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Abstract: L-band (1–2 GHz) microwave radiometry is a remote sensing technique that can 
be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity 
(SMOS) Mission of the European Space Agency (ESA). Performing ground-based 
radiometer campaigns before launch, during the commissioning phase and during the 
operative SMOS mission is important for validating the satellite data and for the further 
improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. 
To address these needs, three identical L-band radiometer systems were ordered by ESA. 
They rely on the proven architecture of the ETH L-Band radiometer for soil moisture 
research (ELBARA) with major improvements in the microwave electronics, the internal 
calibration sources, the data acquisition, the user interface, and the mechanics. The purpose 
of this paper is to describe the design of the instruments and the main characteristics that 
are relevant for the user. 

Keywords: microwave; radiometer; remote sensing; Soil Moisture and Ocean Salinity 
Mission (SMOS) 
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Abbreviations 

Symbol Meaning 
ACS Active Cold Source 
ADC Analog-to-Digital Converter 
AMP AMPlifier 
BP Band Pass filer 
CA Calibration Assembly 
ELBARA ETH L-Band Radiometer for soil-moisture research. 
ESA European Space Agency 
FC Feed Cable 
HS Hot Source 
IC Instrument Controller 
ISO ISOlator 
LP Low Pass filer 
MA Microwave Assembly 
ND Noise Diode 
PDA Power Detector Assembly 
PDU Power Distribution Unit 
PID Proportional–Integral–Derivative controller 
RFI Radio Frequency Interferences 
RM RadioMeter 
RS Resistive Source 
SMOS Soil Moisture and Ocean Salinity mission 
SW input SWitch 
TEC Thermo-Electric Cooler 
TPC Temperature and Power Controller 
USB / LSB Upper / Lower Side Band 

1. Introduction 

Heat fluxes through the terrestrial surface layer are major drivers of climate. For land areas with 
sparse or no vegetation, the quantities involved in this energy exchange are fundamentally linked with 
the moisture in the soil surface. Techniques for monitoring the surface moisture on the spatial scales 
relevant for climate and meteorological research are therefore of particular interest [1-5]. 

Almost 25 years ago, it was suggested that soil moisture could be retrieved from remotely sensed 
thermal radiance received with an L-band radiometer [6,7]. Today L-band radiometry is one of the 
most promising approaches for remote soil-moisture retrieval since: (i) the atmosphere and clouds are 
almost transparent, thus allowing for all-weather measurements; (ii) the impact of vegetation canopies 
and surface roughness is less distinct compared with passive measurements at higher frequencies and 
active remote sensing techniques (radar); (iii) solar radiation affects radiometer measurements at the  
L-band only insignificantly, which allows for measurements at any time of the day; (iv) the 
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1,400−1,427 MHz frequency band is protected, which means that distortions of thermal radiance due 
to man-made radio frequency interferences (RFI) are minimized. However, in the past years several 
field experiments performed in Europe have shown that RFI is present even in the protected part of the 
L-band. 

Figure 1. The ELBARA II systems mounted above the test site at the Swiss Federal 
Research Institute WSL, with the radiometer electronics and the power unit installed in the 
unit on the right. 

 
 

During the calibration and validation activities associated with ESA’s SMOS mission [8] it turned 
out that further ground-based passive L-band experiments would be indispensable for the 
commissioning and the operative phase of the mission. To address this need, the three identical 
radiometers ELBARA II depicted in Figure 1 were built by Gamma Remote Sensing (Gümligen, 
Switzerland) as ordered by the ESTEC, in the framework of the contract ESTEC 21013/07/NL/FF" 
L-band Radiometer Systems to be deployed for SMOS Cal/Val Purposes". 

In the following paragraphs, we describe some basics of microwave radiometry, the requirements of 
the SMOS mission, and the corresponding research activities. The design and the main characteristics 
of the ELBARA II instruments are described in Sections 2 and 3. The Appendix contains a list of the 
abbreviations used and the specifications of the electronic components used in the radiometer design. 

1.1. Measurement Principle 

Microwave radiometry is a passive remote-sensing technique that measures thermal radiation. The 
radiance TB

p emitted from a terrestrial surface at horizontal (p = H) or vertical (p = V) polarization 
depends on the surface temperature TS, and on the surface reflectivity Rp. The latter can be used as a 
proxy for the remote retrieval of soil moisture or sea salinity. 

In the microwave range, the Planck function of thermal radiation is linear with the absolute 
temperature. In this so-called Rayleigh-Jeans approximation, the upwelling brightness temperature of 
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the emitted radiation above a surface is TS⋅(1 - Rp). Since downwelling radiation Tsky also contributes to 
the observed radiation by the fraction reflected at the surface, the total radiation TB

p received by a 
radiometer oriented towards the surface can be expressed by: 

B S sky(1 )p p pT R T R T= − +                                                    (1) 

The value of Tsky is determined by the cosmic background temperature of ≈2.7 K and enhanced by 
an atmospheric contribution. At 1.4 GHz, this enhancement is almost constant, leading to  
4 K < Tsky < 5 K. Since the terrestrial surface temperature is much larger than Tsky, the brightness 
temperature TB

p has a strong sensitivity to Rp. 
The sensitivity of TB

p with volumetric soil water content WC [m3 m-3] is established through Rp, 
being dependent on the relative dielectric constant. The latter is a strong function of WC due to the 
marked contrast between the permittivity of free water (≈80) and dry soil (≈3 to 5). This allows the soil 
surface-water content to be determined from its reflectivity by applying dielectric mixing  
(e.g., [9–11]) and radiative transfer models. Typically, TB

p of a very dry bare soil can be 150 K higher 
than for the same soil in the saturated moisture state. 

Two different soil-depth ranges are of relevance: First, TS represents an effective soil temperature 
averaged over the emission depth of the microwave radiation in the soil [12]. For a dry soil this can be 
1 m or even more at 1.4 GHz, whereas for a wet soil the emission depth may be as little as a few 
centimeters [13]. Second, Rp represents an effective surface reflectivity as a result of the dielectric 
transition from air to bulk soil with a more or less constant permittivity. In the simplest case of a 
homogeneous soil with a flat surface, the Fresnel equations [14] can be used to represent Rp at 
polarization p = H, V and for a certain observation angle. At 1.4 GHz, a requirement for applying the 
Fresnel equations is a transition depth of <1 cm. However, more sophisticated models are required to 
compute Rp if TB

p originates from a landscape, e.g., with vegetation. 
Recent results obtained from several theoretical studies and field experiments dedicated to the 

retrieval of sea salinity as part of the SMOS mission are presented in [15]. For retrieving ocean salinity 
from TB

p measured at L-band, the principle is similar as applied for retrieving soil moisture. Again TB
p 

can be expressed by Equation (1). However, the dielectric constant of ocean water is in a quite 
different range. It is the imaginary part of the permittivity that increases with increasing salt content 
due to the increased conductivity. Sea salinity is measured in Practical Salinity Units (psu) defined as: 
Sea water with the salinity 35 psu has a conductivity ratio of unity at 15 °C (and 1 atmosphere pressure) 
with a potassium chloride (KCl) solution containing 32.4356 g of KCl per kg of solution. The salinity 
of the ocean is between 31 and 38 psu, but can be substantially less where mixing with fresh water 
occurs. The most saline open sea is the Red Sea (36–41 psu), but even higher values are found in 
isolated bodies of water, such as in the Dead Sea (300–400 psu). However, the sensitivity of TB

p 
measured with respect to the salinity of the open ocean is approximately 1 K⋅psu-1 at vertical 
polarization and the observation angel of 50° relative to nadir. 

1.2. SMOS Requirements 

ESA’s SMOS mission, proposed in the framework of the Earth Explorer Opportunity Missions [16] 
aims at deducing soil surface moisture and ocean salinity with near global coverage every three 
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days [17]. The mission’s requirements regarding soil moisture are: the accuracy should be better than 4% 
volumetric moisture with a spatial resolution of 35–50 km of a single measurement. The desired 
accuracy of ocean salinity retrieved from a single measurement is 0.5–1.5 psu. For a 30–day average 
over an area of 100 km × 100 km, the accuracy is specified to 0.1 psu, implying that brightness 
temperatures measured with the SMOS L-band radiometer have to be within ±0.1 K. 

1.3. SMOS Calibration and Validation Activities 

SMOS is the outcome of a long process initiated in late 1970s. During recent years, many research 
activities have been performed to support this mission (see [18] for an extensive overview of recent 
research activities related to SMOS). Many of these activities focused on questions concerning 
calibration and validation issues for soil moisture and sea salinity retrieval. Others were dedicated to 
the detection of biomass, or to technical aspects of the sensor. Regarding soil moisture retrieval, many 
experimental and theoretical studies have been performed to explore the radiative properties of the 
basic land-cover types considered in the so-called ‘L-band Microwave Emission of the Biosphere’ 
(L-MEB) model [19] which is the Level-2 algorithm to produce soil-moisture data. This research has 
mostly been performed with ground-based L-band radiometers either mounted on towers or cranes. 
Thus, a considerable number of L-band radiometers with sometimes different characteristics have been 
built [20] and operated by the scientific community. 

Although our knowledge about the interaction between microwaves and land-surface features has 
increased dramatically in the course of these activities, further ground-based experiments during the 
SMOS commissioning and operative phases are essential. For this reason and to overcome the problem 
of different instrument performances affecting the L-band signatures, the construction of three 
identical L-band radiometers was recommended to ESA. These instruments have been built by a 
consortium consisting of an industrial partner (Metaplan, Adliswil, Switzerland) and two university 
partners (Institute of Applied Physics, Bern, Switzerland and Swiss Federal Research Institute WSL, 
Birmensdorf, Switzerland), headed by the company Gamma Remote Sensing AG (Gümligen, 
Switzerland), with a total budget of approximately 360 kEuro. The architecture of the three 
ELBARA II L-band radiometers is based on the ETH L-Band radiometer for soil-moisture research 
(ELBARA), [21] designed and built by the Institute of Applied Physics, University of Berne. This 
instrument has been successfully deployed in a series of field experiments [22–27]. However, major 
improvements of the microwave electronics, the mechanics, and the user interface have been made to 
the successor, ELBARA II. In particular the development of an Active Cold Source as an instrument 
internal calibration noise source has improved the absolute accuracy significantly. 

2. Instrument Design 

A microwave radiometer is a receiver for electromagnetic radiation with sub–millimeter to 
centimeter wavelengths, corresponding to the frequency range of 1–1,000 GHz. The L–band, ranging 
from 1–2 GHz, has many commercial and military applications. It also contains the hydrogen line at 
1,420.41 MHz, originating from the hyperfine transition of neutral hydrogen. For the imaging of 
neutral atomic hydrogen in interstellar space, passive measurements at this frequency are of great 
astronomical interest. As a consequence, the 27 MHz frequency band ranging from 1,400 to 
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1,427 MHz has become a protected radio astronomy allocation world–wide, in which it is forbidden to 
transmit any kind of electromagnetic radiance. Likewise, an RFI–free environment is mandatory to 
measure microwave brightness temperatures emitted from terrestrial surfaces. The frequency transfer 
function of an L–band radiometer to be used for retrieving geophysical properties must therefore be 
narrow and within this protected band. This implies, however, that the power level P received by such 
a radiometer with bandwidth B = 27 MHz is very low. For a noise source at the physical temperature T, 
and with emissivity equal to unity (e.g., a perfectly matched resistor), the noise power received is: 

 P kTB=  (2) 

with k = 1.380658⋅10−23 J K-1 being the Boltzmann constant. The same expression holds true when a 
scene at the physical temperature T and with the emissivity 1 is observed with a radiometer.  
For T = 300 K, this gives P ≈ 0.11⋅10-12 W (≈-99.5 dBm) received with the radiometer antenna. To 
detect such an extremely low power, the radiometer (RM) must have the lowest possible residual noise 
TRM 0 and any instrument internal RFI disturbances must be rigorously mitigated. To allocate an 
absolute value to the noise power received with the antenna, the noise power must be compared with 
the power of at least two instrument internal calibration sources with known noise temperatures. 
Provided that the linearity of the receiver is sufficient and the gain is stable between several calibration 
cycles, this allows a certain brightness temperature to be assigned to the radiance entering the antenna. 
These requirements are important for the design of the ELBARA II electronics described below. 

2.1. Block Diagram 

The block diagram of the ELBARA II radiometer is shown in Figure 2, and the relevant 
specifications of the individual components are listed in the Appendix. The block diagram is 
subdivided into the sub-systems: Microwave Assembly, Power Detector Assembly, Calibration 
Assembly, and the Temperature–Power Control unit. The functionality of these sub–systems are 
outlined in Sections 2.1.1 to 2.1.4. 

2.1.1. Microwave Assembly 

The Microwave Assembly (MA) consists of the components of the front-end and the back-end 
(Figure 2). The mechanical input switch (SW) allows the selection of the noise source fed to the MA 
input, which could be either one of the radiometer inputs TRM,in

H or TRM,in
V to measure antenna 

brightness at horizontal or vertical polarization, or one of the tree-internal reference noise sources. The 
output of the switch is fed through an isolator (ISO1) tuned to the center of the radiometer band at 
1,413.5 MHz to ensures a good match of the selected noise input to the receiver path. 

The microwave signal at the isolator output is directly fed into a 4-Section band-pass filter (BP1) 
before amplification. In this ELBARA II is unlike to other L-band radiometers currently used for the 
observation of terrestrial surfaces, e.g., the polarimetric radiometer EMIRAD [28] or the LEWIS 
radiometer [29]. The additional loss of <0.77 dB of the BP1 contributes less than 50 K to the total 
residual noise TRM,0 of the radiometer (see Section 2.2). This disadvantage is compensated for by the 
way RFI from outside the protected band is suppressed in the front-end before amplification, which 
avoids possible saturation of the first low-noise amplifier AMP1. 
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absorptivity 1 - tfront. Where the electronic components are in thermal equilibrium at the typical 
temperature T0 = 313 K (40 °C), the absorptivity equals the emissivity and the noise power caused by 
the front-end loss is T0⋅(1 - tfront) ≈ 87 K. Besides the losses in the front-end, the performance of the 
first low-noise amplifier (AMP1) determines TRM 0. In accordance with its specified noise figure 
NF = 0.5 dB, the noise temperature TAMP1 of AMP1 is TAMP1 = T0⋅(10NF/10 - 1) ≈ 38 K. These 
considerations yield the residual noise of the ELBARA II radiometer estimated from the component 
specifications as TRM 0 = T0⋅(1 - tfront) + TAMP1 ≈ 125 K for T0 = s313 K. 

The output of AMP1 is attenuated by 3 dB and amplified a further 40 dB by AMP2. The output of 
AMP2 is filtered using a 6-Section band-pass filter. The band-pass filters (BP1/2) are both centered at 
1,413.5 MHz and have a bandwidth of 22 MHz at -3 dB to be within the protected band allocation 
from 1,400 MHz to 1,427 MHz. The 3 dB attenuator between the amplifiers avoids  
amplifier instabilities. 

The output of the second amplifier (AMP2) is split into two channels using a symmetric power 
splitter. The two outputs of the splitter are then filtered by 4-Section band-pass filters (BP3a/b) with 
the center frequencies 1,407.5 MHz and 1,419.5 MHz, respectively each with a -3 dB bandwidth of 
11 MHz. In this way, two slightly overlapping receiver channels within the protected band are created, 
which allow narrow-band RFI to be detected within the protected band. The corresponding lower side 
band (LSB) and the upper side band (USB) of the MA back-end are AC-coupled to the detectors 
through DC-blocks in order to remove any low-frequency internal RFI or DC-bias signals from ground 
loops or pick-up from the radiometer electronics. 

Summing up the specified losses (see Appendix) of the back-end components (attenuator  
(3 dB) + BP2 (1.22 dB) + splitter (0.4 dB) + one-to-one splitting into the LSB and the USB  
(3 dB) + BP3a/b (1.3 dB) + DC-block (0.15 dB) + five connecting cables (5⋅0.1 dB)) yields the loss 
Lback ≈ 9.57 dB of each of the two frequency channels. The MA gain GMA ≈ 69.01 dB is estimated as 
the difference between the gain of the two low-noise amplifiers (2⋅40 dB) and the total loss  
LMA = Lfront + Lback = 10.99 dB of the MA. 

Table 1 shows the typical noise temperatures applying at the MA inputs (column 1), the expected 
power levels Pfront at the output of the front-end (column 2), and the associated power levels PPDA (in 
units of dBm and μW) expected at the output of the back-end of the MA (columns 3 and 4). The 
selected MA inputs are: Tsky, in expected for a sky measurement; TACS, TRS, and THS of the active cold 
source (ACS), the resistive source (RS), and the hot source (HS); and Tscene,min, Tscene,max cover the 
range of land-surface brightness temperatures. The power levels Pfront are derived as the sum of the 
noise power associated with the radiometer residual noise TRM 0 ≈ 125 K, plus the power due to the 
noise temperature applying at the MA input. Thereby, equation (2) is used with the bandwidth  
B = 22 MHz of the BP1. In units of dBm, the PPDA are: 

 PDA front MAP P G= +  (3) 
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Table 1. Power levels Pfront at the output of the MA front-end and PPDA fed to the PDA for 
typical input noise temperatures at the MA. PDA output voltages UPDA, considering the 
measured PDA sensitivity (7), are shown in the last column. 

MA input noise [K] Pfront [dBm] PPDA [dBm] PPDA [μW] UPDA [V] 
Tsky, in = 10 -103.8 -34.8 0.328 0.324 
TACS = 48 -102.8 -33.8 0.420 0.416 
Tscene, min = 100 -101.6 -32.6 0.545 0.540 
Tscene, max = 300 -98.9 -29.9 1.029 1.019 
TRS = 313 -98.8 -29.7 1.060 1.050 
THS = 630 -96.4 -27.4 1.827 1.810 

2.1.2. Power Detector Assembly 

The power detector assembly (PDA) depicted in the block diagram (Figure 2) determines the 
performance of the radiometer. The PDA is symmetrical in respect to the two frequency channels 
implemented. The LSB and the USB outputs of the MA are fed to Planar-Doped Barrier diode 
detectors that are terminated resistively with 10 kΩ for best linearity and minimum insensitivity to 
temperature variation. For the estimated input power range PPDA (Table 1), the detectors operate well 
within their square-law regime. Therefore, the detector output voltage is directly proportional to PPDA 
with a voltage sensitivity of >0.5 mV μW-1. 

The detector output voltages are amplified using instrumentation amplifiers with voltage gains of 
approximately 850, and finally low-pass filtered with a cut-off frequency of 400 Hz at -3dB. Buffer 
amplifiers (AMP4a/b) are used to drive the 16-bit analog to digital converter (ADC), operating at the 
nominal sample rate of 1,600 Hz. However, sampling at 800 Hz is also feasible to reduce data volume 
and incurs only a small loss of radiometric sensitivity. After this point, processing is carried out by the 
on-board Instrument Controller (IC), which is part of the temperature and power control (TPC) unit 
described in Section 2.1.4. 

2.1.3. Calibration Assembly 

Internal calibration noise sources are used to determine the absolute values of noise temperatures, 
TRM,in

H and TRM,in
V, applying at the radiometer input ports for horizontal and vertical polarization, 

respectively. As depicted in Figure 2, the input noise switch allows switching between TRM,in
H and 

TRM,in
V at the input ports and the internal calibration sources mounted on the Calibration Assembly 

(CA) depicted in Figure 3. The design is such that the losses between the radiometer input ports and 
the corresponding inputs of the switch are identical (≈0.05 dB). The same applies to the losses between 
the outputs of the three calibration sources and the inputs of the switch. 

The CA consists of a heavy copper block (1.7 kg) on which the calibration sources and the two 
amplifiers (AMP1/2) used in the MA are mounted. A Thermo Electric Cooler (TEC) and a temperature 
sensor (T-sensor) are used for the thermal stabilization of the CA. This is crucial to maintain constant 
gains and noise added due to losses in the MA front-end. For the typical set point T0 = 313 K (40 °C), 
the temperature is measured to be within ±0.1 K. Furthermore, the CA is designed as a separate 
module to allow for independent operation for cross calibration among other L-band radiometers. 
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Figure 3. Layout of the calibration assembly (CA). 

 
 
The resistive source (RS) consists of a standard 50 Ω SMA resistor tightly pressed into a borehole 

in the copper block to keep it constantly at the temperature T0. Accordingly, this results in the noise 
temperature TRS = T0 of the RS equal to the CA temperature. 

The hot source (HS) is made up of a commercial noise diode (ND) with the output attenuated by 6 dB. 
Given the noise temperature TND ≈ 1575 K of the factory-calibrated ND and the physical temperature 
T0 = 313 K of the -6 dB attenuator (with power transmission factor t-6dB ≈ 0.251), the noise temperature 
THS of the HS is estimated as the transmitted part of TND plus the thermal noise of the attenuator. In 
case of perfect match between the components (no reflections) THS is: 

 ( )HS ND -6dB 0 -6dB1 630 KT T t T t= ⋅ + ⋅ − ≈  (4) 

The active cold source (ACS) is implemented with a low-noise amplifier (AMP5) with an isolator 
(ISO2) attached to the input and terminated with 50 Ω. The idea of this design is to use the low noise 
level of the amplifier (TAMP5 ≈ 34 K at T0 = 313 K) as a cold source. The isolator provides a good 50 Ω 
match between the ACS and the MA. In accordance with (4), the noise temperature TACS of the  
ACS is: 

 ( )ACS AMP5 ISO2 0 ISO21 48 KT T t T t= ⋅ + ⋅ − ≈  (5) 

The estimated TACS for T0 = 313 K is based on the component specifications and assumes perfect 
match between the components. However, TACS was determined more accurately by using TRS and sky 
measurements (see Section 3.1.4) as reference sources. 

2.1.4. Temperature-Power Control 

The ELBARA II instrument is controlled via two embedded computers. The temperature and power 
controller (TPC) is responsible for generating and monitoring the power used by the radiometer, 
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controlling the Peltier heating and cooling element attached to the CA, and starting the main 
instrument computer (IC). The IC is responsible for scheduling system operations and acquiring data, 
communicating with the outside world, and controlling the radiometer-unit. The TPC is connected to 
the main IC via a serial line connection and acts after booting up the system as a slave to the IC. The 
IC polls the TPC for measurement values of the different temperature sensors attached to the TPC. 

The total power dissipation by the radiometer electronics is about 45 W. The TPC uses a 
proportional-integral-derivative controller (PID) algorithm to adjust the current applied to a Peltier 
thermo-electric cooler (TEC) to ensure that the system temperature T0 is maintained at a constant 
value. Readings from the temperature sensors (precision of 0.003 K) positioned to monitor the actual 
CA temperature, the air temperatures inside and outside the electronics enclosure, and the heat sink 
temperature are used as inputs to the PID algorithm. 

The TEC dissipates heat from the interior of the radiometer enclosure to the external environment 
via a heat sink attached to a fan controlled by the TPC. The TEC can also be used as a heat pump to 
heat the radiometer enclosure if necessary. If the heat sink is at the same temperature as the radiometer 
interior, the minimum cooling capacity of the TEC is 72 W. If the TEC is operated as a heat pump, it 
can generate up to 96 W. With this design, T0 can be maintained for the duration of the measurement 
cycle (≈30 seconds) within ±0.05 K of a fixed value, typically in the range of 10 K to 20 K above the 
external temperature. 

2.2. Critical Components 

2.2.1. Feed Cables 

The Pickett horn antenna features two ports, one for horizontal polarization (H) and one for 
vertical (V). As shown in Figure 2, the noise signals TB

p (p = H, V) received are connected to the 
radiometer input ports, which can be switched via the input switch. The feed cables (FC) used are 
0.3 m Huber+Suhner SUCOFLEX 106 coaxial cables with N-connectors on the antenna-side and 
SMA-connectors on the radiometer-side. These cables have losses of 0.26 dB⋅m-1 at 1.4 GHz. The 
transmission loss LFC ≈ 0.1 dB (corresponding to the power transmission factor tFC ≈ 0.98) of the FC is 
measured at ambient temperature and for the center frequency 1,413.5 MHz of the radiometer. 

In analogy with (4) and (5), the noise temperatures at the radiometer inputs are  
TRM in

p = TB
p⋅tFC + TFC⋅(1 - tFC), where TFC is the temperature of the FC. The noise  

ΔTB, FC = TRM,in
p - TB

p added by the FC is: 

 ( ) ( )B, FC FC FC B1 pT t T TΔ = − −  
(6) 

This shows that the impact of the FC does not only depend on its loss, but also on the difference 
between TB

p and TFC. In ground-based applications, the air temperature is a reasonable approximation 
for TFC, whereas TB

p is generally smaller. In these cases, ΔTB,FC is positive, implying that the thermal 
noise of the FC dominates its absorption. According to (6), ΔTB,FC is largest for low TB

p as measured 
with the instrument oriented towards the sky, and ΔTB, FC decreases with increasing TB

p (e.g., for 
TFC = 300 K and TB

p = Tsky ≈ 5 K ⇒ ΔTB,FC = 6.7 K, and for TB
p = 150 K ⇒ ΔTB,FC = 3.4 K). 
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In Section 3, this simple model will be used for correcting the contribution ΔTB,FC of the FC on the 
measurements TRM,in

p. However, the model is not perfect because TFC, for example, is not constant 
along the FC. Therefore, ΔTB,FC cannot be perfectly modeled, which makes it especially important to 
reduce the losses of the FC as far as possible. 

2.2.2. Input switch 

Central to the radiometer operation is the electro-mechanical “Single Pole 6 Throw” input switch 
(SW). This precision RF switch (Agilent 87106B) is controlled via a TTL level signal to toggle 
between the different noise sources fed to the receiver path (Figure 2). As the switch is part of the MA 
front-end, it has to meet high demands in terms of its insertion loss LSW, repeatability, isolation and 
life-time. It is important for LSW to be low and repeatable to minimize and control the noise added to 
the different inputs. High isolation is essential to prevent unwanted signals from interfering. For  
L-band frequencies, the maximum insertion loss is rated at LSW = 0.15 dB for 107 operations. The 
specified repeatability of the switch of 0.03 dB would imply that the residual noise TRM 0 can vary 
considerably (≈ 1.8 K). However, the repeatability measured was <0.005 dB (see Section 3.1.1) and 
therefore affects TRM 0 less than 0.3 K at T0 = 313 K. Hence, the switch performance is sufficient to 
function within the radiometer’s lifetime (at least 5 years), assuming that a full measurement cycle is 
performed every minute. 

2.2.3. Filters and Isolators 

The insertion loss LBP1 of the 4-Section band-pass filter BP1 in the front-end of the MA contributes 
significantly to the residual noise TRM 0 of the radiometer, while the losses of the filters after the front-
end are no longer critical. The selectivity and LBP1 of BP1 are coupled such that higher selectivity 
implies higher losses. The BP1 was selected to minimize LBP1, while maintaining acceptable selectivity 
outside of the protected band. To minimize the noise TBP1 of the BP1, a high quality silver-plated 
cavity filter was selected with rated LBP1 = 0.77 dB (corresponding to the power transmission factor of 
tBP1 = 0.84). For T0 = 313 K, this yields TBP1 = T0⋅(1 - tBP1) ≈ 50 K, which is 40% of the estimated 
TRM 0 = 125 K. For the same reason, ISO1/2 were tuned to have very low insertion losses 
LISO < 0.20 dB within the protected band (1,400 MHz–1,427 MHz), resulting in the relatively low 
noise TISO ≈ 14 K for T0 = 313 K. 

2.2.4. Amplifiers 

Low-noise amplifiers AMP1/2/5 are selected to minimize the noises TAMP1/2/5 of the amplifiers in 
the low-signal parts of the radiometer (MA and ACS). Their noise figure is rated to NF < 0.5 dB over 
the protected band, corresponding to TAMP1/2/5 ≈ 34 K at T0 = 313 K. The instrumentation amplifiers 
AMP3a/b are selected to have a low input noise level, which contributes approximately 0.4 mV to the 
total uncertainty σURM of a single measurement URM performed with the shortest possible recording 
time τrec = 2.5 ms (see Section 3.2). Furthermore, the capability to easily set the gain with a single 
resistor was also considered in the selection. 
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Section 2.4). The ring at the antenna aperture can be used to mount auxiliary sensors, such as an infra-
red radiometer or an optical camera, to observe the scene from the same observation angle as 
ELBARA II. 

2.4. Scaffold and Elevation Tracker 

The scaffold consists of a structure attached to the antenna horn (the antenna holder) and the 
suspension to mount the system either on a tower platform or on the cantilever of a crane (Figure 1). 
The construction is made of a space framework of rectangular hollow steel (EN 10219 S355J2H) 
sections welded together and hot-dip galvanized for corrosion protection. The cross beams with the 
most loads have cross-sections of 60 × 60 mm2 and thickness 3 mm, whereas the stabilizing cross 
beams have smaller dimensions (30 × 30 mm2). 

The antenna holder is pivoted on the suspension which allows the antenna to be automatically 
angled to different elevations using a mechanical drive (elevation tracker). Elevation angles in the 
range 30° ≤ α ≤ 330° are supported (α = 180° is the zenith direction), enabling the observation of two 
diametrical footprints without rotating the instrument around its vertical axis. This is achieved by 
placing the suspension sufficiently high and by using a horseshoe-shaped base. 

The elevation tracker comprises a two-stage worm gear (Atlanta, type BWS 58, reduction 1:39), 
attached to the antenna rotation axes and a planetary gear (Neugart, reduction 1:40) connected in series 
and propelled by an AC servo motor (JVL, type MAC141-A3AACA with MAC00-B4 extension 
module). This configuration results in the maximal mechanical torque of ≈1000 Nm, and features 
repeatable elevation positioning. The manufacturer of the gears rates the operational temperature range 
to be -20°C to +80°C. 

The selected motor is equipped with an encoder that keeps the antenna at a constant orientation 
even under windy conditions. Furthermore, an inductive switch between the rotating part and the fixed 
scaffold is mounted to allow absolute positioning the antenna. The motor is powered and controlled 
through the embedded servo-drive, comprising an RS-232 interface that allows various state 
parameters also to be monitored, such as speed and torque. The motor conforms to IP67 and has a 
nominal operational temperature range of 0 °C to +40 °C, and a storage temperature range of -20°C to 
+85 °C. The electrical power consumption is 140 W at 48 V AC for 4,000 min-1. The entire system, 
including the scaffold, the elevation tracker, the antenna, and the radiometer electronics, weights 
approximately 500 kg. 

2.5. Control of the Instrument 

As discussed in Section 2 and illustrated in Figure 2, the instrument has two controllers, the 
Instrument Controller (IC) acting as master, and the Temperature Power Controller (TPC) acting as 
slave. The controllers communicate through two serial connections in master (IC)–slave (TPC) mode. 
The TPC is described in Section 2.1.4. In this section we will focus on the IC. The IC is based on a 
MSI GSE board with a low power Atom N270 processor running a stripped version of Ubuntu 9.04. 
Access to the IC is through an Ethernet (TCP/IP) connection. The selection of TCP/IP allows remote 
access to the instrument and has the advantage that various items that are available as shelf hardware 
can be built on, e.g., wireless links to the instrument. Two services for user interactions are running on 
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the IC, a secure web server (lighttpd) and secure shell (openssh). The web server hosts an  
AJAX-enabled (PHP and Javascript) graphical user interface to operate the instrument, and can be 
accessed by any current web browser. The web interface enforces user authentication and 
communication is SSL encrypted. The following actions can be performed via the web interface: (i) 
accessing status information of the radiometer and of the elevation tracker; (ii) steering the elevation 
tracker; (iii) initiating ad-hoc measurements; (vi) managing files and maintaining the operating system 
(the full system is available through secure shell access); and (v) programming data acquisitions. 

The selection of Free Open Source Software (FOSS) for the operating system, graphical user 
interface and instrument control (Python) has the advantage that additional functionality can easily be 
added to the instrument if necessary. For example a camera or additional sensors, such as an infrared 
radiometer, may be added. In addition to the instrument access through Ethernet, a hand-control 
interface can be used to start/stop the instrument, to show status information and to set some  
system parameters. 

3. Instrument Characteristics and Tests 

Section 3.1 presents the results from measurements performed on radiometer sub-systems. 
Section 3.2 focuses on the measured characteristics of the assembled ELBARA II system operated 
under field conditions. 

3.1. Characteristics of Radiometer Sub-Systems 

3.1.1. Frequency Transfer Function of the Microwave Assembly 

As already outlined in Section 2.1 and illustrated in the block diagram in Figure 2, the design of the 
MA and of the PDA comprise an LSB centered at 1,407.5 MHz and an USB centered at 1,419.5 MHz, 
both with 11 MHz bandwidth. This allows narrow band RFI occurring within the protected band 
1,400 MHz to 1,427 MHz to be identified by monitoring differences between signatures at these two 
channels (frequency analyses). 

The measured frequency transfer functions of the two channels are shown in Figure 5a. The transfer 
function of the LSB (blue) is the result of the series connection of the band-pass filters BP1, BP2, and 
BP3a, whereas the transfer function of the USB (green) is determined by the characteristics of BP1, 
BP2 and BP3b. The critical attenuations at the limits of the protected band are –18.1 dB for the LSB 
and –17.99 dB for the USB, dropping off quickly to over –70 dB of attenuation within a few MHz. 
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Figure 5. (a) Frequency transfer functions of the two frequency channels (LSB = blue,  
USB = green) of the microwave assembly. The borders of the protected part of the L-band 
at 1,400 MHz and 1,427 MHz are indicated in red. (b) Frequency response of the MA  
front-end. The loss measured at the radiometer center frequency of 1,413.5 MHz is 
Lfront = 1.09 dB. 

 

3.1.2. Front-End Loss 

The total loss Lfront of the front-end determines the residual noise TRM 0 of the radiometer. Based on 
the specifications (Appendx) of the front-end components (SW, ISO1, BP1, and three semi-rigid 
coaxial cables with SMA connectors) the total loss at the center frequency 1,314.5 MHz was estimated 
as Lfront ≈ 1.42 dB, yielding TRM 0 ≈ 125 K for the system temperature T0 = 313 K (see Section 2.1.1). 
Figure 5b shows the measured frequency transfer function of the front-end. For the different switch 
inputs the measurements were within 0.015 dB, and the repeatability of consecutive measurements was 
better than the sensitivity of the measurements (≈0.005 dB). 

The frequency response of the front-end is dominated by the characteristics of the BP1 with the 
specified –3 dB bandwidth of 22 MHz at the radiometer center frequency 1,314.5 MHz. At this 
frequency, the overall front-end loss measured is Lfront ≈ 1.09 dB, which is well below the value 
expected from the specifications of the front-end components. Accordingly, the residual noise 
estimated from the measured Lfront is TRM 0 ≈ 108 K, which is smaller than TRM 0 ≈ 125 K estimated 
using the component specifications. 

3.1.3. Linearity of the Power Detector Assembly 

The PDA response is measured with the Micronetics noise module SNM 7114-C2A. Its output is 
band-pass filtered to cover the frequency range of 1,400 MHz–1,700 MHz, and then amplified by 
30 dB yielding, a constant power level of P0 ≈ -25 dBm. Subsequently, P0 is passed through Agilent 
9496B attenuators with the total attenuation variable in the range of 0 dB ≤ Atot ≤ 20 Db with a step 
size of 1 dB. 
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3.1.4. Characteristics of the Active Cold Source 

In Section 2.1.3, the ACS noise temperature is estimated to TACS ≈ 48 K, based on the specifications 
(Appendix) of the components involved (Figure 2, ISO2 and AMP5) at the physical temperature 
T0 = 313 K. The low TACS makes it challenging to calibrate the ACS absolutely in a lab experiment. On 
the one hand, the impact of losses is strong and difficult to control and, on the other, it is difficult to 
find a highly accurate noise standard with an even lower noise temperature. 

Nevertheless, such lab measurements are performed using the resistive source (RS) at TRS = 300 K 
and the calibrated noise diode at TND = 1575 K as standards to be compared with TACS, which is to be 
determined. After amplifying these noise temperatures with the two amplifiers of the MA, their 
frequency responses are measured with a Agilent E4408B spectrum analyzer. The associated power 
levels for the frequency range (1,413 ± 500) MHz are determined to be PACS = 0.778 μW,  
PRS = 2.748 μW, and PHS = 11.888 μW. Finally, the known reference noise temperatures TRS = 300 K 
and TND = 1,575 K are used to determine TACS ≈ 39 K by considering a linear relation between power and 
injected noise. 

This calibration of the ACS is error-prone due to the applied extrapolation, which multiplies the 
measurement uncertainties of the reference sources. Hence, a calibration procedure using the RS and 
the cold sky as a reference source is applied to determine TACS more accurately. The noise temperature 
of the RS is TRS = T0, which is significantly higher than TACS. In contrast, the noise standard  
Tsky, in = Tsky + ΔTB, FC ≈ 10 K (see Section 2) at the input of the radiometer looking towards the sky is 
smaller than TACS, which allows the ACS to be calibrated using linear interpolation instead of 
extrapolation: 

 
( )RS sky, in

ACS ACS sky, in sky, in
RS sky, in

T T
T U U T

U U
−

= − +
−  

(8) 

The output voltage URS is measured for the resistive source (RS) switched to the radiometer input 
port, and Usky, in is measured with the instrument oriented towards the sky. As described in Section 2, 
Tsky, in = Tsky + ΔTB, FC is the received sky brightness Tsky, complemented with ΔTB, FC due to the loss of 
the FC. According to (6), the latter is particularly significant for low antenna brightness such as Tsky. If 
the radiometer is not pointing exactly towards the galaxy, the sun, or the moon, Tsky received varies 
marginally over the sky hemisphere. In this case Tsky can be computed as the sum of the down-welling 
atmospheric radiance plus the cosmic background emission (assumed to be 2.7 K), attenuated by the 
atmosphere [31]. Evaluating the model [31] for the radiometer set-up at WSL (zenith angle θ = 30 , 
elevation 554 m a.s.l.) and air temperatures between 0 °C and 30 °C yielded 4.44 K ≤ Tsky ≤ 4.48 K. 

These theoretical values are used in the calibration procedure to determine TACS for 7 different set 
point temperatures T0 of the assembled ELBARA II system (Figure 1). The data to determine TACS 
consist of records of single radiometer voltages Usky in, URS, and UACS measured every 10 minutes 
between 10 p.m. and 2 a.m. on seven successive days in April 2009. This time period is selected in 
order to avoid disturbances caused by the galaxy passing through the field of view and to ensure the 
atmospheric conditions are comparable every day. The measurements are performed for T0 in the range 
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The calibration procedure based on sky and RS measurements is also applied to the HS. The 
measured noise temperatures of the HS for 21 °C ≤ T0 ≤ 39 °C are in the range of  
630 K < THS < 660 K, which is in good agreement with the estimated value given in Table 1. The 
temperature response dTHS/dT0 ≈ 1.60 K °C-1 measured is highly linear for the temperature range 
considered and mostly due to the increasing noise of the 6 dB attenuator attached to the output of the 
ND (Figure 2). 

3.2. ELBARA II Characteristics 

The radiometer output voltages, URS and UACS, recorded for the two frequency channels with the RS 
and the ACS switched to the MA are used to determine the most important system parameters. The 
same settings as these given in Section 3.1.4 applied to calibrate the ACS are used (sampling with  
fADC = 800 Hz during 10 seconds). The data set used consists of measurements performed every  
10 minutes for 4 hours, resulting in a total of 2⋅24 data records for the RS and the ACS. 

The characteristics measured for T0 = 313 K (40 °C) are summarized in Tables 2 and 3. The 
parameters measured are: The radiometer gain GRM, the residual noise temperature TRM 0, the time 
bandwidth product Bτ of a single measurement associated with the smallest possible integration time 
(nominally 2.5 ms), the voltage noise σUPDA of the PDA, the overall accuracies σURM of radiometer 
output voltages, and the corresponding accuracies σTB of brightness temperatures measured. 

Table 2. System parameters of the ELBARA II radiometer measured at T0 = 313 K (40 °C). 

System Parameter LSB 
channel 

USB 
channel 

both 
channels 

GRM [mV K-1] 1.93 ± 0.01 1.79 ± 0.01 1.86 
TRM, 0 [K] 147.0 ± 0.3 158.8 ± 0.3 153 

Bτ [Hz s] 15,908 ± 291 15,828 ± 271 15,868 

σUPDA [mV] 0.849 ± 0.150 0.449 ± 0.093 0.649 

Table 3. Estimated uncertainties σURM and σTB of measured radiometer voltages URM and 
brightness TB for several radiometer inputs Tin, RM and durations τrec of the recorded data 
(T0 = 313 K). 

τrec [s] 
σURM [mV] for several TRM, in σTB [K] for several TRM, in 

10 K (sky) 41 K (ACS) 313 K (RS) 10 K (sky) 41 K (ACS) 313 K (RS) 

2.5⋅10-3 2.493 2.937 6.911 1.34 1.58 3.72 

1 0.125 0.147 0.346 0.07 0.08 0.19 

3 0.072 0.085 0.199 0.04 0.05 0.11 

10 0.039 0.046 0.109 0.02 0.02 0.06 

 
The equations used to derive GRM, TRM 0, Bτ, σUPDA, and σURM, σTB from the measurements URS 

and UACS are discussed below. The following conventions are used: (i) Voltages averaged over one 
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data record of 10 seconds duration are 〈URS〉, 〈UACS〉 and their standard deviations are σUACS, σURS; 
(ii) the noise temperature of the RS is TRS = T0 (measured once for each data record); (iii) the 
expression (9) evaluated for measured T0 is used for TACS; (vi) the values given in Table 2 are mean 
values derived from the 2⋅24 data records URS, UACS. 

Gain 

The radiometer gain GRM = dURM/dTRM, in measures the response dURM of the radiometer output 
voltage URM with respect to a change dTRM, in in the input brightness temperature TRM, in. If the system 
response is considered linear, GRM is: 

 

RS ACS
RM

RS ACS

U U
G

T T
−

=
−  

(10) 

The radiometer gains derived for the LSB and the USB channel differ by approximately 7%. This 
can be explained as due to small differences in the losses and gains of the components after the power 
splitter (Figure 2). However, the standard deviations of the GRM are very small for both channels. This 
is important to note, as it implies that GRM is highly stable during a measurement cycle, which lasts 
less than a minute, where the internal calibration and antenna are measured. 

Residual noise 

The linear extrapolation of the relation TRM, in(URM) to the value URM = 0 V yields the radiometer 
residual noise temperature: 

 

RS
RM, 0 RS

RM

U
T T

G
= −

 
(11) 

As outlined in Section 2.1.1, TRM, 0 is mainly due to the noise of the first amplifier (AMP1) in the 
MA and to the loss along the front-end. As these microwave components are common for the two 
channels (Figure 2), the TRM, 0 for the LSB and the USB channels tend to be similar. However,  
TRM,0 ≈ 153 K given in Table 2 is larger than the value TRM,0 ≈ 125 K estimated from the component 
specifications, and also larger than TRM,0 ≈ 108 K estimated from the measured front-end loss. This is 
most likely due to small mismatches between the front-end components (SW, ISO1, BP1) causing 
reflections not considered in the estimation of TRM,0. Furthermore, a higher noise figure for the 
amplifier as a result of the higher internal physical temperature could explain the difference. 

Time bandwidth product 

The uncertainty σURM of the radiometer output voltage URM, depends on the product Bτ of the 
radiometer effective bandwidth Β and the effective integration time τ used to measure TRM, in. The low 
frequency noise σUPDA of the PDA may also contribute to σURM. Assuming these two voltage noise 
contributions are quasi-Gaussian and uncorrelated, the variance σURM

2 can then be expressed as: 

 

( )22
RM RM, in RM, 02 2

RM PDA

G T T
U U

B
σ σ

τ

+
= +

 
(12) 
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Provided that measurements σURM = σUACS and σURM = σURS for the two different TRM,in = TACS 
and TRM,in = TRS are available, Bτ and σUPDA can be derived by solving the corresponding two 
equations of the form (12): 

 
( ) ( )2 22

RM RS RM, 0 ACS RM, 0

2 2
RS ACS

G T T T T
B

U U
τ

σ σ

⎡ ⎤+ − +⎢ ⎥⎣ ⎦=
−

  and  
( )22

RM RS RM, 02 2
PDA RS

G T T
U U

B
σ σ

τ

+
= −

 
(13) 

As can be seen in Table 2, the relative difference between Bτ found for the LSB and the USB are 
very small (≈0.5%), whereas the σUPDA of the two PDA channels differ significantly. Measurements 
on the PDA alone revealed σUPDA < 1 mV, mostly generated by the instrumentation amplifiers 
(≤0.6 mV), but also by noise leakage coupled e.g., through the power supply (≤0.3 mV). These 
measurements are in accordance with σUPDA given in Table 2. They also explain the significant 
difference between the USB and the LSB frequency channels. 

Considering the nominal values for the bandwidth (11 MHz) and the integration time (2.5 ms), the 
nominal time bandwidth product would be Bτ = 27,500 Hz s, which is significantly larger than Bτ 
actually measured (Table 2). However, this is to be expected as neither the frequency transfer function 
of a channel (Figure 5a) nor the post detection frequency cut-off of fLP = 400 Hz (LPa/b) are ideal, 
which means that the real filter characteristics are not step functions at their band edges, but 
rather -3 dB values. This implies that the effective channel bandwidth, as well as the effective 
integration time, are both smaller than the nominal values. However, it is not critical to know the 
effective bandwidth and integration time precisely since the measured Bτ determine the  
measurement uncertainty. 

Table 3 shows uncertainties σURM for three noise temperatures Tin, RM = 10 K, 41 K, 313 K at the 
MA input, corresponding to the approximate values for a sky measurement, the ACS and the RS noise. 
The σURM for τrec = 2.5 ms are uncertainties of single measurements URM with the shortest possible 
integration time (<2.5 ms), limited by the applied post-process low-pass filtering (fLP = 400 Hz). The 
corresponding values are computed with (12) using the parameters GRM, TRM 0, Bτ, σUPDA measured 
(right column in Table 2). The values shown in Table 3 agree well with the standard deviations of all 
the voltages, URM and UACS, measured (σURM = 6.912 mV and σUACS = 2.924 mV). Furthermore, the 
distribution of these voltages closely follows a Gaussian distribution. 

The σURM for τrec = 1 s, 3 s, 10 s given in Table 3 are computed from σURM for τrec = 2.5 ms by 
considering that the standard deviation decays with N-1/2, where N = fLP⋅τrec is approximately the 
number of independent measurements available in a data record. This is the consequence of sampling 
the low-pass filtered signal with the -3 dB cut-off frequency fLP = 400 Hz with fADC = 2⋅ fLP = 800 Hz. 

Accuracy of brightness temperatures 

The uncertainty σTB of a brightness temperature TB measured is proportional to the uncertainty 
σURM scaled with the radiometer gain GRM: 

 
RM

B
RM

UT
G

σσ =
 

(14) 
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The uncertainties σTB given in the right three columns of Table 3 are expected for the indicated 
Tin, RM and τrec. The uncertainties σTB for τrec ≥ 3 s become smaller than 0.1 K for all input brightness 
temperatures that can be expected in applications of the radiometer. Therefore, a record duration 
ofτrec = 3 s, is recommended for operating ELBARA II. 

3.2.1. Antenna 

The return loss and the isolation between the horizontal and the vertical port of the antenna are 
important parameters. Both are measured with an Agilent E4408 spectrum analyzer attached to the 
antenna pointed towards the sky. Furthermore, knowing the directivity of the horn antenna is essential 
to know, as it determines the extent of the observed footprint. Measurements of these antenna 
characteristics are presented hereafter. 

Return loss 

Figure 8a shows return losses RLp measured for the two ports (p = H, V) of the antenna. 
Measurements are performed for the frequency range of 1,000 MHz to 2,000 MHz using a spectrum 
analyzer and a directional coupler with directivity of about 20 dB–30 dB. The RLp [dB] shown are 
achieved after fine-tuning the length of the λ/4-structures receiving the radiances at H- and  
V-polarization, respectively (see Section 2.3). The measurements show that the specified value of  
RLp ≤ -20 dB are well met for the radiometer center frequency of 1,413.5 MHz. 

H-V isolation 

The isolation between the H- and V ports of the antenna (Figure 8b) was measured for 1,200 MHz 
to 1,600 MHz with the spectrum analyzer featuring an internal tracking source. The isolation is 
relatively constant over the radiometer bandwidth (1,400 MHz–1,427 MHz) and has a value 
of -41.7 dB at the radiometer center frequency. The measurements were the same, for either choosing 
the H- or the V port as the source. For a brightness temperature TB

p = 300 K this implies that the 
distortion caused by polarization crosstalk is less than 0.025 K, and therefore negligible. 

Directivity 

The directivity of the rotation-symmetric Pickett-horn antenna described in Section 2.3 is derived 
from polarization averaged brightness temperatures TB = (TB

H + TB
V)/2, measured with the radiometer 

looking towards the sky. Brightness temperatures TB
p = TRM in

p - ΔTB, FC entering the antenna aperture 
are deduced from Tp

RM in (p = H, V) at the two radiometer input ports, corrected for the noise 
contribution ΔTB, FC of the FC computed with (6) (tFC = 0.98 corresponding to LFC ≈ 0.1 dB): 

 
( )RM, in FC FC

B
FC

1p
p T t T

T
t

− −
=

 
(15) 

Data records, URS, UACS, UH, UV, with duration τrec = 5 s acquired with fADC = 800 Hz and the set 
point T0 = 305 K are measured every 10 minutes. The actual temperatures, T0 and TFC (FC temperature 
≈ air temperature), are measured for each record. Furthermore, TRS = T0 = 32 °C (305 K) is assumed, 
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and TACS(T0) is determined with (9). Based on these data records, the noise temperatures Tp
RM in at the 

two radiometer input ports are derived as: 

 
( )RS ACS

RM, in ACS ACS
RS ACS

p pT T
T U U T

U U
−

= − +
−  

(16) 

Figure 8. (a) Return losses RLp of the antenna feed measured after fine-tuning the 
receiving λ/4-elements for horizontal (red solid) and vertical (green dashed) polarization. 
(b) Measured isolation between the H- and the V port of the antenna. The radiometer 
center frequency at 1,413.5 MHz is indicated. 

 
 
Measurements TB = (TB

H + TB
V)/2 were taken every 10 minutes between 11 a.m. and 4 p.m. on 

30 April 2009. The antenna was oriented towards the South at the zenith angle θ ≈ 58°, such that the 
sun was in the main observation direction at 1:25 p.m. At that time, the maximum brightness measured 
was Tsun ≈ 180.8 K. To relate the times from the sky measurements, the polar angles Θ between the 
main direction of the antenna and the sun’s position at that time was also computed using [32]. This 
provides a relation TB(Θ), which is used to derive the normalized antenna directivity D(Θ) shown in 
Figure 9. 

This is obtained by first subtracting the base line value TB(Θ > 30°) ≈ Tsky ≈ 5 K from TB(Θ), and 
then normalizing the resulting values to unity for Θ = 0°. The normalized directivity (red circles) 
measured and the fitted Gaussian bell-shaped model D(Θ) with Θ in units of degrees (solid black line) 
are shown. 

 ( ) ( )2exp 0.01781D Θ = − ⋅Θ  
(17) 

The sensitivity of the measured D(Θ) is limited by the contrast Tsky / Tsun ≈ -14.3 dB. Therefore, the 
measurements are considered to be reliable for Θ ≤ 15°, implying that side lobes with D < -14.3 dB are 
not identified by the chosen measurement approach. 

The beam widths at D = –3 dB, –6 dB, and –10 dB derived with (17) are at θ ≈ 6.2°, 8.8°, and 
11.3°. Strictly speaking the solar disc is not a point source but exhibits a full angle of ≈ 0.5° at L-band 
frequencies. This implies that the measured D(Θ) is the convolution of the antenna directivity with the 
solar disc. Nevertheless, the measured characteristic angles agree very well with the numerical 
simulations [30], yielding ≈ 6° at -3 dB, 9° at -6 dB, and 12° at -10 dB. 



S

 

4

w
th
o
r
(
to
r
s

A

(
S
(
M
b
h
th
r
h

Sensors 201

Figure
brightn
view. 

4. Final Rem

The prod
was accepte
he selected 

of the syste
adiometers.
Spain) and 
ook place in
adiometers 

satellite on 2

Acknowledg

The autho
Metaplan M

Switzerland
Andreas Ku

Martin-Neir
beginning u
highly coop
he Swiss F
equired dur

her editorial

0, 10 

e 9. Norm
ness tempe
The solid li

marks 

duction of th
ed after bein

users of th
em was ex
. Shipping t
University 
n August 20
were moun

2 November

gments 

ors would l
Metallbaute
, Omni Ra

Kurz, pragm
ra and Stev
up until its 
erative, wh
ederal Rese
ring the test
l work on th

malized ant
eratures TB 
ine is the fit

he tree ELB
ng successfu
he instrumen
xplained an
the instrum
of Munich,

009 after la
nted in sch
r 2009. 

like to thank
echnik, 813
ay AG, 86

maSol GmbH
ven Delwar

successful 
hich has gre
earch Institu
ting phase o

he manuscri

enna direct
measured w

tted Gaussia

ARA II sys
fully review
nts. During

nd demonst
ents to the 
, Germany)
st improvem

hedule on th

k the compa
34 Adliswi
600 Dübend
H, 3113 Ru
rt, who we

delivery. T
eatly helped
ute WSL, w
of the proje
pt. 

tivity (red 
with the su
an bell-shap

stems was c
wed by the E

 this works
trated to th
two SMOS
 and to the 

ments on th
he dedicate

anies involv
il, Switzerl
dorf, Switz
ubigen). We
re in charg
The meetin
d the succes
who suppor
ect. Last bu

circles) d
un passing 
ped curve (1

completed in
ESA author
shop, held a
he users se
 core valida
Finnish Me
e electronic

ed field site

ved in deve
land; Meta
zerland; Ch
e are also g
ge of super

ngs held to 
s of this pr
rted this wo
ut not least, 

derived from
through the

17). 

n May 2009
rities after a
at WSL Birm
elected by 
ation sites (
eteorologica
cs had been 
es before th

eloping the m
allbau Petri
hristian Ba
grateful to 
rvising the 
trace the m

roject. Many
ork by prov
we are gra

m time ser
e antenna f

 

9. The proje
a workshop 
mensdorf, t
ESA, whic

(Valencia an
al Institute i
made. The

he launch o

mechanical
ig AG, 86

att) and the
the ESA s
project fro

milestones 
y thanks are
viding the i
ateful to S. D

60

ries of 
field of 

ect ended an
dedicated t

the operatio
ch owns th
nchor statio
in Sodanky
ELBARA

of the SMO

l componen
604 Hegnau
e electronic
staff, Manu
om the ver
were alway
e also due t
infrastructur
Dingwall fo

 
08

nd 
to 
on 
he 
on 
lä 
II 

OS 

nts 
u, 
cs 
el 
ry 
ys 
to 
re 
or 



Sensors 2010, 10 
 

 

609

References 

1. Jackson, T.J.; LeVine, D.M.; Hsu, A.Y.; Oldak, A.; Starks, P.J.; Swift, C.T.; Isham, J.D.; Haken, 
M. Soil moisture mapping at regional scales using microwave radiometry: the Southern Great 
Plains Hydrology Experiment. IEEE Trans. Geosci. Remot. Sensing 1999, 37, 2136−2151. 

2. Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. 
IEEE Trans. Geosci. Remot. Sensing 2003, 41, 215−229. 

3. Schmugge, T. Applications of passive microwave observations of surface soil moisture. J. Hydrol. 
1998, 212–213, 188−197. 

4. Wigneron, J.P.; Kerr, Y.; Waldteufel, P.; Saleh, K.; Escorihuela, M.J.; Richaume, P.; Ferrazzoli, 
P.; Rosnay, P.D.; Gurney, R.; Calvet, J.C.; Grant, J.P.; Guglielmetti, M.; Hornbuckle, B.; Mätzler, 
C.; Pellarin, T.; Schwank, M. L-band Microwave Emission of the Biosphere (L-MEB) Model: 
Description and calibration against experimental data sets over crop fields. Remot. Sensing Env. 
2007, 107, 639–655. 

5. Grant, J.P.; Saleh, K.; Van de Griend, A.A.; Wigneron, J.P.; Guglielmetti, M.; Kerr, Y.; Schwank, 
M.; Skou, N. Calibration of the L-MEB model over a coniferous and a deciduous forest. IEEE 
Trans. Geosci. Remot. Sensing 2008, 46, 808–818. 

6. Schmugge, T. Remote sensing of soil moisture. In encyclopedia of hydrological forecasting; 
Anderson, M.G., Burt, T., Eds.; John Wiley & Sons: Chichester, London, UK, 1985; pp. 101–124. 

7. Shutko, A.M. Microwave radiometry of lands under natural and artificial moistening. IEEE Trans. 
Geosci. Remot. Sensing 1982, GE-20, 18–26. 

8. Kerr, Y.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.M.; Font, J.; Berger, M. Soil moisture 
retrieval from space: The soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. 
Remot. Sensing 2001, 39, 1729–1735. 

9. Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of 
wet soil-part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remot. Sens. 1985, GE-23,  
35–46. 

10. Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: 
Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. 

11. Wang, J.R.; Schmugge, T. An empirical model for the complex dielectric permittivity of soils as a 
function of water content. IEEE Trans. Geosci. Remot. Sensing 1980, GE-18, 288–295. 

12. Chanzy, A.; Kerr, Y.; Wigneron, J.P.; Calvet, J.C. Soil moisture estimation under sparse 
vegetation using microwave radiometry at C-band. IGARSS '97, Singapore, 1997; pp. 1090–1092. 

13. Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive, from Theory to 
Applications; Artech House: Norwood, MA, USA, 1986; Volume III. 

14. Sharkov, E.A. Passive Microwave Remote Sensing of the Earth: Physical Foundations; Springer-
Praxis Books in Geophysical Sciences: Berlin, Heidelberg, New York, NY, USA, 2003. 

15. Font, J.; Lagerloef, G.S.E.; LeVine, D.M.; Camps, A.; Zanife, O.Z. The determination of surface 
salinity with the European SMOS space mission. IEEE Trans. Geosci. Remot. Sensing 2004, 42, 
2196–2205. 

16. European Space Agency. SMOS Earth Explorers. Available online: http://www.esa.int/esaLP/ 
LPsmos.html/ (accessed on 25 August 2009). 



Sensors 2010, 10 
 

 

610

17. European Space Agency. SMOS Technical Information and Publications. Available online: 
http://esamultimedia.esa.int/docs/SMOS_publications.pdf/ (accessed on 25 August 2009) 

18. Special issue on the soil moisture and ocean salinity (smos) mission. IEEE Trans. Geosci. Remot. 
Sensing 2008; 44, 3471-3471.  

19. Wigneron, J.P.; Kerr, Y.; Waldteufel, P.; Saleh, K.; Escorihuela, M.J.; Richaume, P.; Ferrazzoli, 
P.; de Rosnay, P.; Gurney, R.; Calvet, J.C.; Grant, J.P.; Guglielmetti, M.; Hornbuckle, B.; 
Mätzler, C.; Pellarin, T.; Schwank, M. L-band Microwave Emission of the Biosphere (L-MEB) 
Model: description and calibration against experimental data sets over crop fields. Remot. Sensing 
Envir. 2007, 107, 639–655. 

20. IEEE GRSS. Newsletter June. Available online: http://www.grss-ieee.org/files/ngrs_NL_ 
0609_Final.pdf/ (accessed on 25 August 2009). 

21. Matzler, C.; Weber, D.; Wuthrich, M.; Schneeberger, K.; Stamm, C.; Wydler, H.; Fluhler, H. 
ELBARA, the ETH L-band radiometer for soil-moisture research. IEEE Int. Proc. 2003, 5,  
3058–3060. 

22. Guglielmetti, M.; Schwank, M.; Mätzler, C.; Oberdörster, C.; Vanderborght, J.; Flühler, H. 
FOSMEX: Forest soil moisture experiments with microwave radiometry. IEEE Trans. Geosci. 
Remote Sensing 2008, 46, 727–735. 

23. Guglielmetti, M.; Schwank, M.; Mätzler, C.; Oberdörster, C.; Vanderborght, J.; Flühler, H. 
Measured microwave radiative transfer properties of a deciduous forest canopy. Remote Sens. 
Environ. 2007, 109, 523–532. 

24. Schneeberger, K.; Schwank, M.; Stamm, C.; Rosnay, P.d.; Mätzler, C.; Flühler, H. Topsoil structure 
influencing soil water retrieval by microwave radiometry. Vadose Zone J. 2004, 3, 1169–1179. 

25. Schwank, M.; Guglielmetti, M.; Mätzler, C.; Flühler, H. Testing a new model for the L-band 
radiation of moist leaf litter. IEEE Trans. Geosci. Remote Sensing 2008, 46, 1982–1994. 

26. Schwank, M.; Mätzler, C.; Guglielmetti, M.; Flühler, H. L-Band radiometer measurements of soil 
water under growing clover grass. IEEE Trans. Geosci. Remote Sensing 2005, 43,  
2225–2237. 

27. Schwank, M.; Stähli, M.; Wydler, H.; Leuenberger, J.; Mätzler, C.; Flühler, H. Microwave L-
Band Emission of Freezing Soil. IEEE Trans. Geosci. Remot. Sensing 2004, 42, 1252–1261. 

28. Søbjærg, S.S. Polarimetric radiometers and their applications. Ph.D. Dissertation, Technical 
University of Denmark: Lyngby, Denmark. Available online: http://orbit.dtu.dk/getResource? 
recordId=60680&objectId=1&versionId=1/ (accessed on 25 August 2009).  

29. Lemaître, F.; Poussière, J.C.; Kerr, Y.H.; Déjus, M.; Durbe, R.; Rosnay, P.d.; Calvet, J.C. Design 
and Test of the Ground-Based L-Band Radiometer for Estimating Water in Soils (LEWIS). IEEE 
Trans. Geosci. Remot. Sensing 2004, 42, 1666–1676. 

30. Pickett, H.M.; Hardy, J.C.; Farhoomand, J. Characterization of a Dual-Mode Horn for 
Submillimeter Wavelengths. IEEE transactions Microwave Tech. 1984, 32, 936-937. 

31. Pellarin, T.; Wigneron, J.P.; Calvet, J.C.; Berger, M.; Douville, H.; Ferrazzoli, P.; Kerr, Y.H.; 
Lopez-Baesa, E.; Pulliainen, J.; Simmonds, L.P.; Waldteufel, P. Two-year global simulation of L-
band brightness temperatures over land. IEEE Trans. Geosci. Remot. Sensing 2003, 41,  
2135–2139. 



Sensors 2010, 10 
 

 

611

32. High-resolution spectral modeling, Solar Calculator. GATS, Inc: Newport News, VA, USA. 
Available online: http://www.spectralcalc.com/ (accessed on 25 August 2009). 

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 



Sensors 2010, 10 
 

 

612

Appendix 

Specifications of the Electronic Components Used 

Component Specifications Functionality 

SW 

Insertion loss < 0.1 dB 
Repeatability < 0.03 dB 

Mechanical switch 
>107 operations 

4-bit TTL control 

Switching between H-, V-polarization 
and the calibration sources. 

ISO1, 
ISO2 

Tuned frequency = 1,413.5 MHz 
Loss = 0.20 dB Improve matching of amplifier inputs. 

BP1 

Center frequency = 1,413.5 MHz 
Insertion loss < 0.77 dB 

-3 dB bandwidth = 22 MHz 
Min. attenuation at 1,391 MHz = 12 dB 

Suppression of out-of-band RFI 
before amplification. 

Determines the radiometer frequency 
response. 

BP2 

Center frequency = 1,413.5 MHz 
Insertion loss < 1.22 dB 

-3 dB bandwidth = 22 MHz 
Min. attenuation at 1,391 MHz = 24 dB 

Further suppression of out-of-band 
RFI. 

Determines the radiometer frequency 
response. 

BP3a, 
(BP3b) 

Center frequency = 1,407.5 MHz 
(1,419.5 MHz) 

Insertion loss < 1.3 dB 
-3 dB bandwidth = 11 MHz 

Min. attenuation at 1,391 MHz = 21 dB 

Split the noise power into 2 spectral 
bands for RFI detection in the 

frequency domain. 

LPa/b Cut-off frequency = 400 Hz 
G = 2 (active filter) 

4th order LPF 

Amplification and filtering of the 
detector output. 

AMP1, 
AMP2, 
AMP5, 

G = 40 dB 
NF = 0.5 dB (TAMP =34 K at T0 = 313 K) 

Amplify noise power (AMP1/2) and 
act as cold noise source (AMP5). 

AMP3a/b 
DC-instrumentation amplifier 

Gain = 850 
Noise = 8 nV⋅Hz-1/2 

Offset < 25 μV 

Amplification of detector output 
voltage. 

AMP4a/b Buffer amplifier 
Gain = 1 

Offset = < 10 mV 
Drive for ADC input. 

splitter 
Insertion loss < 0.4 dB 
at 1,000 – 2,000 MHz 

Amplitude imbalance < 0.01 dB. 

Splitting RF into two channels for 
RFI detection in the frequency 

domain. 

DC-block Insertion loss < 0.15 dB remove low-frequency internal RFI or 
DC-bias signals. 

detector 

Zero-bias detector diode 
Low-level sensitivity = 0.4 mV/μW 

Noise < 50 μV 
Frequency range: 0.01–12 GHz 

Square-law detection of the RF-
power. 

ADC 
Number of channels = 4 

Resolution = 16 bit 
Input voltage range = ±2.5V 

Digitize the amplified, filtered, and 
detected noise. 

source Noise temperature ≈ 1,575 K Additional hot calibration source. 
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