
Sensors 2010, 10, 9194-9210; doi:10.3390/s101009194

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Design of Belief Propagation Based on FPGA for the

Multistereo CAFADIS Camera

Eduardo Magdaleno *, Jonás Philipp Lüke, Manuel Rodríguez and

José Manuel Rodríguez-Ramos

Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, University of La Laguna,

Avd. Francisco Sanchez s/n, 38203 La Laguna, Spain; E-Mails: jpluke@ull.es (J.P.L.);

mrvalido@ull.es (M.R.); jmramos@ull.es (J.M.-R.)

* Author to whom correspondence should be addressed; E-Mail: emagcas@ull.es;

Tel.: +34-922-84-50-35; Fax: +34-922-318-228.

Received: 18 August 2010; in revised form: 20 September 2010 / Accepted: 29 September 2010 /

Published: 15 October 2010

Abstract: In this paper we describe a fast, specialized hardware implementation of the

belief propagation algorithm for the CAFADIS camera, a new plenoptic sensor patented by

the University of La Laguna. This camera captures the lightfield of the scene and can be

used to find out at which depth each pixel is in focus. The algorithm has been designed for

FPGA devices using VHDL. We propose a parallel and pipeline architecture to implement

the algorithm without external memory. Although the BRAM resources of the device

increase considerably, we can maintain real-time restrictions by using extremely

high-performance signal processing capability through parallelism and by accessing several

memories simultaneously. The quantifying results with 16 bit precision have shown that

performances are really close to the original Matlab programmed algorithm.

Keywords: plenoptic sensors; FPGA; real-time processing; depth estimation; multistereo

1. Introduction

3D reconstruction has been a very active research field for many years. The problem can be

approached with active techniques, in which the system interacts with the scene, or with passive

techniques in which the system, instead of interacting with the scene, captures images from several

view points in order to reconstruct the scene-related depth information.

OPEN ACCESS

Sensors 2010, 10

9195

Using passive techniques, only two views are enough to reconstruct 3D information from the scene

by means of a stereo algorithm. However, these techniques can be generalized to more than two views

and are then called multistereo techniques. Both dual stereo and multistereo are generally based on

finding a correspondence between the pixels of several images taken from different view points. This is

called the correspondence problem and generally needs some optimization process in order to find the

best correspondence between pixels.

The correspondence problem can be solved within the Markov Random Field (MRF) framework [1-3].

However, this yields an optimization problem that is NP-hard. Satisfactory techniques have been

developed to find approximate solutions, namely graph cuts and belief propagation. These techniques

are very demanding in computational terms, if compared to other techniques. Although these

techniques produce good results, they are slow. This is an impediment when 3D reconstruction

warrants real-time performance, for example in a 3DTV video camera.

CAFADIS is a 3D video camera patented by the University of La Laguna that performs depth

reconstruction in real time. The CAFADIS camera is an intermediate sensor between the

Shack-Hartmann and the pyramid sensor [4]. It uses a plenoptic camera configuration in order to

capture multiview information (it samples an image plane using a microlens array) [4]. This multiple

view information is composed of hundreds of images taken from slightly different points of view that

are captured with a single lens, single body device. Plenoptic sensors capture the lightfield of the scene

and can be used to synthesize a set of photographs focused at different depths in the scene [4-9]. The

image resulting from application of the CAFADIS sensor can be seen as formed by four dimensions:

two CCD co-ordinates associated to each microlens and a further two co-ordinates stemming from the

microlens array. These can then be used to estimate a focus measure usable as cost function that has to

be optimized in order to find out at which depth each pixel is in focus [10]. As a consequence, a depth

value can be assigned to each pixel. This 3D map, combined with the 2D scene image, can be used as

input for a 3D display. This optimization process can also be done within a MRF framework by means

of the belief propagation algorithm.

The optimization process is very slow, so specific hardware has to be used to achieve real-time

performance. A first prototype of the CAFADIS camera for 3D reconstruction was built using a

computer provided with multiple Graphical Processing Units (GPUs) and achieving satisfactory

results [4,10]. However, this hardware has the disadvantage of not being portable in the least. Now, the

goal is to obtain full portability with a single lens, single body optical configuration and specific

parallel hardware programmed on Field Programmable Gate Arrays (FPGAs).

The FPGA technology makes the sensor applications small-sized (portable), flexible, customizable,

reconfigurable and reprogrammable with the advantages of good customization, cost-effectiveness,

integration, accessibility and expandability [11]. Moreover, an FPGA can accelerate the sensor

calculations due to the architecture of this device. In this way, FPGA technology offers extremely

high-performance signal processing and conditioning capabilities through parallelism based on slices

and arithmetic circuits and highly flexible interconnection possibilities [12]. Furthermore, FPGA

technology is an alternative to custom ICs (integrated circuits) for implementing logic. Custom

integrated circuits (ASICS) are expensive to develop, while generating time-to-market delays because

of the prohibitive design time. Thanks to computer-aided design tools, FPGA circuits can be

Sensors 2010, 10

9196

implemented in a relatively short space of time [13]. FPGA technology features are an important

consideration in sensor applications nowadays. Recent examples of sensor developments using FPGAs

are the works of Rodriguez-Donate et al. [14], Moreno-Tapia et al. [15], Trejo-Hernandez et al. [16]

and Zhang et al. [17].

In this sense, the main objective of this work is to select an efficient belief propagation algorithm

and then to implement it over a FPGA platform, paving the way for accomplishing the computational

requirements of real-time processing and size requirements of the CAFADIS camera. The fast and

specialized hardware implementation of the belief propagation algorithm was carried out and

successfully compared with other existing implementations of the same algorithm based on FPGA.

The rest of the paper is structured as follows: we will start by describing the belief propagation

algorithm. Then, Section 3 describes the design of the architecture. Section 4 explains the obtained

results and, finally, the conclusions and future work are presented.

2. Belief Propagation Algorithm

The belief propagation algorithm [1] is used to optimize an energy function in a MRF framework.

The energy function E is composed of a data term Ed and a smoothness term Es, E = Ed + Es, where

the parameter measures the relative importance of each term. The data term is the sum of the

per-pixel data costs, Ed = p cp(d), where, in this case, cp(d) is the focus measure taken from the set of

photographs focused at different depths that was previously synthesized. The smoothness term is based

on the 4-connected neighbors of each pixel and can be written as Es = p,q Vpq(dp, dq) where p and q are

two neighboring pixels. Although there exist other ways to define Vpq(dp, dq), here the following

definition was used:

otherwise1

0
) ,(

qp

qppq

ddif
ddV (1)

The energy function is optimized using an iterative message passing scheme that passes messages

over the 4-connected neighbors of each pixel in the image grid. Each message consists in a vector of k

positions, one for each depth level taken into account, and is computed using the following update rule:

),()()()(min)(11

qppqppq

ps

ppsppqqp
p

ddVdMdMdcdM i

)Ν(

i

d

i (2)

where)(qqp dM i

 is the message passed from pixel p to pixel q for depth level dq at iteration I, N(p) is

the four-connected neighborhood of pixel p and (0,1].

After a certain number of iterations I, the algorithm is expected to converge to the solution. Then the

belief vector for every pixel has to be computed to obtain the depth level at which each pixel is focused

and, finally, the depth at which the object that images on that pixel is located. The belief vector for

pixel q is computed as follows:

)(

)()()(
qp

qpqqqqq

N

I dMdcdb
(3)

The depth value for pixel q is the depth level dq with minimum belief value. This general approach

of the message passing rule requires O(k
2
 n I) execution time, where k is the number of depth levels, n

Sensors 2010, 10

9197

is the number of pixels in the image and I is the number of iterations. Notice that the message for each

pixel could be computed in parallel taking O(k
2
) time for each iteration. Using the techniques described

in [1], the timing requirements and arithmetic resources can be reduced drastically. This is a benefit for

implementing the algorithm on FPGA, since less of the valuable resources of the FPGA will be

necessary for each pixel.

Two of the approaches used in [1] in order to save computation time and memory are to transform

the quadratic update rule into a linear update rule taking into account the particular structure of

Vpq(dp, dq) and to use a bipartite graph approach in order to perform the computations in place and in

half the time.

The transformation of the general message update rule gives the following update rule:

)(min,)(min)(pqpqqpqqp

p

dhdhdM
d

i (4)

with:

)()()()(11

ppq

ps

ppspppqp dMdMdcdh i

)Ν(

i

(5)

This allows computation of the message update for each pixel in O(k) time and allows a saving in

arithmetic resources.

On the other hand, one can observe that the image grid can be split into two sets so that the outgoing

messages of a pixel in set A only depends on the incoming messages from neighbors in set B, and

vice-versa. This gives a checkerboard-like pattern, where the message updating rule is computed at odd

iterations for pixels in set A and at even iterations for pixels in set B. With this approach, all messages

are initialized at zero and the updating is then alternatively conducted on the two sets. Once the

algorithm converges to the solution, the belief vector can be computed in the usual way, since no

significant difference is expected between an iteration message and the previous one, so

that)()(1

qqpqqp dMdM ii

 . With this technique the memory requirements are reduced to half and

computing speed is doubled.

3. Algorithm to Hardware

The global control system to be developed is shown in Figure 1. The functional architecture has four

sub-modules. At the front of the system the camera link module receives data from CAFADIS in a

serial mode. The following stages perform the digital data processing using FPGA resources. The

second and the third stages are the estimation of cost and the belief propagation algorithm respectively.

The estimation of cost is a less demanding computation and the main computing power is carried out

by the belief propagation. Finally, a simple VGA controller is necessary to display the depth data.

Sensors 2010, 10

9198

Figure 1. Overall system to be integrated in a portable video camera.

CAMERA

LINK

ESTIMATION

OF COST

BELIEF

PROPAGATION

MODULE

FPGA platform

CAFADIS

camera

Depth

map
VGA

CTRL

depth

monitor

We will focus on the FPGA implementation from Equations 4 and 5 to improve processing time.

The pseudo-code for the belief propagation algorithm is as follows.

Table 1. Pseudo-code for the algorithm.

 for z = 1:Nz
 msg_min = inf;
 for n=1:Niter
 for y=2:Ny+1
 offset = rem(y+n,2);
 for x=2+offset:2:Nx+1 % Applying checker board

 common = cost(z,x-1,y-1)+ mu * (msg(z,x,y1,↓)+ msg(z,x,y+1,↑)+

 + msg(z,x-1,y,→) + msg(z,x+1,y,←));

 % Update messages
 msg(z,x,y,↑) = common - msg(z,x,y-1,↓);
 msg(z,x,y,↓) = common - msg(z,x,y+1,↑);
 msg(z,x,y,←) = common - msg(z,x-1,y,→);
 msg(z,x,y,→) = common - msg(z,x+1,y,←);

 msg_min = min(msg_min,msg(z,x,y,:))
 end;
 end;
 end;

 % Applying smoothing.
 msg(z,x,y,:) = min(msg_min+d, msg(z,x,y,:));
 end;

Nx and Ny determine the size of the image, and Nz is the number of planes.

The algorithm can be accelerated using parallel processing power of FPGAs instead of other

classical technology platforms. In our implementation the improvements are due to the fact that:

 Arithmetic computations are performed in pipeline and as parallel as possible.

 The number of planes in the architecture implemented is parallelized.

Taking into account these considerations, the overall implemented architecture is depicted in

Figure 2. The address generation unit acts as the global controller of the system. In order to carry out

the smoothing, the new values of messages are recalculated using the appropriate values that are

extracted from the memory cost and message passing at each iteration. This phase is computed into the

common_core module for each plane.

Sensors 2010, 10

9199

Figure 2. Architecture of the designed belief propagation system.

common

core [i]

smoothness

module

minimum

plane

address

generator

common[i]

ce_map

depth

addr_depth

plane of

memory

Nz planes

Finally, the smoothing module compares the new values obtained from all levels and the new values

are stored in the message passing memory after smoothing (Table 1).

These steps are performed using gray pixels in odd iterations and the white pixels in even iterations

(Figure 2). The number of iterations is configured in the address generator module.

Simultaneously, the common core calculates the common part of the four outgoing messages for

each plane. Then the incoming message from each neighbor in the previous iteration is subtracted from

the common part. After that, the minimum value for each direction is computed and smoothed in the

smoothing module. Finally, the belief function is computed in the minimum plane block in order to

select the plane to which each pixel belongs. When the address generation module completes its

iterations, it enables the output of this block, providing the distance associated to each pixel as output

signal. These data are obtained alternately (even and odd pixels) in line with the inherent addressing of

the algorithm to minimize resources and execution time. The distance data can be flipped using a

double dual-port memory system at the output of the minimum plane module preserving the

pipeline [18,19].

The implementations of each of the modules that make up the overall architecture are

detailed below.

3.1. Memory planes

According to the algorithm, each memory plane consists of one cost memory and four message-

passing memories.

Taking into account Equation 1, Figure 3 shows the addresses of message-passing memory which

must be accessed in order to perform the arithmetic computation for an image of Nx = 3 and Ny = 4

pixels for even iterations. Figure 4 depicts the same considerations for odd iterations.

To calculate the new messages associated with a given pixel, the up-memory must supply the value

of its right, the down-memory, the value of the left, and the left and right-memories should access the

Sensors 2010, 10

9200

top and bottom positions respectively. This addressing causes conflicts at the ends of the arrays. In

Figure 3, for example, in order to compute the calculations for pixel 1, the down-memory address is

out of range. Table 2 shows the memory accesses to be performed for the example in Figures 3 and 4.

Figure 3. Memory addressing for even iterations.

1

2

4

5

3 6

2

1

3

5

4

6

1

2

4

3

5

6

2

1

3

5

4

6

2 5

1

3

4

6

out of memory

out of memory

Figure 4. Memory addressing for odd iterations.

1 4

3 6

2 5

1

3

2

4

6

5

1 4

3

2 5

6

1

3

2

4

6

5

1 4

3

2

6

5

out of memory

out of memory

Sensors 2010, 10

9201

Table 2. Address generation for the example.

Iteration Cost

address

Up Down Left Right

odd 0 3 out 1 out

even 1 4 out 2 0

odd 2 5 out out 1

even 3 6 0 4 out

odd 4 7 1 5 3

even 5 8 2 out 4

odd 6 9 3 7 out

even 7 10 4 8 6

odd 8 11 5 out 7

even 9 out 6 10 out

odd 10 out 7 11 9

even 11 out 8 out 10

The software algorithms solve these conflicts using zero padding. This implies an extra memory of

8Nx + 8Ny + 16 for each plane in a hardware implementation. A second approach is to avoid this zero

padding. As shown in Figures 3 and 4, each message memory only has conflicts on one side of the

array. Taking this into account, the extra memory used is reduced to 2Nx + 2Ny for each Nz plane.

However, the FPGA's internal memory is a critical resource when implementing this algorithm and

the final design optimizes the memory usage by eliminating the above mentioned excesses. Instead of

increasing memory sizes, additional logic was added in the address generator design in order to

indicate when an address is valid. With this alternative design, the size of the memory is minimized.

Furthermore, the size is the same for all the memories, making the VHDL implementation more

modular and flexible.

3.2. Address generator

The block diagram of the address generator and control signals are depicted in Figure 5. Basically,

this module consists of counters, comparators, shift registers, one multiplier, three adders, two

subtracters and a state machine that acts as a control unit.

The operation of the module is as follows: the x-counter is enabled when the start signal goes high.

The property of this counter is that it lacks the least significant bit index, whose value is calculated

with a parity circuit to implement the checkerboard algorithm.

The effective address is generated using count_Nx and count_Ny counters. This value is calculated

by multiplying the number of rows (Nx) by count_Ny and then adding the current value of the row

(count_Nx). Based on the current cost address, the values of the message addresses are easily obtained,

as well as the address of the plane corresponding to the value calculated (delay of nine clock cycles to

synchronize with the arithmetic module). Furthermore, when the values of count_Ny and count_Nx

reach the maximum value, the next iteration is enabled through a third counter (count_Niter). The

validation_generator block uses these three values to estimate if the message addresses are valid.

Sensors 2010, 10

9202

Figure 5. Architectural block diagram of the address generator.

x counter

without parity

y counter

count_Nx

comparator

unit
Nx

ce_Ny

count_Ny

Niter counter

1

1

Nx

Nx

addr_cost

addr_left

addr_right

addr_up

addr_down
validation

generator

comparator

unit

ce_Niter

down_valid

data_valid

up_valid

left_valid

right_valid

count_Niter

Control

unit

start

ce_Nx

SRL 9
addr_depth

SRL 9

SRL 10

SRL 11

strobe

done

unload

parity bit

parity Nx

parity Ny

The control unit provides strobe, unload and done signals that are estimated using the value of the

three counters. These signals are passed by shift registers to preserve the overall system

synchronization.

The validity of the message addresses can be calculated using only the count_Nx and count_Ny pixel

counters (see Figures 3,4). However, the inclusion of the iteration counter saves on resources and

execution time of the algorithm. In fact, when the algorithm achieves the last iteration for an image,

message memories contain values that are not valid for the next image. The message memory must be

empty at the first iteration for a given frame. This implies the use of two sets of memories continuously

Sensors 2010, 10

9203

commuting between odd and even frames or the implementation of an erase phase consuming extra

time. Both options use more resources of the FPGA hardware. Thus, the count_Niter counter is

included in the estimator and when the value of this counter is zero or one, this module assumes that all

addresses are invalid.

3.3. Arithmetic module

This module is responsible for performing the calculations of the message passing algorithm

according to the equations. The implemented module is depicted in Figure 6. Several registers are

included in the circuit to perform the computation in pipeline. Data_valid signals are connected to the

synchronous reset of the first registers by passing the data, so that if the data are invalid, the values at

which operations are carried out are zero.

Figure 6. Architectural block diagram of the arithmetic core.

2

m_↑

m_↓

m_←

m_→

cost

common

m_↑

m_↓

m_←

m_→

data_valid

The value of the common signal is calculated using current messages and the value of the cost signal

as shown at the top of the figure. Simultaneously, message data are delayed so that they can be

subtracted from the value of the common signal at the bottom of the figure. This architecture preserves

the pipeline feature and the FPGA only needs nine clock cycles to carry out the computation of the new

message data in parallel mode. The pipeline continuously provides new data after the latency time.

Intermediate values of the arithmetic module are conveniently rounded. So, the input precision is the

same as the output precision (generic data_width).

The module is synthesized Nz times (depending on the number of planes, see Figure 2).

Sensors 2010, 10

9204

3.4. Smoothness unit

This module performs the smoothness corresponding to the last line of the pseudo-code of Table 1.

At first, it calculates the minimum of messages for all planes with a comparator tree. Then, a constant

factor (d) is added and the result is compared to the estimated value for each memory. Finally, the

minimum between these two values is stored in the memory (Figure 7). Only Nz2log2 clock

cycles are necessary for this operation.

Figure 7. Diagram of the smoothing operation.

up_min+d

right_min+d

left_min+d

down_min+d

costos

memory

3.5. Depth estimator

This block selects the plane that contains the minimum of common values in each cycle. Note that

the result is only enabled when all the iterations have been carried out. This feature is controlled

through a ce_map signal. This signal is internally connected with the strobe signal of the arithmetic

module. This module requires two clock cycles.

3.6. Size considerations of the design

The update of the messages takes 13 clock cycles (9 from the arithmetic and Nz2log2 from the

smoothness module). Thus, we must have:

 Nz
NxNyNx

2log11
22

 (6)

Sensors 2010, 10

9205

since Nxaddrdownaddr _ is the worst case in the address generator module (Figure 5). The

divisions by 2 are due to checkerboard optimization. If this equation is not satisfied, a non-updated

value from memory is read. This means that the frame must be 8 × 8 or higher.

4. Results

A first script was successfully tested using Matlab. Then the design was programmed using the

VHDL hardware description language, simulated using ModelSim, and XST was used to synthesize

these modules. An overview of the module operation is shown in a functional simulation (Figure 8).

Figure 8. Functional simulation of belief propagation for a 64 × 64 frame and 10.

iterations

Figure 9 depicts the original plenoptic image used for simulations. In figure 10 the final depth map

of a test image is displayed together with the associated single image. The belief propagation prototype

Sensors 2010, 10

9206

was synthesized with a Xilinx XC5VSX50T Virtex-5. This FPGA is provided in a ML506 Xtreme

DSP development platform. This development board has a 200 MHz clock.

The depth estimation using multistereo is less clear than using stereo because the cost function is

more complex. Moreover, the quantifying results with 16 bit precision have shown performances really

close to the original Matlab programmed algorithm.

Figure 9. Lightfield captured with a plenoptic camera. Image taken from [5].

Figure 10. (a) Single image. (b) Depth map.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

 (a) (b)

4.1. Time analysis

The implemented architecture is pipeline and it permits continuous data streaming. The use of

internal memory allows simultaneous accesses to the messages for each direction and each plane. Also,

Sensors 2010, 10

9207

all arithmetic computations have been replicated for each plane and the number of cycles in order to

make the final depth map independent of the number of planes. Taking into account this and the

checkerboard algorithm, the cycles for the operation of the module are:

 1
2

9log1
2

2

 Niter
NyNx

NxNiter
NyNx

cycles (7)

Table 3 shows the cycles and the total time broken down into the stages of the total system for

several Nx, Ny and Niter values. A 200 MHz clock has been assumed.

Table 3. Execution time for the belief algorithm in FPGA.

Nx Ny Niter Cycles Time [ms]

64 64 10 22,539 0.11

64 64 25 53,259 0.27

120 160 10 105,611 0.53

120 160 25 249,611 1.25

128 128 10 90,123 0.45

128 128 25 213,003 1.07

256 256 10 360,459 1.80

256 256 25 851,979 4.26

512 512 10 1,441,803 7.21

512 512 25 3,407,883 17.04

1,024 1,024 10 5,767,179 28.84

1,024 1,024 25 13,631,499 68.16

These results can be contrasted with other works. [20] and [21] have proposed FPGA-based

implementation of belief-propagation algorithm for stereo vision instead of multistereo vision. Their

implementations use external memory and the system latency is mainly limited by the memory

accesses. Their algorithms produce good results but the computation is slow and the 3D reconstruction is

not possible in real-time. For example, in [20] authors obtain a depth map in 0.32 s for 1,280 × 720 pixels

using a Virtex-5. Our architecture based on internal memory reduces the time needed to calculate the

depth estimation map by approximately 10 times with respect to an external memory implementation.

4.2. Area

Block RAMs are the critical resource for the implementation of the system in a FPGA device.

Table 4 shows the memory resources used for several FPGAs with 16-bit precision. Other resources

such as DSP48 or slices are always below 10% for the FPGAs under consideration.

Sensors 2010, 10

9208

Table 4. FPGA internal memory resources.

FPGA

device

Configuration

of image

Basic internal

RAM module

BRAM

(used/available)

XC4SX35 Virtex-4 64 × 64 × 4 RAMB16 1K × 16 80/192 (41%)

XC5SX50 Virtex-5 64 × 64 × 4 BRAM 2K × 16 40/132 (30%)

XC5SX50 Virtex-5 64 × 64 × 8 BRAM 2K × 16 80/132 (60%)

XC6VLX240 Virtex-6 64 × 64 × 8 BRAM 2K × 16 40/416 (9%)

XC6VLX240 Virtex-6 64 × 64 × 8 BRAM 2K × 16 80/416 (19%)

XC6VLX240 Virtex-6 128 × 128 × 4 BRAM 2K × 16 160/416 (38%)

XC6VLX240 Virtex-6 128 × 128 × 8 BRAM 2K × 16 320/416 (77%)

XC6VLX240 Virtex-6 256 × 128 × 4 BRAM 2K × 16 320/416 (77%)

5. Conclusions and Future Work

The current investigation develops a first FPGA implementation for depth map estimation using the

belief propagation algorithm for the CAFADIS plenoptic sensor. The main contribution of this work is

the use of FPGA technology for processing the huge amount of data from the plenoptic sensor. FPGA

technology features are an important consideration in the CAFADIS camera. The depth reconstruction

in real time is ensured due to the extremely high-performance signal processing and conditioning

capabilities through parallelism based on FPGA slices and arithmetic circuits and highly flexible

interconnection possibilities. Furthermore, the use of a single FPGA can meet the size requirements for

a portable video camera. The low cost of FPGA implementation in data processing makes the camera

sellable at not too expensive prices in the future.

However, algorithm implementation requires an extremely large internal memory. Such massive

amount of storage requirement becomes one of the most crucial limitations for the implementation of

Virtex-4, Virtex-5 and Virtex-6 FPGA families and the development platform has to be replaced by a

subsequent generation of FPGA. The quantifying results with 16 bit precision have shown

performances are really close to the original Matlab programmed algorithm. Our results have been

compared with other belief propagation algorithms in FPGA and our implementation is comparatively

faster.

The design of the belief algorithm was developed using functional VHDL hardware description

language and is technology-independent. So, the system can be implemented on any large enough

FPGA. Xilinx has just announced the release of 28-nm Virtex-7 FPGAs. These devices provide the

highest performance and capacity for FPGAs (up to 65Mb) [22,23] and they will allow algorithm

implementation for larger images.

In the future, we will implement this architecture in a Virtex-7 and integrate it in a real-time

multistereo vision system. The goal is to obtain a fully portable system.

Sensors 2010, 10

9209

Acknowledgements

This work has been partially supported by “Programa Nacional de Diseño y Producción Industrial”

(Project AYA 2009-13075) of the “Ministerio de Educación y Ciencia” of the Spanish government,

and by “European Regional Development Fund” (ERDF).

References and Notes

1. Felzenszwalb, P.F.; Huttenlocher, D.R. Efficient Belief Propagation for Early Vision. Comp.

Vision Pattern Recognit. 2004, 1, I-261-I-268.

2. Kolmogorov, V. Convergent Tree-Reweighted Message Passing for Energy Minimization. IEEE

Trans. Pattern Anal. Mach. Intell. 2006, 28, 1568-1582.

3. Szeliski, R.; Zabih, R; Scharstein, D.; Veksler, O.; Kolmogorov, V.; Agarwala, A.; Tappen, M.;

Rother, C. A Comparative Study of Energy Minimization Methods for Markov Random Fields

with Smoothness-Based Priors. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1068-1080.

4. Lüke, J.P.; Marichal-Hernández, J.G.; Rosa, F. Rodríguez-Ramos, J.M. A Prototype of Real-Time

a Single Lens 3D Camera. In Proceedings of International Conference on 3D Systems and

Applications, To, Japan, May 2010.

5. Ng, R. Fourier Slice Photography. In Proceedings of International Conference on Computer

Graphics and Interactive Techniques, Los Angeles, CA, USA, July 2005; pp. 735-744.

6. Pérez, F.; Marichal, J.G.; Rodríguez-Ramos, J.M. The Discrete Focal Stack Transform. In

Proceedings of 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne,

Switzerland, August 25-29, 2008.

7. Lumsdaine, A.; Georgiev, T. Full Resolution Lightfield Rendering. Adobe Tech Report, Adobe

Systems, Inc.: Los Angeles, CA, USA, January 2008.

8. Marichal-Hernández, J.G.; Lüke, J.P.; Rosa, F.; Pérez, F.; Rodríguez-Ramos, J.M. Fast

Approximate Focal Stack Transform. In Proceedings of 3DTV CON 2009, Potsdam, Germany,

May 2009.

9. Pérez, F.; Lüke, J.P. Simultaneous Estimation of Super-Resolved Depth and All-in-Focus Images

from a Plenoptic Camera. In Proceedings of 3DTV CON 2009, Potsdam, Germany, May 2009.

10. Lüke, J.P.; Pérez Nava, F.; Marichal-Hernández, J.G.; Rodríguez-Ramos, J.M; Rosa, F.

Near Real-Time Estimation of Super-Resolved Depth and All-in-Focus Images form a Plenoptic

Camera Using Graphics Processing Units. Int. J. Digit. Multimedia Broadcasting 2010, 2010, 12.

11. Magdaleno, E.; Rodríguez, M.; Ayala, A. VHDL Implementation of a Communication Interface

for Integrated MEMS. Microsyst. Technol. 2008, 14, 453-462.

12. Magdaleno, E.; Rodríguez, M.; Rodríguez-Ramos, J.M.; Ayala, A. Modal Fourier Wavefront

Reconstruction Using FPGA Technology. Micro. Nanosyst. 2009, 1, 72-82.

13. Deschamps, J.; Bioul, G.; Sutter, G. Synthesis of Arithmetic Circuits. FPGA, ASIC and Embedded

Systems; Wiley-Interscience: New York, NY, USA, 2006; pp. 1603-1617.

14. Rodriguez-Donate, C.; Morales-Velazquez, L.; Osornio-Rios, R.A.; Herrera-Ruiz, G.;

Romero-Troncoso, R.T. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter

Extraction in Industrial Robots Links. Sensors 2010, 10, 4114-4129.

Sensors 2010, 10

9210

15. Moreno-Tapia, S.V.; Vera-Salas, L.A.; Osornio-Rios, R.A.; Dominguez-Gonzalez, A.; Stiharu, I.;

Romero-Troncoso, R.J. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor

Network for Wireless Monitoring of New Generation Computer Numerically Controlled

Machines. Sensors 2010, 10, 7263-7286.

16. Trejo-Hernandez, M.; Osornio-Rios, R.A.; Romero-Troncoso, R.J.; Rodriguez-Donate, C.;

Dominguez-Gonzalez, A.; Herrera-Ruiz, G. FPGA-Based Fused Smart-Sensor for Tool-Wear

Area Quantitative Estimation in CNC Machine Inserts. Sensors 2010, 10, 3373-3388.

17. Zhang, W.; Chen, W.; Tang, J.; Xu, P.; Li, Y.; Li, S. The Development of a Portable Hard Disk

Encryption/Decryption System with a MEMS Coded Lock. Sensors 2009, 9, 9300-9331.

18. Magdaleno, E.; Rodríguez, M; Rodríguez-Ramos, J.M. An Efficient Pipeline Wavefront Phase

Recovery for the CAFADIS Camera for Extremely Large Telescopes. Sensors 2010, 10, 1-15.

19. Rodríguez-Ramos, J.M.; Magdaleno, E.; Domínguez, D.; Rodríguez, M.; Marichal, J.G. 2D-FFT

Implementation on FPGA for Wavefront Phase Recovery from the CAFADIS Camera. Proc. SPIE

2008, 7015, 701539.

20. Pérez, J.; Sánchez, P.; Martínez, M. High-Definition Belief-Propagation Based Stereo Matching

FPGA architecture. In Proceedings of Conference on Design of Circuits and Integrated System,

Zaragoza, Spain, November, 2009.

21. Tseng, Y.; Chang, Y.; Chang, T. Block-Based Belief Propagation with in-place Message Updating

for Stereo Vision. In Proceedings of IEEE Conference on Circuits and System, Mac, China,

November 30-December 3, 2008; pp. 918-921.

22. Przybus, B. Xilinx Redefines Power, Performance, and Design Productivity with Three New 28

nm FPGA Families: Virtex-7, Kintex-7, and Artix-7 Devices; Xilinx: San Jose, CA, USA, June

2010.

23. Xilinx. 7 Series Overview. Advance Product Specification; Xilinx: San Jose, CA, USA, June

2010.

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

