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Abstract: Computer numerically controlled (CNC) machines have evolved to adapt to 

increasing technological and industrial requirements. To cover these needs, new generation 

machines have to perform monitoring strategies by incorporating multiple sensors. Since in 

most of applications the online Processing of the variables is essential, the use of smart 

sensors is necessary. The contribution of this work is the development of a wireless 

network platform of reconfigurable smart sensors for CNC machine applications 

complying with the measurement requirements of new generation CNC machines. Four 

different smart sensors are put under test in the network and their corresponding signal 

processing techniques are implemented in a Field Programmable Gate Array  

(FPGA)-based sensor node. 
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1. Introduction  

Since their inception, computer numerically controlled (CNC) machines have evolved to adapt to 

changing technological and industrial requirements. The predominant factor which drove the initial 

development of CNC machines was the need for increased productivity. The necessity of machining ever 

smaller components and to comply with the tougher standards that limit the number of defects in these 

components, requires CNC machines to not only increase their precision, speed and accuracy but also to 

maintain a high productivity. To cover these needs, new generation machines have to perform monitoring 

strategies to allow autonomous self-optimization that can be done through the integration of control-

process strategies into the machine tool control architecture [1]. These capabilities are achieved by 

incorporating multiple sensors [2] for online measurement and processing that allow remote monitoring 

and intelligent maintenance for production maximization [3]. The installation of these sensors should 

not affect the machining process [4], therefore, the incorporation and use of a wireless sensor network 

is desirable. 

In order to provide some of the desired features and functionalities, new generation CNC machines 

require the measurement of different variables that are useful for obtaining, in a direct or indirect form, 

the required information for diagnosing the machine’s operational condition and improving the 

machining process [1]. The most common-measured variables on a CNC machine include, among 

others, vibration, current, force and acoustic emissions. Different methodologies have been proposed 

to obtain different parameters or features of the process, as well as the tool and the machine conditions 

in general. Some early works that use the previously mentioned variables in their methodologies are 

Albarbar, et al. [5], Wright, et al. [6], Malekian et al. [7], Rangel-Magdaleno, et al. [8],  

Vela-Martinez et al. [9] that use vibrations for monitoring the electromechanical condition on the CNC 

machine, Romero-Troncoso et al. [10], Franco-Gasca et al. [11], Li et al. [12] that use current for 

detecting the cutting force and the tool wear, Huang et al. [13], Ertnuc and Oysu [14], Shao et al. [15] 

that use force measurements for monitoring the cutting force, Alonso and Salgado [4], Salgado and 

Alonso [16] use acoustic emissions for tool-wear monitoring. Likewise, there are other works related 

to the dynamic parameters, such as Morales-Velazquez et al. [17] and Petrella and Tursini [18]. By 

utilizing the dynamic motion parameters, it is possible to optimize the piece machining, minimize the 

tool wear, and increase the precision of the positioning platforms for micro-machining applications [7], 

where different techniques have been studied, such as those using interferometry, or those using 

position sensing detectors (PSD) in order to validate the resolution and compensate for errors [19,20]. 

Since in most of the applications the online processing of the variables is essential, the use of smart 

sensors is necessary [21]. Smart sensors have been developed and used for several applications in 

different works, as in those of Wang and Jianu [22], Rangel-Magdaleno, et al. [8], Petrella and  

Tursini [18], Ramamurthy et al. [23] and Son et al. [24]. However, new generation CNC machines 

require the measurement of different variables at the same time; therefore, a wireless network is 

necessary for solving the necessity of incorporating multiple sensors with specific  

processing capabilities. 

Some sensor networks based on different wireless technologies have been developed, as in the case 

of Salvadori et al. [25], who proposed a system that uses two hardware topologies responsible for 

signal acquisition, processing, and transmission; one is based on an intelligent sensor module, and the 
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other is a module for remote data acquisition. Wireless communication is accomplished through a 

transceiver using Gaussian Frequency-Shift Keying (GFSK) modulation in the 2.4 GHz band with a 

transmission rate of 1 Mbps, but it uses a custom-made protocol. Son et al. [24] proposed a wireless 

smart sensor network using the WiFi protocol which is based on the IEEE 802.11b standard, in which 

the communication is done through a commercial module that is used as a wireless bridge for the 

transmission of sensor data. On the other hand, Ramamurthy et al. [23] present a generic platform 

using WiFi and Bluetooth wireless protocols; the smart sensor node is composed of three layers in 

order to make the system more flexible and portable, yet, the resulting size makes it impossible to use 

the system in applications where the sensor has to be mounted in a limited area. Although the necessity 

of measuring a large number of variables in CNC machines is latent, most of the developed works 

have the limitation of incorporating multiple sensors on the machines; others do not have online 

processing capacity. Some smart sensors that allow this capacity have been developed, but they focus 

on the processing of a single variable. Other works that propose wireless sensor networks meet the 

bandwidth requirements, but with high power consumption, and because of the protocol used, the 

number of nodes can be insufficient for some CNC machine applications. 

The contribution of this work is the development of a wireless network platform of smart sensors 

for CNC machine applications based on the IEEE 802.15.4 standard to comply with the measurement 

requirements of new generation machines, which are low power consumption and high scalability to 

allow the incorporation of a large number of network nodes. The sensor node prototype has a small 

size and low cost, and it consists of two parts: the wireless protocol and hardware signal processing 

(HSP). Both parts require high processing capabilities, so an FPGA (Field Programmable Gate Array) 

implementation provides the characteristic of reconfigurability to the sensor node allowing it to be 

configured in order to carry out a specific task, or reconfigured on-demand to carry out other tasks. In 

the case of the proposed network, this capability is available for each smart sensor, allowing  

multiple-signal processing in parallel, and making it suitable for online applications. In this work, four 

different smart sensors are put under test in the network and their corresponding signal processing 

techniques are implemented in the FPGA sensor node: (1) accelerometer-based vibrations monitoring, 

(2) sensorless jerk monitoring using an adaptive antisymmetric high-order FIR (finite impulse 

response) filter, 3) FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC 

machine inserts, and 4) PSD-based micropositioning measurement.  

2. Background 

2.1. Communication Protocols 

For the development of a wireless sensor network, the evaluation of different communication 

technologies is necessary. Some factors that should be considered are: bandwidth, transmission rate, 

total range, scalability and power consumption. The IEEE 802.11g standard has a maximum 

transmission rate of 54 Mbps, a maximum range of 150 m and defines a maximum number of 32 nodes 

for a local area network (LAN); it requires additional encoding, which results in an increase of the 

power consumption [26]. Another standard for a personal area network (PAN) is the  

IEEE 802.15.1 (Bluetooth); this standard has a transmission rate of 1 Mbps, a maximum range of 10 m 

and allows the integration of a network with a master device and up to seven slave devices that can 
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only communicate with their master [27]. The IEEE 802.15.4 (ZigBee) standard has a transmission 

rate of 250 kbps and a maximum range of 1,000 m in its most recent versions. This standard works in 

three different frequency bands and could contain up to 65,536 nodes on a network and has low energy 

consumption [28]. Table 1 shows a comparative between standards as discussed above.  

Table 1. Comparative between WiFi, Bluetooth and ZigBee standards.  

Standard IEEE 802.11g (WiFi) IEEE 802.15.1 (Bluetooth) IEEE 802.15.4 (ZigBee) 

Bandwidth 22 MHz 1 MHz 2 MHz 
Power consumption 400 mA–20 mA 40 mA–0.2 mA 30 mA–3 µA 
Transmission rate 11 Mbps–54 Mbps 1 Mbps 250 kbps 
Number of devices 32 7 65536 
Latency Enumeration up to 3 s Enumeration up to 10 s Enumeration up to 30 ms 
Transmission range 100 m 10 m 100–1,000 m 
Security SSID 64 bits,128 bits 128 bits, AES 
Available physical 
channels 

3 4 16 

A sensor network for monitoring and failure-detection applications in a manufacturing cell with 

new generation machine tools requires a large amount of nodes because different variables are usually 

measured; the IEEE 802.15.4 standard allows the integration of 65,535 devices, which is considerably 

higher compared to most standards usually used for wireless sensor networks, in addition to other 

benefits such as its transmission range, latency and low power consumption, this standard is 

considered as the optimum for this application.  

2.2. Measurement of Variables in Machine Tools  

Different techniques have been studied in relation to machine-tool condition monitoring and 

process optimization, using various physical variables for analysis such as acceleration current and 

dynamic movement by obtaining variables such as position, velocity and mainly jerk. Similarly, 

studies related to micro-machining have been done, obtaining position measurements in the order  

of microns.  

Vibration measurements are essential for detecting and diagnosing any deviations from normal 

operation conditions in machines [5]. When a machining process exceeds the desired limits, it may 

result in excessive vibration, poor quality of the end-piece finishing and permanent damage to  

the machine. 

Cutting tools along with raw material represent the highest cost of the production process in a 

manufacturing industry [11]. Among several techniques to detect the cutting force during a 

manufacturing process, current monitoring is the cheapest method because it is based on measuring the 

control current in the servo driver and then extracts the cutting force component [10]. During a 

machining process, the motor current is directly related to the tool condition, where power 

consumption will be higher for a worn tool than for a sharp one in the same process [11]. In the case of 

wear monitoring, the variables that have been used include force, vibration, acoustic emission, cutting 

temperature and current [4].  
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Dynamic parameters are related as successive derivations by theoretically differentiating position 

signals, to obtain speed, acceleration and jerk [17]. Jerk monitoring, defined as the first derivative of 

acceleration, has become a major issue in CNC machines; for this reason, different works have treated 

the estimation of this parameter, either from encoder counts or from accelerometer measurements [8]. 

Particularly, jerk is related to machine wear, amplifier saturation and other undesired 

electromechanical conditions [17].  

The miniaturization of components has become an important part of modern technologies in order 

to meet the demand for reduced size and high accuracy. A miniature system provides portability, low 

material and energy consumption, and a better integration and process automation [7]. To obtain a 

better precision, position control of a machine tool has become the primary concern. For precise 

positioning measurement, different techniques have been proposed, among them the use of position 

sensing detectors (PSD), which are low cost and have high resolution [19]. 

2.3. Signal Processing Methodologies  

In order to test the functionality of the proposed smart sensor network, four methods recently used 

in machine tools have been identified, where the required processing can be implemented in each 

sensor node due to its reconfigurability. 

2.3.1. Accelerometer-Based Vibration Monitoring 

Rangel-Magdaleno et al. [29] use as part of their methodology an accelerometer-based vibration 

measurement for condition monitoring and failure detection utilizing the DWT (discrete wavelet 

transform) for detecting broken bars in induction motors. The DWT is computed using a set of 

discrete-time low and high-pass filters, which is known as the Mallat algorithm. The Mallat algorithm 

has two sections: decomposition (DWT) and reconstruction (IDWT). During the decomposition 

processes, the original signal goes through a low-pass and high-pass filter bank to obtain the low 

frequency components known as approximations, and the high frequency component as details. Each 

level of decomposition decimates the original data length to the half of the data in the previous level. 

According to the filter bank properties, the frequency band for an approximation ACL and a detail DCL 

is given by Equations (1) and (2) respectively, where L is the level of the desired decomposition and fs 

is the sampling frequency. The reconstruction section takes the information obtained from one or more 

decomposition levels and returns the signal representation to the time domain: 
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2.3.2. Jerk Monitoring 

For jerk monitoring, Morales-Velazquez et al. [17] propose an antisymmetric high-order FIR filter 

based on a sensorless method for an encoder signal. To obtain the jerk signal from the position 

measurement, successive differentiations are required. A high order antisymmetric FIR filter is defined 

as a two-impulse window filter (TIWF) given by Equation (3), where filter order (n) is fixed and the 

impulse position (δ) depends on the adaptation method and fs is the sampling frequency: 

   





 nkxkx
n

f
ky s )(

2
)(  (3) 

The position signal (p) from the encoder is prefiltered by a low-pass filter; then the signal speed 

(ŝ), acceleration (â) and jerk (ĵ) are estimated by cascading three TIWF to the filtered signal. To 

adjust the three TIWF, the jerk variance (σj
2) is calculated using (5), then, an adaptive function is 

applied and limited to obtain the adaptability parameter (δ) which defines the position of the 

impulse in Equation (3):  
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where ui is the i-th jerk sample, and ū is the jerk mean in the interval [i, n/2+i]. 

2.3.3. Tool Wear Monitoring 

For tool-wear monitoring Trejo-Hernandez et al. [30] propose as part of their methodology an  

HSP-unit to determinate the flank-wear area using the signal current measurement. The feed motor 

current I, is the input signal to the current DAS (Data Acquisition System) driver. Then the current signal 

is time windowed to only take into account the time when the cutting is made during the machining 

process. The time windowing initializes its processing when the CNC machine indicates it through a 

logical signal MS (Machining Start). The current signal is processed with a low-pass 32-order FIR filter 

(cut-off frequency fc = 120 Hz). Afterwards, the Irms value of the current signal is obtained according to 

Equation (6), where Ii represent the i-th sample and m the length of the windowed samples: 
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In a next step, the flank-wear area Af is obtained by a polynomial approximation. The polynomial 

approximation is shown in Equation (7):  

  1563.45507.471362.1758785.213 23  rmsrmsrmsrmsf IIIIA  (7) 

2.3.4. PSD-Based Micropositioning Measurement  

A PSD is a device in a substrate of photodiodes divided into two or four parts capable of measuring 

position from a light beam regardless of the shape of the beam and the intensity distribution [19]. 
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Owing to its resolution, this device has been used for micropositioning measurements in systems for 

micro-machining applications.  

There are different sensors for micro-displacement measurement, which integrate a LED emitter 

along with a PSD sensor in the receptor where the output signal is a proportional voltage to the 

distance. Because of the light environmental conditions or other factors, the output signal requires a 

statistic process like RMS calculation during the time of beam emission in order to obtain the distance 

signal. The Vrms value of the voltage signal is obtained according to Equation (8), where Vi represents 

the i-th sample and m is the number of samples for each calculation:  
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Sze-Wei et al. [19] proposed the use of a PSD sensor along with a servosystem based on a 

piezoelectric actuator in order to measure the translational error from a high precision stage. The servo 

system is controlled for the movement while the position error is measured with the PSD. The profile 

of the measured error by the PSD was stored during machining for servosystem compensation.  

2.3.5. Characteristics of the Sensors 

The characteristics of primary sensors to be used in the methodologies depend on the application 

needs. For instance, in the case of accelerometer-based vibration monitoring, the resolution of the 

sensor is determined depending on the level of detail needed and the accuracy depends on the vibration 

measurement range in the application; however, the methodology is suitable for any type of 

accelerometer. For jerk estimation, encoder resolution (counts per revolution) does not affect the 

algorithm of the methodology proposed, however a higher accuracy of the sensor will provide a better 

speed control. In the case of tool wear monitoring, a higher resolution will provide a better estimation 

of the flank wear area. Micropositioning methodology works for any sensor resolution but this will 

limit the minimum compensation of error and therefore the accuracy of the positioning system. Finally, 

each methodology can be adapted for the required resolutions, either by the sensor or by the number of 

bits at the analog to digital converter which require a change in data format. 

3. Wireless Smart Sensor Network 

Figure 1 shows the general block diagram of the network, which can integrate n wireless smart 

sensors (WSS) based on the proposed platform, the maximum value of n is 65,535 for a single 

coordinator. The smart sensors are connected to different primary sensors that monitor the variables of 

interest from the CNC machine in a typical manufacturing cell. The master device or coordinator is 

implemented in a platform with similar characteristics, it is responsible for associating or 

disassociating the devices in its PAN, and it configures the processing and acquisition parameters. The 

network is capable of communicating directly with a computer, a display or a storage system. 

The implemented platform consists of three stages as shown in Figure 2: signal conditioning, 

wireless transmission and reception, and hardware processing and control. The signal conditioning 

stage includes the instrumentation of the different type of sensors that are incorporated on the device; 
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this stage is developed in an external module with a physical interface for coupling to the platform. 

This module is different for each type of sensor, and its construction is simple and compact. The wireless 

transmission and reception stage is constituted by a module that allows the modulation and transmission 

of data; this stage includes a commercial transceiver circuit, which uses the standard IEEE 802.15.4 in 

the physical and media access control (MAC) layer. Furthermore, it includes the physical environment 

for wireless transmission, composed of coupling circuitry for an external antenna. 

Figure 1. General block diagram of the smart sensor network.  

 

Figure 2. Wireless smart sensor system stages. 

 

The hardware processing unit is based on a low-cost and low-power consumption FPGA that controls 

the interface of the signal conditioning stage by implementing the driver for the analog-to-digital 

converter (ADC), which depends on the primary sensor connected to the platform. It connects to the 

transmission stage in order to control the radio transceiver for the wireless communication; it also 

handles the communication protocol according to the network capabilities and includes modules for 

hardware signal processing. 

3.1. Wireless Protocol 

In the hardware processing unit it is necessary to define a communication protocol for the wireless 

sensor network. Since the selected standard is capable of operating at three different radio frequency 
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bands, the 2.4 GHz band is chosen because of its high transmission rate and because it operates in the 

industrial, scientific and medical (ISM) band. 

The communication protocol uses a star topology network in which slave nodes can communicate 

only with the coordinator of the network [28]; each node has a specific 16-bit PAN address, and at the 

same time a 16-bit and 64-bit individual addresses all stored in a memory into the device. The network 

coordinator integrates several tasks as: association and disassociation of nodes in the network, device 

configuration, data request and data reception, request of node status. Moreover, the nodes integrate 

specific tasks for the sensor network: association to only one coordinator, send data to request and 

receive setup instructions; that is why they are called reduced functionality devices (RFD) as they have 

basic functionalities in the protocol but they are not capable of coordinating a network of  

similar devices. 

Figure 3a shows the implemented architecture to manage the wireless transmission stage; it consists 

of two parts: the first part is an interface to the transceiver circuit for physical configuration of the 

device; it configures the MAC-layer characteristics and manages the transmission and reception 

options. The second part includes the implementations of the proprietary protocol that is based on an 

instruction read-only memory (ROM) that stores the parameters for the physical initialization of the 

transceiver; a frame-generator module and a frame-decoder module are implemented in this part 

according to the frame format required by the standard. 

Figure 3. Block diagram of (a) the protocol architecture, (b) frame-generator and  

frame-decoder modules detail. 
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Memory in the transceiver is implemented as static RAM and it is accessible via the SPI port. 

Memory is functionally divided into control registers and data buffers (FIFOs), to handle the reception 

and transmission of packets. The frame-generator unit is shown in Figure 3b; it contains a field 

selector and an address counter to write through the transceiver driver the sequence of data in the 

transmission FIFO (TXFIFO) according to the frame format specified by the standard containing 

several fields; frame length, frame control, sequence number, PAN identifier and addressing fields and 

the data payload that contains the information from the HSP-modules. The first field is the frame 

length calculated depending of the number of data to be sent; the second field is the frame control 

defined by the standard and contains information of the frame structure. An 8-bit counter is used to 

generate the sequence number, this counter is incremented after the previous transmission is 

succeeded, and PAN identifier and addressing fields are located in a memory outside the module in 

order to be reconfigured. This module has an FSM (finite-state machine) to control the selector and the 

counters. The unit has a start frame generation (SFG) and end of frame generation (EFG) ports, in 

order to be externally controlled. 

The frame-decoder unit, shown in Figure 3b, is constituted by a shift register, a frame length 

counter, an address counter and an FSM, once the transceiver has received a valid packet without 

errors an interrupt occurred and the packet is read, the first byte read from the reception FIFO 

(RXFIFO) is the frame length and the data is stored in a register in order to read only the packet, after 

the frame length is stored the following data is read and stored in the shift register, the fields are 

organized according to their origin and importance, extracting only the source address and the data 

payload. Each packet has information of the signal received; the received signal strength indicator 

(RSSI) can be extracted from the packet too. Also this module has a start frame decoder SFD port and 

end of frame decoder EOFD port to control the module externally. 

A memory bank is defined with the structure of the instruction ROM that defines the tasks of this 

protocol. Within the instruction ROM, there is a section that contains the initialization parameters of 

the different devices, defines the type of network, the frame format, the transmission power, and the 

communication channel. The coordinator module keeps all its addresses fixed, while the node 

addresses are defined by the coordinator. 

3.2. Reconfigurable Processor 

The main feature of the platform lies upon its capacity of incorporating different HSP modules; 

these modules can be implemented in the hardware processing stage due to its reconfigurability.  

Figure 4 shows a block diagram of the proposed platform overall structure that depicts the  

FPGA-based processing stage where the description of an interface is implemented; this interface 

depends on the specific sensor connected to the platform, and on the drivers for the wireless module. 

Figure 4 also shows the wireless transmission stage that consists of a radio frequency transceiver and 

the corresponding coupling circuitry. According to the application, different signal conditioning 

systems can be connected to the wireless platform depending on the sensors required for such  

an application. 
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Figure 4. Block diagram of the wireless platform. 

 

3.2.1. Vibration Monitoring HSP Core 

For broken-bar detection in spindle induction motors of CNC machines, the implementation shown 

in Figure 5 is used. According to the methodology proposed by Rangel-Magdaleno et al. [29], a 

module that manages the ADC converter, and the modules of the wavelet transform for the 

decomposition (DWT) and the reconstruction (IDWT) of the selected level of analysis, were included. 

Once the reconstruction for each axis is obtained during the startup transient, the axis that will be sent 

through the wireless platform is selected. 

Figure 5. Block diagram for vibration monitoring utilizing the HSP core. 

 

3.2.2. Jerk Monitoring HSP Core 

Figure 6 shows the block diagram of the implemented methodology for jerk monitoring proposed by 

Morales-Velazquez et al. [17]. The implemented algorithm includes modules to acquire the position 
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signal from an encoder, a low-pass filter (LPF) and TIWF filters to estimate velocity (ŝ), acceleration (â) 

and jerk (ĵ), a module for variance calculation, and a module for obtaining the adaptability parameter (δ). 

Figure 6. Block diagram for jerk monitoring utilizing the HSP core. 

 

3.2.3. Tool Wear Monitoring HSP Core 

For tool wear monitoring, the implementation was made as shown in the block diagram of Figure 7, 

and it was based on the case of study for current signal in the work of Trejo-Hernandez et al. [30]. To 

estimate the tool wear area from the spindle-driver current measurement, the implemented algorithm 

includes a driver for an ADC converter, a low pass filter (LPF), a time windowing for taking the signal 

during machining process only, a module for computing the RMS value of the current signal, and a 

polynomial approximation for calculating quantitatively the tool-wear area as shown in (7). 

Figure 7. Block diagram for tool wear monitoring utilizing the HSP core.  

 

3.2.4. PSD-Based Micropositioning Measurement HSP Core 

Figure 8 shows the block diagram for micropositioning measurement based on a PSD sensor. The 

implementation consists of a driver for the ADC, a module for the LED pulse emission control (PLS) 

and an RMS computation unit for obtain the voltage measurement proportional to the distance. 
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Figure 8. Block diagram for micropositioning measurement utilizing the HSP core. 

 

3.3. Instrumentation 

For measuring the corresponding variables according to the application, signal conditioning from 

the primary sensors is necessary; these signals are adapted to the wireless platform through a  

board-to-board connector. This section presents the signal conditioning implementation for each 

sensor used in the corresponding methodology. 

3.3.1. Acceleration Sensor Board 

Figure 9 shows the block diagram of the instrumentation system utilized for measuring vibrations. 

This system consists of a triaxial accelerometer LIS344ALH from STMicroelectronics [31], which has 

a bandwidth of 1,500 Hz for all axes, a user-selectable full scale of ±2 g/±6 g (g = 9.81 m/s2),  

a 0.66 V/g sensitivity and a 5 × 10−4 resolution over a 100 Hz bandwidth. The system also contains  

a 12-bit resolution at the 4-channel ADC from Texas Instruments ADS7841 [32], with a maximum 

sampling rate of 200 KHz for the four channels, the unused channel is left unconnected for this 

application. The control signals and output of the ADC are connected to the interface with the  

wireless platform. 

Figure 9. Block diagram for 3-Axis Accelerometer instrumentation. 

 

3.3.2. Current Sensor Board 

Figure 10 shows a block diagram of the instrumentation system for the feed motor current 

measurement that is obtained from a typical Copley Controls Corp servoamplifier model 413 with  
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a 5 V/A sensitivity. The resolution of the system is 12-bit given by a 4-channel ADC ADS7841, also a 

instrumentation for signal conditioning of the motor current is required. This system can measure 

simultaneously up to four current signals; for this case study, only one channel is used, leaving the 

others connected to ground. 

Figure 10. Block diagram for current signal instrumentation. 

 

3.3.3. Encoder Sensor Board  

Figure 11 shows the block diagram of the instrumentation system for an encoder with a resolution 

of 6,000 counts per revolution that is coupled to the servomotor on one axis of a CNC machine. For 

conditioning the encoder signals, a LJ245A driver is used in order to make the voltages levels from the 

encoder compatible with the platform. 

Figure 11. Block diagram encoder signal instrumentation. 

 

3.3.4. Position Sensor Board 

The block diagram for micro-displacement measurement is shown in Figure 12; the instrumentation 

system is made for an optical sensor Z4D_B01 based on a PSD with a resolution of 10 µm and  

a 1.4 mv/µm sensitivity. The system contains a 12-bit resolution, 4-channel ADC ADS7841 to convert 

the voltage signal from the sensor. The instrumentation only uses one channel and the others are 

disabled as recommended by the manufacturer. A control signal is sent from the wireless platform to 

control the emission pulse of the infrared LED in the sensor. 
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Figure 12. Block diagram for micro-displacement sensor instrumentation. 

 

4. Experimental Section 

In this section the experimental validation of the sensor network applied to a manufacturing cell is 

presented. The experimentation includes three CNC machines. Four methodologies are implemented in 

four identical wireless platforms. The test consists on monitoring the smart wireless sensor during the 

operation of the CNC machines simultaneously.  

The experimental setup consists on assembling four wireless smart sensors on three CNC machines 

within a manufacturing cell. Each smart sensor uses an AGLN250ZV2 low cost and low power 

consumption FPGA as processing unit. They operate at 20 MHz and have a radio frequency 

commercial transceiver MRF24J40 that is compatible with the IEEE 802.15.4 standard. Figure 13 

shows one of the four developed wireless smart sensor nodes with its corresponding enclosure for 

mounting and also shows the smart sensor placements in the manufacturing cell, the network 

coordinator is located in an equidistant space from the nodes and it is implemented in a commercial 

FPGA platform Spartan-3 XC3S200 that is connected to a PC, which uses the transceiver module 

MRF 24J40 too. 

In a CNC machine center, a WSS is mounted on the spindle of the principal motor of a DYNA-4M 

CNC system to measure and analyze vibrations, and to detect broken bars in the induction motor as 

shown in Figure 13a. Two conditions are set in the induction motor: the first one is for a healthy motor 

and the second one is for a motor with two broken bars. The acquisition is performed at a rate  

of 1,500 samples per second. In a machining process of a conic piece, the quantitative estimation of the 

tool wear area is obtained for three CNMG433MA inserts with different flank-wear area. Figure 13b 

shows the mounting of a WSS on a FANUC Oi Mate-TC lathe; the feed rate is 0.333 mm/rev, the 

cutting depth is 1.5 mm and the cutting speed is 72 m/min. During the same machining process, the 

encoder position is measured on the X-axis to estimate the jerk at 1,000 samples per second, the WSS 

mounting is shown in Figure 13c. On the other hand, for micropositioning measurement, a movement 

profile in micrometers is defined for a precision stage coupled to an EZG705-0-101 servomotor; the 

mounting of the WSS for this case is shown in Figure 13d. Table 2 shows the FPGA resource 

utilization for the synthesis of each smart sensor corresponding to each of the  

methodologies implemented. 
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Figure 13. Experimental setup in a manufacturing cell, (a) vibration WSS mounting on the 

motor of DYNA-4M, (b) current WSS mounting on the FANUC Oi Mate-TC lathe panel, 

(c) encoder WSS mounting on a motor of FANUC Oi Mate-TC lathe,  

(d) micropositioning WSS mounting on a two-axis linear stage. 

 

Table 2. FPGA resources utilization for each smart sensor. 

Smart sensor 
Cells 

Used/Available 

Cells Used 

Percentage %

Block RAMs 

Used/Available 

Block RAMs Used 

Percentage % 

Power consumption 

(mW) 

Current 5947/6144 97 1/8 12 9.676 

Encoder 4989/6144 81 5/8 62 12.236 

Vibration 6081/6144 98 8/8 100 16.219 

Micropositioning 2553/6144 42 0/8 0 7.359 

Table 3 shows the FPGA resource utilization for the synthesis of the coordinator module. This 

resource utilization is the same independently of the nodes integrated in the network, the maximum 

power consumption of coordinator is 68.99 mW.  
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Table 3. FPGA resources utilization for the coordinator *. 

Element Used Available Percentage % 

Slice Flip Flops 402 3840 10 

4 input LUTs 1039 3840 27 

Slices 585 1920 30 

Block RAMs 0 12 0 

Multipliers 0 12 0 

* 200,000-gate Xilinx Spartan-3 FPGA: XC3S200 

5. Results and Discussion  

In this section the results of the techniques used in each smart sensor are presented, the information 

obtained simultaneously in the wireless sensor network is stored on the coordinator RAM and then, it 

is transferred to a PC, finally, using Matlab, the results are plotted.  

5.1. Vibration Results 

In this experiment, the motor of the spindle with two broken bars was used in order to test the 

performance of the network; a latter test was carried out for a healthy motor under the same  

network conditions.  

Figure 14a and Figure 14c show the time-domain vibration signal from the healthy motor and a 

motor with two broken bars respectively; the DWT analysis at a level-5 decomposition and 

reconstruction for a healthy motor is shown in Figure 14b and for a motor with two broken bars is 

shown in Figure14d. Both signals are transmitted in this test for comparison. 

Figure 14.Vibration Signals for induction motor, (a) time-domain signal for healthy motor, 

(b) DWT reconstruction level 5 for a healthy motor, (c) time-domain signal for a motor with 

two broken bars, (d) DWT reconstruction level 5 for a motor with two broken bars.  
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5.2. Current Results 

The results from the current technique are shown in Table 4. The flank-wear area is estimated in 

each machining process. The quantitative value of the area is transmitted from the WSS in a 2.22 fixed 

point format after the machining process. Figure 15 shows the cutting tool micrograph and the 

estimation data based on the polynomial function of Equation (7) for the quantitative flank-wear area 

for selected inserts 

Table 4. Flank-wear area results by current and tool micrograph.  

Measure Current (A) 
Flank-wear area 
estimation (mm2) 

Micrograph flank-
wear area (mm2) 

1 0.19833 0.05401 0 
2 0.33059 0.15035 0.1640 
3 0.40166 0.54750 0.5416 

Figure 15. Flank-wear area estimation showing the micrograph of selected inserts and 

their corresponding tool-wear area. 

 

5.3. Encoder Results 

Figure 16 shows the results obtained from the encoder reading on the lathe during the machining 

process. Figure 16a shows the position sent by the WSS in order to obtain analytically the jerk as 

shown in Figure 16b, and the comparison against the WSS estimation shown in Figure 16c. 
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Figure 16. (a) Position, (b) analytical jerk, (c) monitored jerk, (d) zoom of position,  

(e) jerk analytical and estimated.  

 

5.4. PSD Results 

The voltage measurement proportional to distance delivered by the sensor is sent through a WSS to 

a PC; the distance is obtained graphically in the order of micrometers; then, it is compared to the sent 

position as shown in Figure 17a. Finally, the error is calculated and shown in Figure 17b. 

Figure 17. (a) Reference and measured position, (b) error of the measured position. 

 

5.5. Speed and Range Network Results 

Figure 18a shows the signal strength variation of a node for various distances; Figure 18b shows the 

signal strength for the vibration WSS during the test. 
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Figure 18. Received-signal power at different distances.  

 

Table 5 summarizes the network utilization for each smart sensor; the bits per second that are read 

directly from the sensors, and the amount of information after signal processing, which was 42,365 bps.  

Table 5. Network utilization for raw data and processed data transmission. 

Technique 
Sampling rate 

(Samples/s) 

Raw data 

format (bits)

Raw data 

(bps) 

Output rate 

(Data/s) 

Smart sensor data 

format (bits) 

Smart sensor 

data (bps) 

Current 1,500 12 18,000 0.2 24 24

Encoder 1,000 24 24,000 1,000 24 24,000

Vibration 1,500 12 54,000 1,500 12 18,000

Micropositioning 47,080 12 564,960 20 18 360

5.5. Network Capabilities 

To determine the maximum number of WSS that can be integrated in the network, it is necessary to 

determine the maximum smart-sensor data rate that can be sent through the channel, which depends on 

the HSP-core implemented in the nodes and the maximum data rate that the coordinator can receive. 

The coordinator can read a complete frame with the maximum data payload in 263.64 µs; however, the 

standard specifies a maximum data rate of 250 kbps. If the network integrates nodes with low data 

rates, the number of nodes increase, for example a network with nodes transmitting at 1 byte per 

second with the minimum frame format, the netwok can integrate up to 2,604 nodes, but if the node 

transmit information at 232,283 bps all the bandwith is used and only one node can be integrated in 

this network with good conditions of reception. 

5.6. Discussion 

Experimental results using the proposed wireless smart sensor network validate the four 

methodologies implemented for CNC machines. The first methodology based on accelerometer 
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measurement uses a smart sensor for detecting broken bars in spindle induction motors by using a 

DWT transform. The second methodology measures the servomotor driver current and the processing 

implemented on the smart sensor to estimate the flank-wear area in inserts during machining. For the 

third methodology, the validation was done by using a smart sensor for the measurement of the encoder 

signal from an axis servomotor of a CNC machine. The measure of position for a linear stage was 

obtained by processing in a smart sensor the voltage signal obtained from an optical sensor, calculating 

RMS value. For this experiment the PAN coordinator was placed at 5 m from the sensor nodes, allowing 

an optimum data reception and a bandwith network utilization of 22.53% of the total available of an 

IEEE 802.15.4 channel. During the test, additional data was transmitted in order to show the results 

validation, as in the case of accelerometer-based vibrations monitoring and encoder-based jerk 

monitoring methodologies; the omission of this additional information reduces the traffic in the network. 

The amount of data sent through is considerably reduced from 660,960 bps to 42,365 bps, 6.4% of the 

total raw data read. The applied processing allows the relevant information to be sent through the 

network for each particular application; it is also clear that the raw-data rate is over the maximum 

transfer rate in the specifications of the used standard [28]. By using HSP modules in the WSS, the 

transmission time of the smart-sensor data after processing is significantly reduced in comparison with 

the raw data from the sensors; in this way, decreasing the traffic through the communication channel 

reduces the overall processing time, and increases the number of WSS that can be handled 

simultaneously in the network. 

6. Conclusions 

The wireless smart sensor network developed in this work is capable of coordinating different 

nodes for the measurement and processing of several variables in the new generation of machine tools 

under a completely hardware reconfigurable platform. The wireless communication based on  

IEEE 802.15.4 standard allowed fulfillment of the requirements for new generation CNC machines 

analysis and monitoring in a manufacturing cell, with the capability to incorporate a large number of 

variables for measuring and procesing. The proposed reconfigurable smart sensors can perform 

complex processing, which is optimal in a sensor network for condition monitoring and data analysis 

in a machining center, since each smart sensor pre-processes the information, reducing the amount of 

data to be sent through the network. The outcome of this capability provides a more efficient decision-

making in the manufacturing cell, contrary to the supposed fact of performing a post-processing for all 

raw data obtained from the measurement of each variable. The application of the smart sensor network 

developed in this work can be suitable for monitoring and processing of other variables and other 

process where on-line measurement is required, as in a production line. 
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