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Abstract: We overview an approach to providing automated three-dimensional (3D) 

sensing and recognition of biological micro/nanoorganisms integrating Gabor digital 

holographic microscopy and statistical sampling methods. For 3D data acquisition of 

biological specimens, a coherent beam propagates through the specimen and its 

transversely and longitudinally magnified diffraction pattern observed by the microscope 

objective is optically recorded with an image sensor array interfaced with a computer. 3D 

visualization of the biological specimen from the magnified diffraction pattern is 

accomplished by using the computational Fresnel propagation algorithm. For 3D 

recognition of the biological specimen, a watershed image segmentation algorithm is 

applied to automatically remove the unnecessary background parts in the reconstructed 

holographic image. Statistical estimation and inference algorithms are developed to the 

automatically segmented holographic image. Overviews of preliminary experimental 

results illustrate how the holographic image reconstructed from the Gabor digital hologram 

of biological specimen contains important information for microbial recognition. 

Keywords: digital holography; 3D microscopy; cell analysis; statistical pattern 

recognition; medical imaging; bio-sensing 
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1. Introduction 

Optical imaging systems using digital holography under coherent illumination have been studied in 

three-dimensional (3D) display, medical diagnosis, 3D microscopy, robotics, defense, and  

security [1-19]. Digital holography [7] is attractive technique for the acquisition of 3D information for 

these varied applications.  

Recently, information photonics-based optical sensing/imaging systems have been investigated for 

continuous, automated detection and identification of biological specimens [20-23]. The development 

of reliable, rapid and low-cost methods for sensing and identification of biological specimens is 

imperative. Such systems can be applied to medical diagnostics, environmental monitoring, food safety, 

early detection of biological weapons in security and defense.  

Most conventional methods used to inspect and identify biological specimens typically involve time-

consuming and labor-intensive biochemical assays or imaging and digital processing. Many imaging 

methods identify microorganisms based on specific two-dimensional (2D) shape information, image 

intensity color profile, and/or aggregation size and reaction time. However, a number of specimens such 

as protozoan cell structures, bacteria, and sperm tails are essentially fully transparent unless stained. This 

staining process is invasive for biological cells so that their viability can be adversely affected, which can 

be undesirable for certain studies of biological specimens. In addition, imaging methods often fail to 

recognize very minute differences in thickness, size, and shape. To overcome these obstacles, 

interferometry-based bio-sensing/imaging techniques have been developed to study biological specimens. 

In these techniques, the phase of a passing coherent light beam is changed by the differing densities and 

compositions within a biological specimen. Phase information can be recorded interferometrically, 

allowing for the study of biological specimens that would otherwise die from staining or be invisible to 

conventional imaging means. Here, optical sensing/imaging system integrated with information 

photonics for rapid, reliable sensing and identification of biological specimens is reviewed. This paper is 

an overview of the work we have done in real time identification of micro/nanoorganisms using 3D 

computational holographic imaging [20-23]. 

The Gabor digital holographic microscopy [24] described in this paper may be best method for 

obtaining the diffraction patterns of biological specimens with dynamic events, since it only 

requires a single exposure. It also automatically produces focused holographic images from the 

Gabor digital holograms of biological specimens without any mechanical scanning, as needed in 

conventional microscopy.  

For the phase information acquisition of biological specimens, the magnified diffraction patterns of 

biological specimens are optically recorded by the presented Gabor digital holographic microscopy 

interfaced with a computer. Next, the magnified 3D image or stack of 2D images of a biological 

specimen is numerically reconstructed from the Gabor digital hologram by using the Huygens-Fresnel 

principle integral [25]. Since Gabor digital holographic microscopy provides the numerical 

reconstruction of many wave-fronts or sectional images of a biological specimen along the propagation 

direction using a single digital hologram, it is possible to obtain the information about how a biological 

specimen grows and migrates in the 3D space. Moreover, the better classification of biological 

specimens may be provided because both magnitude and phase information of them are reconstructed 

by the Gabor digital holographic microscopy.  
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For the automatic identification of biological specimens, the segmented areas of the reconstructed 

holographic images are used for selection of random test pixels used to build up the test statistic for 

recognition. It is more efficient to first filter out the unnecessary background from computationally 

reconstructed holographic images before feeding them into recognition modules. The segmentation 

helps finding regions of interest before processing for recognition. In this overview paper, the 

watershed image segmentation algorithm [26] is applied to the holographic images. Then, parametric 

or nonparametric inference algorithms are applied with the sample segment features randomly 

extracted from the segmented holographic image of the biological specimens.  

These statistical sampling techniques allow for fast microbial identification and are found to be 

much more suitable in identifying the minute and morphologically simple species that are similar in 

their thickness, size and/or shape. Also, statistical hypothesis testing with the statistical sampling 

datasets can be applied to distinguish between different classes of biological microorganisms. These 

samples are processed using statistical inference algorithms for the equality of dispersions between the 

sampling segments of the reference and unknown input class holographic images. Statistical 

parametric and nonparametric estimators [27,28] can be used to analyze the difference of the ratio of 

variances of two populations, respectively.  

The interferometery-based microscope discussed in this overview paper enables thickness 

measurements to be made that are not subject to these particular limitations, because with this 

technique the phase-change in the wavefront modulated by the specimen can be measured very 

accurately. Therefore the phase information for the specimens, which depends on the refractive index 

distribution of cellular cytoplasmic content and thickness of the specimen, can be measured in digital 

holographic microscopy. We believe, as our experiments show repeatedly, that biological organisms 

have their own unique characteristic phase distributions that can be exploited for their  

automatic identification.  

2. Gabor Digital Holographic Microscopy 

Gabor digital holographic microscopy [24] is described in the following section. The Gabor digital 

hologram or interference pattern of a biological specimen is recorded by a CCD (Charge-Coupled 

Device) array, as shown in Figure 1. Coherent light from an argon laser (center wavelength  

of 514.5 nm) is used as a source of illumination. A spatial filter and a collimating lens provide the 

spatial coherence. The planar coherent wavefront illuminates the biological specimen. Since biological 

specimens are semitransparent, the ballistic photons pass through the biological specimen without any 

scattering, which provides a reference beam for interferometry. The microscope objective captures and 

magnifies the reference beam and the transmitted diffracted wavefront on the hologram plane. The 

image sensor array at the location of the hologram plane captures the interference of the reference 

wave and the diffracted wavefronts from the biological specimen. The resulting interference patterns 

contain both the magnitude and phase information of the biological specimen.  

After recording the Gabor digital hologram, a number of methods can be used for computational 

reconstruction of original bio-specimens including convolution and angular spectrum approaches [29]. 

In this overview paper, the angular spectrum method is applied to the Gabor digital hologram for 3D 

reconstruction of bio-specimens.  
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Figure 1. Experimental setup for recording the Gabor digital hologram of bio-specimens. 

 

Let the field distribution of a biological specimen ( , ; )O x y z   at the hologram plane or the Fresnel 

diffraction domain be given as [16]:  
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Equation (1) represents the Fresnel transformation over a distance d with optical path difference   

along z-axis. The reference wave at the hologram plane is given as:  

( , ) ( , )exp[ ( , )]r rR x y A x y j x y        (2) 

The interference pattern or Gabor digital hologram recorded at the CCD plane or hologram plane is 

represented as follows: 

2 2 2( , ) | ( , ) ( , ) | ( , ) 2 ( , ) cos[ ( , ) ]h h r h r h rI x y O x y R x y A x y A A x y A x y          (3) 

where first term can be dropped because ( , )h rA x y A  and the second term can be assumed as a 

constant. With the conjugate component of the Gabor digital hologram, ref. [30] demonstrated that 

crosstalk between real and conjugate terms are bound to low spatial frequencies in Fresnel Gabor 

digital holographic microscopy. Also ref. [23] showed that the conjugate component in the Gabor 

digital holographic microscopy can be neglected if many more fringe patterns of the biological 

specimen are captured by the CCD detector. Because of this condition, it can be assumed that the 
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original focused image from the Gabor digital hologram is strongly dominant, whereas the defocused 

twin image overlapping the focused image is much weaker. Therefore, the field distribution of the 

original biological specimen from the Gabor digital hologram pattern can be calculated numerically by 

the following inverse Fresenl transformation or angular spectrum method with two Fourier transforms, 

which cancels the scale factor between the input and output: 

2 2

0 2 2
( , ) { ( , )} { ( , )} exp{ [ ]}

( ) ( )x y

u v
O x y IFrT I x y IFT FT I x y j d

xN yN


 
         

  (4) 

where d0 is reconstruction distance, u and v denote transverse discrete spatial frequencies, ( , ) x y  is 

resolution at the hologram plane, and Nx and Ny are the whole hologram size in the x, y direction, 

respectively. Therefore, many wavefronts at arbitrary depth along the z-axis, including the one 

representing the biological specimen in focus, are computed from a single Gabor digital hologram. As 

we mentioned above, the reconstructed image from the Gabor digital hologram originally contains a 

conjugate image which degrades the quality of the reconstructed image. However, the some conjugate 

component in the background part of the reconstructed holographic image can be removed by using 

image segmentation algorithms. In addition the intrinsic defocused conjugate image also contains 3D 

information of the biological specimen for microbial identification purpose. As an additional merit, 

Gabor digital holographic microscopy allows one to obtain a dynamic time-varying scene digitally 

restored on the computer for monitoring and recognizing moving and growing micro/nano biological 

organisms. Our digital holographic microscopic system requires only a single exposure recorded for 

obtaining the diffracted pattern of a biological specimen. Therefore, the Gabor digital holographic 

microscopy can be suitable for recognizing moving biological cells and is robust to external noise 

factors such as fluctuation and vibration. 

3. Statistical Sampling Method for 3D Identification of Biological Specimens 

In the following, the design procedure to evaluate the microbial identification performance of the 

3D sensing system based on Gabor digital holographic microscopy is described. For the automatic 

identification of bio-specimens, the segmented areas of the reconstructed holographic images are used 

for selection of random test pixels used to build up the test statistic for recognition. It is more efficient 

to first filter out the unnecessary background from computationally reconstructed holographic images 

before feeding them into recognition modules. The segmentation helps finding regions of interest 

before processing for recognition. In this overview paper, the watershed image segmentation algorithm 

has been used to efficiently remove the background part of the reconstructed image on the computer. 

Then, we randomly extract n pixels m times in the segmented holographic image. Each trial sampling 

segment consists of n complex values. Finally, parametric or nonparametric statistical inference 

algorithms are developed to identify biological specimens.  

These statistical sampling methods allow for fast microbial identification and are found to be much 

more suitable in identifying the minute and morphologically simple species that are similar in their 

thickness, size and/or shape. Also, statistical hypothesis testing with the statistical sampling datasets 

can be applied to distinguish between different classes of biological microorganisms.  
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Our purpose of this overview paper is to illustrate that the digital holographic image or complex 

signal modulated by the specimen contains a rich data set for quantitative characterization and 

recognition of bio-specimens by using the statistical sampling methods and statistical hypothesis 

testing. Meanwhile, the advanced image recognition algorithms can be developed in order to improve 

the microbial identification performance. The statistical methodology for identification of biological 

specimens using digital holographic images is described in Figure 2 [22]. 

Figure 2. Statistical methodology to implement the presented three-dimensional microbial 

sensing/recognition system [22]. 

 

3.1. Parametric statistical inference algorithm 

From the histogram analysis of the real and imaginary parts of the digital holographic image, it is 

assumed that the random variables (real or imaginary parts of the segmented holographic image) in the 

sampling segment nearly follow Gaussian distribution [22].  

The statistical sampling distributions for the difference of parameters between the sample segment 

features of the reference and unknown input class digital holographic images can be calculated by 

using statistical estimation algorithms. The parametric statistical methods [27] are applied to the digital 

holographic images for a preliminary evaluation of the presented microbial identification system. 

For comparing dispersion parameters, the sampling distribution of the ratio between two sample 

variances is computed. It is assumed that random variables r  and i  which are elements inside the 

reference and unknown input class sampling segments are statistically independent with identical 

Normal distribution 2( , )r rN    and 2( , )i iN   . Also let r  be independent of i . It is noted that the 
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random variables r  and i  can be elements of the real part or the imaginary part of the reconstructed 

holographic image, so two separate univariate hypothesis testings [27] are performed.  

For comparing the dispersion parameters between two sampling segments, we assume that all four 

statistical parameters are unknown and 2 2( , , , )r i r i     . The ratio of the dispersions of two 

independent normal populations can be represented as follows [27]: 

2

( 1),( 1) 2

{ /( 1)} [ ] /

{ /( 1)} [ ] /r i

r r r
n n

i i i

n n V r
F

n n V i




 





       (5) 

where 
rn  and 

in  stand for sample size of the real part or the imaginary part of the reconstructed 

holographic image, respectively, [ ]V  is sample variance, and the F distribution has 1rn  and 1in   

degrees of freedom. Finally, a null hypothesis 
0H  and an alterative hypothesis 

1H  are defined  

as follows: 

2 2

0 : r sH   , 2 2

1 : r sH          (6) 

where the null hypothesis means that there is no difference between two population variances. Then 

for null hypothesis 
0H , Equation (5) can be given as [27]: 
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On the basis of a two-tailed test at a level of significance  , the following decision rules are  

defined [27]: 

a) Accept 
0H  if the statistics, 

ˆ[ ]

ˆ[ ]

V r

V s
 is placed inside the interval ( 1),( 1), / 2r in nF    to ( 1),( 1),1 / 2r in nF    . 

b) Reject 
0H  otherwise. 

The upper 100 ( / 2)%  point of the ( 1),( 1) r sn nF  distribution denotes ( 1),( 1), / 2r sn nF   . This decision 

rule implies that 0H  is true if the F distribution occurs between percentile value / 2F  and 1 / 2F   given 

the probability density function of the F distribution.   can be adjusted so that the probability of 

correct detection is 100 (1 / 2)%  . This is the area under the F distribution between 
2 / 2F  and 

21 / 2F  . Thus the following probability can be claimed [27]:  
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   (8) 

Finally, the statistical p-value is computed by empirical Monte Carlo techniques for the statistical 

decision to classify the specimen. It is a common practice to reject the null hypothesis if the calculated 

statistical p-value is less than 0.05. However, other cut-off p-values are also applicable, for example 

0.01 or 0.10. 

3.2. Nonparametric statistical inference algorithm 

In the following, a statistical distribution-free test (KS-test) [28] is also employed for the 

comparison of two populations as nonparametric statistical test. In the previous section, it is assumed 



Sensors 2010, 10              

 

 

8444 

that the random variables (real or imaginary parts of the segmented complex holographic image) in the 

sampling segment nearly follow a Gaussian distribution. In this section, however, we use a 

nonparametric statistical test without any assumptions about the shapes of the underlying population 

distributions. The empirical cumulative density function (ECDF) can be obtained by the pixel values of 

the randomly selected n test pixel points. The test statistic for a null hypothesis is defined  

respectively by:  

 
2

ˆ( ) ( )r rE f u f u   
  

        (9) 

where ( )rf u  and ˆ ( )rf u  are the ECDF obtained by the pixel values of the randomly selected n test 

pixel points from the reference holographic image. The possible values of ˆ( ) ( )r rf u f u  are in the 

range, ˆ0 ( ) ( ) 1  r rf u f u . Similarly, the test statistic between a reference and unknown input class 

is defined by: 

 
2

( ) ( )r iE f u f u   
  

       (10) 

where ( )if u  is the ECDF obtained by the pixel values of the randomly selected n test pixel points 

from the unknown input class holographic image. In order to obtain the statistical sampling distribution 

of the test statistics, the ˆ ( )rf u  and ( )if u  are actually formed a number of times and then calculate the 

statistical distribution of the test statistics   and  . It is noted that   is the criterion discriminant 

function (CDF) appropriate for the null hypothesis. Finally, a statistical p-value is computed,  i.e., the 

probability that the variable with a probability density function for the null hypothesis is larger than the 

calculated statistic   for the statistical decision to identify biological specimens. 

4. Experimental Results 

In the following, the 3D visualization of micro/nano biological organisms using Gabor digital 

holographic microscopy is presented. In the experiments biological specimens were around several μm 

in size. Their Gabor digital holograms were recorded with a CCD array of 2,048 × 2,048 pixels and a 

pixel size of 9 μm × 9 μm, where the biological specimen was sandwiched between two transparent 

cover slips.  

Figures 3(a,c) show Oscillatoria bacteria and Diatom alga holographic images reconstructed at the 

distances of 25 μm from their Gabor digital holograms, respectively, which were used to test the 

presented recognition system. For recognition purposes, a watershed image segmentation algorithm 

was used to remove the background parts in the reconstructed complex image. Figures 3(b,d) show the 

binary windows for targets (Oscillatoria bacteria and Diatom alga) obtained by using the watershed 

image segmentation algorithm. 

Figures 4(a,b) shows the statistical distributions obtained from the parametric test statistic (F-test) 

for checking the equality of the variance between the reference (Oscillatoria bacteria) and the 

unknown input class (Oscillatoria bacteria or Diatom alga), where different specimen of same 

biological organism was tested for the true class. In order to measure the central tendency of the 

statistical sampling distribution of the parametric test statistic, 200 test pixel points were randomly 
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selected from the segmented holographic dataset and then the trial sampling segments were  

generated 100 times for empirical Monte-Carlo experiments. Finally, two univariate F-test (real and 

imaginary parts in the reconstructed complex image) with the reference and unknown input class 

sampling segments have been separately conducted. As shown in Figures 4(a,b), it is noted that the 

parametric test statistic can discriminate between the two different datasets with 100% accuracy as the 

sample size was 200.  

Figure 3. The microbial holographic images reconstructed at the distance 25μm from their 

Gabor digital holograms and binary windows for targets obtained by using a watershed 

image segmentation algorithm. (a) Oscillatoria bacteria. (b) Binary window for target 

(Oscillatoria bacteria). (c) Diatom alga. (d) Binary window for target (Diatom alga). 

80μm

80μm

(a) (b)

(c) (d)

 

Figure 4. Parametric F-test results for the equality of two variances. 200 test pixel points 

were selected from segmented holographic image. (a) real part and (b) imaginary part in 

the reconstructed image. Reference: Oscillatoria bacteria. False class: Diatom alga. 

(a)        (b) 
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For preliminary evaluation of the recognition performance, a hypothesis testing [null hypothesis:  

H0 (σ
2 
x  = 

2 
y  = 2

)] on the basis of a two-tailed test with a specific level of significance has been 

conducted with the parametric F-test values. It is shown in Figure 5 that the percentage of the correct 

matched sampling segments by the decision rule with 0.01 significance level for the null hypothesis 

(true class) was 100%, while for the false class was 0% when 200 random data samples selected from 

their own segmented holographic images. It is noted that the parametric test statistic can discriminate 

between the two different datasets with 100% accuracy as the sample size increase. These preliminary 

experimental results statistically illustrate that biological organisms have their own unique 

characteristic phase distributions that can be exploited for their automatic identification. 

Figure 5. The average statistical p-value calculated from the parametric F-test. (a) real part 

and (b) imaginary part in the reconstructed image. Reference: Oscillatoria bacteria. False 

class: Diatom alga. 

(a)        (b) 

 

Figures 6(a,b) show the statistical distributions obtained from the nonparametric test statistic  

(KS-test) for checking the equality of the variance between the reference (Oscillatoria bacteria) and 

the unknown input class (Oscillatoria bacteria or Diatom alga). In order to measure the central 

tendency of the statistical sampling distribution of the test statistic, 200 test pixel points were randomly 

selected from the holographic dataset and then the trial sampling segments were 100 times generated 

for empirical Monte-Carlo experiments. Finally, two univariate KS-test (real and imaginary parts in the 

reconstructed holographic image) with the reference and unknown input class sampling segments have 

been separately conducted. 

For preliminary evaluation of the recognition performance, a hypothesis testing [null hypothesis:  

H0 (σ
2 
x  = 

2 
y  = 2

)] has been conducted with the nonparametric KS-test values. It is shown in Figure 7 

that the percentage of the correct matched sampling segments by the decision rule  

with 0.01 significance level for the null hypothesis was 100%, while for the false class was over 90% 

when 200 random data samples selected from their own segmented holographic images. As a result, it 

is noted that the parametric F-test can provide better performance to distinguish two different sampling 

segments than the KS-test. 
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Figure 6. Nonparametric KS-test results for the equality of two variances. 200 test pixel 

points were selected from segmented holographic image. (a) real part and (b) imaginary 

part in the reconstructed image. Reference: Oscillatoria bacteria. False class: Diatom alga. 

(a)        (b) 

 

Figure 7. The average statistical p-value calculated from the nonparametric KS-test.  

(a) real part and (b) imaginary part in the reconstructed image. Reference: Oscillatoria 

bacteria. False class: Diatom alga.  

(a)        (b) 

 

Figures 8(a,b) show the ROC curve results between the reference (Oscillatoria bacteria) and false 

class (Diatom alga) statistical sampling distributions obtained from the parametric test statistic (F-test). 

The number of the test pixel points varies from 50 to 200. The well-focused holographic images for the 

reference and the false class were reconstructed from their Gabor digital holograms, respectively. The 

accuracy of the parametric test statistic depends on how well the test separates the two groups into 

those with similar properties or dissimilar ones. The closer the curve follows the left-hand border and 

then top border of ROC space, the more accurate the test. As shown in Figure 8, the area under the 

ROC curve approached 1, which signifies a perfect test as the sample size increased. 
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Figure 8. The ROC-curve results between reference and false class statistical distributions. 

The distributions are generated from the test statistic F-test and KS-test. Sampling 

segments are obtained from both real and imaginary parts in the reconstructed complex 

image. (a) ROC-curve result for real part in the complex image with F-test. (b) ROC-curve 

result for imaginary part in the complex image with F-test. (c) ROC-curve result for real 

part in the complex image with KS-test. (d) ROC-curve result for imaginary part in the 

complex image with KS-test. Reference: Oscillatoria bacteria. False class: Diatom alga. 

(a)        (b) 

 

(c)       (d) 

 

Figures 8(c,d) show the ROC curve results between the reference (Oscillatoria bacteria) and false 

class (Diatom alga) statistical sampling distributions generated by using the nonparametric KS-test 

statistic. The number of the test pixel points varies from 50 to 200. The well-focused holographic 

images for the reference and the false class were reconstructed from their Gabor digital holograms, 

respectively. As shown in Figures 8(c,d), the area under the ROC curve approached 1, which signifies 

a perfect test as the sample size increased. It is illustrated, as our experiments show repeatedly, that 

digital holographic image modulated by the specimen contains a rich data set for quantitative 

characterization and recognition of biological specimens with the statistical sampling methods. We 
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have directly applied parametric or nonparametric statistical algorithms on the sample segment 

features of the segmented holographic image of the biological specimens for their identification. These 

statistical techniques are found to be much more suitable in identifying the minute and 

morphologically simple species that are similar in their thickness, size and/or shape. We believe that 

Gabor digital holography based automated microbial identification system which interweaves the 

complex amplitude wavefront modulated by the specimen with statistical methodology leads to fast 

and reliable differentiation of transparent biological specimens. 

5. Conclusions 

Automated micro/nano biological organism sensing and recognition system using Gabor digital 

holographic microscopy and a statistical inference has been overviewed. 3D sensing is based on Gabor 

digital holographic microscopy. In order to evaluate the recognition performance of the presented 

microbial sensing system, the Gabor digital holograms of biological specimens have been optically 

measured and then the complex holographic images of the original biological specimens have been 

digitally reconstructed with the recorded Gabor digital hologram. Target sampling segments have been 

extracted in the segmented holographic image after applying watershed image segmentation algorithm 

to the reconstructed holographic image. The sampling probability distribution of the difference of the 

ratio of the dispersions have been calculated between the reference and unknown input class sampling 

segments varying the sample size of sampling segment. Finally, the presented sensing system has been 

tested by performing hypothesis tests for the difference of the ratio of variances with a statistical 

decision rules. It has been shown in preliminary experiments that the holographic image reconstructed 

from only a single Gabor digital hologram of biological specimen contains important information for 

recognition and classification and they may be identified using a statistical estimation and inference 

algorithms. The shapes of some bacteria and algae are filamentous, spherical, and branched. They may 

look similar in terms of shape. This approach allows the presented system to be tolerant of shape in 

recognizing biological specimens like bacteria or algae. 
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