWHM of approximately 0.13 nm and reflectivity of less than 90% to avoid distortions and 

saturations of the responses. The FBG sensor and FBG filter are both fabricated with grating lengths of 

10 mm. The reflection spectrum of the FBG sensor and the transmittance spectrum of the FBG filter 

are shown in Figures 4 and 5, respectively. 

Figure 3. Schematic diagram for the FBG displacement sensing system. 

 
Figure 4. Reflection spectrum of the FBG displacement sensor. 
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Figure 5. Transmittance spectrum of the FBG filter. 

 
 

The cantilever beam used in the experiment is made of 6,061 aluminum. The dimensions of the 

cantilever beam are shown in Figure 1. The actuator used in this study is an APC 855 piezoceramic 

plate and its parameters are shown in Table 1. Before performing the sensing and feedback 

experiments, we employ an optical amplitude-fluctuation electronic speckle pattern interferometry 

(AF-ESPI) [20] technique to provide full-field vibration mode shapes as well as the resonant 

frequencies of the smart cantilever beam. Compared to the ordinary time-averaging method, the fringe 

patterns obtained by the AF-ESPI method largely enhance visibility and reduce noise. When the 

vibration frequency of the smart cantilever beam is near the resonant frequency, stationary distinct 

fringe patterns will be observed in a monitor. Thus, the AF-ESPI can be used to simultaneously obtain 

full-field vibration mode shapes as well as resonant frequencies. The mode shapes and resonant 

frequencies of the smart cantilever beam obtained by the AF-ESPI technique are shown in Tables 2 and 3 

for the bending modes and the torsional modes, respectively. The brightest lines in AF-ESPI 

measurements are the nodal lines of the vibration mode shapes.  

Table 1. Parameters of the piezoceramic actuator. 

Piezoceramic length 0.03 m 

Piezoceramic width 0.01 m  

Piezoceramic thickness at 1 × 10−3 m 

Piezoceramic position 1x  1 × 10−3 m 

Piezoceramic position 2x  31 × 10−3 m 

Young’s modulus aE  1,218 × 108 N/m2

Charge constant 31d  −8.6 × 10−11 m/V

Capacitance 4.98 nF 
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Table 2. Bending modes of the smart cantilever beam. 

Bending Mode 

Mode Mode Shape Frequency 

1 76 Hz 

2 405 Hz 

3 975 Hz 

4 1,950 Hz 

5 3,418 Hz 

6 5,206 Hz 

7 7,051 Hz 

8 9,182 Hz 

9 12,056 Hz 

10 15,330 Hz 

Table 3. Torsional modes of the smart cantilever beam. 

Torsional Mode 

Mode Mode Shape Frequency 

1 1,407 Hz 

2 4,055 Hz 

3 --- --- 

4 8,320 Hz 

5 11,215 Hz 

6 14,330 Hz 

In this study, a non-contact laser Doppler vibrometer (LDV) which can measure point-wise  

out-of-plane displacement responses is employed simultaneously to compare measurement results 

obtained from the proposed FBG displacement senor.  

Figure 6. Illustration of locations of the sensors on the cantilever beam. 
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A traditional FBG strain sensor and a strain gauge are also used to verify the performance of the 

FBG filter before performing the experiments for the FBG displacement sensor. The sensing locations 

of the FBG displacement sensor, LDV, FBG strain sensor, and strain gauge are shown in Figure 6. 

The performance of the FBG filter is first demonstrated by the strain sensors (i.e., FBG strain sensor 

and strain gauge). A steel ball with 3.8 mm in diameter is dropped on the centerline and 10 mm away 

from the free end to induce transient wave propagation in the cantilever beam. Figure 7 demonstrates 

the measured results of the transient strain responses obtained by the traditional FBG strain sensor and 

strain gauge simultaneously. To observe the strain responses in detail, Figure 7 is replotted within  

0.03 s and the results are shown in Figure 8. Since the transient strain responses obtained by the two 

strain sensors agree well with each other in Figure 8, the FBG is proved to be capable of measuring 

dynamic strain with high resolution both in time and space. From Figures 7 and 8, we can see that the 

proposed FBG filter offers excellent dynamic demodulation performance. 

Figure 7. Transient strain responses of the smart cantilever beam subjected to the impact 

loading by a steel ball. 

 

Figure 8. Transient strain responses of the smart cantilever beam subjected to the impact 

loading by a steel ball within 0.03 s. 
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The frequency spectrum of the smart cantilever beam can be constructed from taking the fast 

Fourier transform of the transient strain responses obtained by the FBG strain sensor and the results are 

shown in Figure 9. Next, we excite the piezoelectric actuator with random inputs to perform system 

identification by the stochastic spectral estimation. The random signal input is generated by dSPACE 

DS1104 system with the sampling frequency set to 50 kHz. From the input and output data recorded by 

dSPACE DS1104 system, the frequency response function (FRF) of the system is determined from the 

relation [21]: 

( )
( )

( )
yu

uu

S j
G j

S j

ω
ω

ω
=  (34) 

where ( )uuS jω  is the auto-spectral density function of the input random signal and ( )yuS jω  is the  

cross-spectral density function of input and output signals (i.e., responses obtained by the FBG strain sensor). 

Figure 9. Frequency spectrum of the smart cantilever beam. 

 
The frequency responses obtained by the FBG strain sensor and strain gauge are shown in  

Figures 10 and 11, respectively.  

Figure 10. Frequency response of the smart cantilever beam obtained by the FBG strain sensor. 
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Figure 11. Frequency response of the smart cantilever beam obtained by the strain gauge. 

 

From both Figures 10 and 11, we can see that a lateral mode (i.e., 602 Hz in Figure 10 and 601.4 Hz in 

Figure 11) is measured by the two sensors. However, frequency response obtained by the conventional 

strain gauge (i.e., Figure 11) contains more measurement noises especially between the first and the 

second bending modes of the smart cantilever beam. The identified first three bending modes of the 

smart cantilever beam without the presence of the steel ball are 76 Hz, 400 Hz, and 975 Hz, 

respectively. Since the error between the first resonant frequency is quite small, it is acceptable to say 

that the resonant frequencies can be obtained from the impact-induced transient responses. However, 

for the purpose of active vibration control, the first bending mode of the smart cantilever beam is 

considered to be 76 Hz in this work.  

We further investigate the dynamic demodulation ability of the FBG filter and the response time for 

the piezoceramic actuator to achieve the steady state vibration condition. The smart cantilever beam is 

excited by the piezoelectric actuator at the first resonant frequency (76 Hz) and the second resonant 

frequency (400 Hz). Figure 12 demonstrates the dynamic strain from transient response to steady state 

of the smart cantilever beam excited at 76 Hz.  

Figure 12. Transient strain responses of the smart cantilever beam excited by the 

piezoelectric actuator at 76 Hz. 
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From Figure 12, we can see that there is an overshoot in the transient strain responses before 

reaching the steady state. The response time from the beginning of excitation to the steady state is 

about 1.26 s. The transient strain responses of the smart cantilever beam excited at the second resonant 

frequency (i.e., 400 Hz) is demonstrated in Figure 13. The response time in this case is about 0.33 s. 

The same phenomenon of overshoot, although is smaller, can still be observed in the transient strain 

responses excited at 400 Hz.  

Figure 13. Transient strain responses of the smart cantilever beam excited by the 

piezoelectric actuator at 400 Hz. 

 

Figure 14 shows the sensing results obtained from two strain sensors simultaneously when the 

smart cantilever beam vibrates freely after excitation at 76 Hz is removed.  

Figure 14. Free vibration of the smart cantilever beam excited at first resonant frequency 

(76 Hz) obtained from FBG strain sensor and strain gauge. 

 

Figure 15 overlaps the two results and focuses on the responses with a span of 0.2 s. Since the 

responses measured from these two strain sensors correspond excellently with each other, we can again 

see that the FBG filter is capable of demodulating responses obtained from the FBG sensor 

dynamically. Finally, to see the demodulation effect of the FBG filter in an active vibration control 
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system, the negative velocity feedback controller is utilized. As shown in Figure 16, with response 

before control and the control signal as comparisons, the control result obtained from the FBG strain 

sensor approaches to zero at about 0.3 s. Since the control effect shown in Figure 16 agrees well with 

the prediction that the velocity feedback can add damping of the cantilever beam, the dynamic 

demodulation performance of the FBG filter in an active vibration control system is demonstrated.  

Figure 15. Free vibration of the smart cantilever beam excited at first resonant frequency 

(76 Hz) with a span of 0.2 s. 

 

Figure 16. Strain response of cantilever beam excited at first natural frequency (76 Hz) 

under velocity feedback control. 

 

Now we can focus on the dynamic sensing performance of the proposed out-of-plane FBG 

displacement sensor. First, we perform the system identification of the smart cantilever beam again by 

the stochastic spectral estimation with the FBG displacement sensor and a non-contact laser Doppler 

vibrometer (LDV). Since the LDV has high sensitivity and resolution, its measurement results are used 

for comparisons with the results obtained by the FBG displacement sensor. The obtained frequency 

responses obtained by the two sensors are shown in Figure 17. A fourteenth model obtained from the 

concept of constructing the Bode plot is obtained and represented as dashed lines, as shown in Figure 17. 
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Thus, we can see that the proposed FBG displacement sensing system can be utilized to perform 

system identification for the smart cantilever beam. In Figure 17, the frequency responses obtained by 

the FBG and LDV agree well with each other except for the low frequencies below the first bending 

mode. In fact, the discrepancies for low frequencies are due to the length of the random inputs 

recorded in the computer.  

Figure 17. Frequency responses obtained by the FBG displacement sensor and LDV. 

 

To see this effect, we excite the piezoelectric actuator again with shorter random inputs (only last 

for 1 s), the results obtained by the two displacement sensors are represented in Figure 18 as dashed 

lines. Compared with the identified frequency responses (i.e., solid lines shown in Figure 18) with 

longer random inputs (last for 10 s), we can see that identified modes are almost the same except for 

the low frequencies. Repeatability of our experimental setup and the proposed FBG displacement 

sensor can be demonstrated in Figure 18 for frequency contents at high frequencies.  

Figure 18. Frequency responses obtained by the FBG displacement sensor and LDV with 

short measurement data. 
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Note that the lateral mode measured in strain frequency responses shown in Figures 10 and 11 is not 

obtained from the displacement frequency responses (i.e., Figures 17 and 18) due to the fact that the 

proposed FBG displacement sensor as well as the LDV is only sensitive to out-of-plane motions. 

In this paper, only the first two bending modes of the cantilever beam are considered and controlled 

by velocity feedback control. Similar to strain experiments, we also investigate dynamic sensing 

performances of the proposed FBG displacement sensor by measuring transient responses of the smart 

cantilever beam after being excited at the first two bending modes. Figures 19 and 20 are the 

measurement results when the smart cantilever beam is excited at 76 Hz and 400 Hz, respectively. 

Figure 21 demonstrates the experimental results obtained by the two displacement sensors and 

simulation result obtained from the identified model of the smart cantilever beam. Compared with 

LDV in Figures 19 to 21, we can see that the proposed FBG displacement sensor has excellent 

dynamic sensing performance. From Figure 21 we can also see that the proposed FBG displacement 

sensor is capable of being employed to perform system identification for the flexible structures.  

Figure 19. Transient displacement responses of the smart cantilever beam excited by the 

piezoelectric actuator at 76 Hz. 

 

Figure 20. Transient displacement responses of the smart cantilever beam excited by the 

piezoelectric actuator at 400 Hz. 
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Figure 21. Transient displacement responses of the smart cantilever beam obtained from 

experiments and simulation. 

 
 

Figure 22 shows the displacement responses of the cantilever beam at first resonant frequency (i.e., 

76 Hz) in which excitation is removed at t = 0.  

Figure 22. Free vibration of the smart cantilever beam excited at first resonant frequency 

(76 Hz) obtained from the FBG displacement sensor and LDV. 

 

Figure 23 zooms in on the responses in Figure 22 and focuses on the responses within a span of  

0.2 s, showing excellent agreement between two displacement sensors. The maximum peak to peak 

value of LDV is 2,506.44 nm. Thus, the sensitivity of the proposed FBG displacement sensor is  

0.321 mV/nm by calibration with LDV.  
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Figure 23. Free vibration of the smart cantilever beam excited at first resonant frequency 

(76 Hz) with a span of 0.2 s obtained from the FBG displacement sensor. 

 
To see the feasibility of employing the proposed FBG displacement sensor in smart structures, the 

velocity feedback controller is used and the control results are shown in Figure 24. It is seen that the 

vibrations are damped out very quickly. The settling time for the free vibration to reduce to 5% of the 

disturbance level is 0.15 s. 

Figure 24. Active vibration control of the smart cantilever beam excited at first resonant 

frequency (76 Hz) obtained from displacement sensors. 

 
The agreement of the responses shown in Figure 24 between two sensors after the controller is 

applied demonstrates that the proposed out-of-plane point-wise FBG displacement is capable of being 

integrated into a smart structure to suppress the vibrations. According to vibration theory, damping 

ratio of the structure can be estimated from the log decrement: 
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where na  is amplitude of n th cycle. Based on Equation (35), damping ratios of the cantilever beam 

excited at the first resonant frequency obtained from FBG displacement sensor without and with 

control are 0.0265 and 0.0042, respectively. Figure 25 shows the responses obtained from the proposed 
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FBG displacement sensor before and after the velocity feedback controller is applied to the smart 

cantilever beam, with the control signal as a comparison. 

Figure 25. Active vibration control of the smart cantilever beam excited at first resonant 

frequency (76 Hz) obtained from FBG displacement sensor. 

 
Next, the delay controller is applied to the system as a comparison to the velocity feedback 

controller. Figure 26 shows the measurement result under 3/4 phase delay control. We can see that the 

results obtained from differential control (i.e., velocity feedback) and delay control are almost the same.  

Figure 26. Active vibration control of the smart cantilever beam excited at first resonant 

frequency (76 Hz) under 3/4 phase delay control. 

 

The resonant frequency of the second bending mode of the smart cantilever beam is 400 Hz. Free 

vibrations at 400 Hz obtained from FBG displacement sensor and LDV are shown in Figure 27 after 

0t = . The control effect of the velocity feedback controller obtained from the FBG displacement 

sensor is shown in Figure 28.  
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Figure 27. Free vibration of the smart cantilever beam excited at second resonant 

frequency (400 Hz). 

 

Figure 28. Active vibration control of the smart cantilever beam excited at second resonant 

frequency (400 Hz) obtained from FBG displacement sensor. 

 

Figure 29. Comparison of the velocity feedback controller and delay control. 
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Damping ratios of the cantilever beam obtained from FBG displacement sensor before and after 

velocity feedback control is applied are 0.0134 and 0.0018, respectively. Similarly, the 3/4 phase delay 

controller is again applied to the smart cantilever beam and the comparison of two controllers (i.e., 

differential controller and delay controller) is shown in Figure 29.  

5. Conclusions  

In this study, we investigate the feasibility of utilizing a fiber Bragg grating (FBG) displacement 

sensor to perform active vibration suppression of a smart cantilever beam. The set-up method proposed 

for the FBG displacement sensor allows the FBG to detect and feed back point-wise out-of-plane 

displacement responses. Before performing experiments, an optical full-field measurement technique 

called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide 

full-field vibration mode shapes and resonant frequencies. Furthermore, an FBG filter-based 

demodulation technique is adopted to obtain high SNR and dynamic sensitivity and its demodulation 

performance is demonstrated by a traditional FBG strain sensor and strain gauge. Then, measurement 

ability of the proposed FBG displacement sensor is demonstrated by excellent agreements between 

experimental results obtained from the FBG displacement sensor and a laser Doppler vibrometer (LDV) 

sensor simultaneously. Both FBG strain and displacement sensors are utilized to perform system 

identification of the smart cantilever beam. Finally, a simple but effective velocity feedback control 

algorithm is used to verify the sensing performance of the proposed FBG displacement sensing system 

in an active structural control system. To our knowledge, this is the first time that a point-wise FBG 

displacement sensor has been integrated into a smart structure for performing active vibration control.  
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