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Abstract: Using high-throughput sequencing approaches to quantify biodiversity has a number of
hurdles, in particular that the number of reads for a given taxon may not be proportional to the
number of individuals of that taxon in a sample. Here, we consider whether summary statistics
generated in the course of population genetic analyses (such as estimates of haplotype diversity and
mutation rate) may be useful in reverse inference of the number of individuals input to an assay.
Although our results show that these statistics—combined with the observed number of segregating
sites and number of haplotypes in the assay—may be informative, there remain significant concerns
about the ability to “metabarcode” a sample and infer relative species abundance.
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1. Introduction

We start with what may seem like a trivial question: assume that you have been told that a series
of fair coin flips resulted in 60% “heads”, 40% “tails”. This is the only information given, but you
already have made a judgment about how many coin flips occurred, and perhaps have generated a
probability distribution in your head where the highest likelihood is for 5 or 10, rather than 50 or 100,
events. This is taking advantage of what we know about the probability mass function of a binomial
distribution, where the observed number of “successes” in a series is related to the probability of
success (here, presumably 50%) and the number of trials. A large error from our expectations is what
suggests the low sample size from that distribution.

Here, we consider whether the same principle could be used for improving the efficiency
of exploring the presence, distribution, and abundance of genetic biodiversity. Documenting the
distribution and abundance of biodiversity—in many habitats, at multiple scales—is critical as scientists
evaluate how populations are responding to environmental change. Though technological advances
have rapidly improved some elements of this [1,2], there are still glaring deficiencies in our ability to
efficiently catalog diversity, even in small domains or limited taxonomic surveys.

The most apparent advances have been in surveys of microbial and viral diversity.
Next-generation sequencing (NGS) has permitted the now-commonplace exploration of fungal,
bacterial, and viral diversity by generating 10°~10” sequence reads per sample and using barcoding
approaches (match of sequence to known taxonomic samples for that genomic region) to identify the
lineages, OTUs, or species present and their relative abundance. While there is no doubt that this
has transformed our understanding of functional ecosystem processes and ecology of microbes, other
prokaryotes, and microscopic eukaryotes at this scale [3-7], there are definite limitations—including
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the difficulty of reliably matching molecular sequence data to described species or taxonomic
diversity [8,9]. For example, some taxa (e.g. Archaea) may not be as readily amplified using the
same ribosomal 16S “bacteria” primers, and variation in amplification efficiency certainly exists within
the Eubacteria [10]. Additionally, it is known that some bacterial genomes harbor more than one
copy of this canonical locus [11], thus muddling the relationship between read frequency and taxon
frequency in a community.

The same problems exist—and are exacerbated—when studying multicellular diversity. On top
of the problems of potential contamination, detecting rare taxa and/or handling singleton evidence
for rare taxa, there is potentially a large variance in individual sizes of organisms. This, along with
amplification variation given mismatches in the primer region, means that the relative read abundance
in a NGS data set will often wildly vary (by multiple orders of magnitude) from the abundance
of actual tissue in the data set [3,8,9,12,13]. Researchers tend to address this by analyzing data for
simple incidences as well as relative read abundance, to identify patterns robust to either removal of
information or inaccurate information [3].

If, however, the goal is to understand the actual relative abundance of individuals of different
species in a sample—with these species harboring variation at “barcode” loci, and often being highly
divergent from one another—our question is whether there is complementary information that can be
extracted from these data that does not rely on the abundance of reads that are assigned to a taxon,
but relies on our understanding of diversity within populations, how that pertains to the effective
population size, and how that can be measured.

The summary statistics for DNA sequence diversity are well established and generally recognize
the population mutation rate 0 at a given locus; as a population increases in size (N), or as the
mutation rate p at that locus increases, more polymorphisms and more diversity will be found
(0 is proportional to Nu). There are limitations to this approach based on Kimura’s neutral theory,
as various forms of genomic selection will limit the direct relationship between population size
and population diversity [14-16]. Nevertheless, these summary statistics—including Watterson’s
0, a sample-normalized estimator that uses the number of segregating sites S in a sample—may
provide information necessary to generate some inference of relative abundance from NGS data.
This information also has its limits: nucleotide diversity () requires information on polymorphic
site frequencies that will be biased by differential amplification across individuals, as well as
relatively uninformative—or diminishing—returns as the number of sampled individuals increases [17].
Haplotype diversity (H) is likely sufficient to set a minimum boundary on the number of individuals
sampled, and H along with S may provide enough information to generate a probabilistic distribution
associated with larger numbers of individuals.

Here we present the mathematical considerations necessary to develop estimates of the relative
abundance of species in a barcoding sample of unknown number of individuals. The tools combine
previous information on genetic diversity in the sampled population (that is, a species or population
that has previously been analyzed at the same locus) with observed properties of the sample, such
as the number of haplotypes and the number of segregating sites for each species. Our approach
is distinct from the difficult problem of matching molecular OTUs with nominal taxa [6,18], which
may require a specific database of reference taxa for the region being studied and assessment of how
sensitive the results are to the criteria used for defining populations. We then evaluate the situations
in which there is sufficient power to make meaningful statements about relative abundance from
polymorphism data alone. It should be noted that here we are considering the dynamics only of
single-copy mitochondrial haplotypes or gene regions that can generally be considered to only have a
single diversity lineage within individuals and the taxon they represent.

2. Experimental Section

Our approach is to identify information that can be used as prior information to establish the
likelihood of observing polymorphism data from an unknown number of input individuals (or gene
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copies in the case of a single-copy diploid marker) for a taxon. Any type of sampling information may
help to set an upper limit: for example, if it is known that only 200 individual specimens (of all taxa)
were originally used for isolation of DNA, then the maximum number of total individuals inferred
from this approach should be 200 for any single included population. This itself is not a major advance
in biology, but a limit on the inference nonetheless.

There are also clear minimum bounds that can be established for the abundance of a taxon.
Considering DNA sequence haplotypes as our most basic sample of genetic diversity, we ask how
many distinct haplotypes are recovered in the data that match a particular taxon? For a haploid
mitochondrial marker (such as the oft-applied cytochrome oxidase I (COI) gene region), this number
is the minimum number of individuals present (if the number happens to be zero, it is also likely to
be the maximum number of individuals in the sample!). Diploid markers will be more complex to
interpret; nevertheless the number of distinct alleles would be a minimum of the number of gene
copies recovered, and for a single-copy locus there can only be one or two alleles per individual.

We suggest three methods that could help to estimate the number of individuals for a particular
species in a metabarcoding sample: (1) an inference based on prior estimates of haplotype diversity of a
particular population and the observed number of haplotypes in a matched sample from that population;
(2) an inference based on the expectations of Ewens’ [19] sampling theory given a prior estimate of 0
and the number of haplotypes observed in the sample; and (3) an inference based on a prior estimate of 6
in the field population and the observed number of segregating sites in the sample.

To evaluate the potential usefulness of each method for recovering the abundance of input
individuals, we simulated populations evolving under a Wright-Fisher neutral model. We performed
the simulations with Hudson’s ms program [20] using the gap [21] package in R [22]. We simulated
3 populations, using three different population mutation rates (6 of 2, 10, and 20). For each population
we then calculated summary statistics using the PopGenome [23] package in R.

From the simulated populations (single simulations of 1000 alleles of arbitrary length given 6 of
2,10 and 20) we took “field samples” of different sizes (n =2, 4, 8, 16, 32, 64, 128), sampling without
replacement. We replicate the sampling experiment 100 times for each combination of 8 and #, to
be able to assess variance associated with the sampling effort. For each replicate, we calculate the
number of haplotypes and the number of segregating sites, which represent our observed values in the
simulated samples. From these distributions of observed values (haplotypes and segregating sites) in
each combination of theta and sampling size we selected the values within the percentiles 0.25 and 0.75
to use in back calculations of the number of individuals in that sample. The distributions are presented
in the Supplementary Material (Figures S2 and S3). The sampling size, known to us from this design,
is what we attempt to predict using the reversed inferences described below for each method.

All the analysis of the simulated populations was done in R [22], with the exception of the
estimation of predicted segregating sites according to Wakeley [17] that were performed in the software
Mathematica [24] given floating-point errors in R. Detailed information and the R code used to
performed simulations is presented in the Appendix Al in the Supplementary Material.

2.1. Haplotype Diversity

In addition to the simple number of haplotypes observed at a barcode marker, we may also
attempt to estimate the number of individuals that harbored those haplotypes. Here, we assume that
there is previous information on haplotype diversity (H) from the natural populations of the species
(or distinguishable populations) that are present in the barcoding sample. The “haplotype diversity”,
H, defined by Nei and Tajima [25] as

N 2

represents the probability that sampling a new individual will result in observation of a new haplotype.
N is the number of haplotypes, and x; is the sample frequency of the iy, haplotype.
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An example of how H could be used is shown in Figure 1 for a sample in which 10 distinct
haplotypes are observed, and the prior information about H for a particular taxon is H = 0.7. In addition
to assuming that prior information about the population is appropriately comparable, here we assume
a minimum of 10 individuals, and that what we do not know can be modeled by a Gamma distribution
with the shape defined by the reciprocal of haplotype diversity (so that low diversity provides little
information, high diversity suggests that the number of individuals is closer to the observed number
of haplotypes), and the rate is defined by the reciprocal of the number of haplotypes.

8 LI
o ° °
.
.
° .

<

o .

o

L]
c
‘S .
S .
5 o °
2 Q 4
s O .
2 .
£ .
'8 .
E .
:N )
2 o .
3 o o
.
.
.
.
.

- .

Q A .,

o o.

®e
®e
®e
T T T T
10 20 30 40

Number of individuals (n)

Figure 1. Likelihood of identifying # individuals in a sample in which 10 haplotypes are observed, and
the haplotype diversity of the originally observed population is H = 0.7. Here, a gamma function is
applied to represent the likelihood such that the distribution is flat at low values of H and a sharper
distribution with high values of H, bounded by the actual observed number of haplotypes.

So, observing 10 haplotypes for this taxon, and using the gamma to obtain a useful probability
shape based on assumptions about how informative haplotype diversity is, we might feel comfortable
believing 14 individuals were sampled (the highest likelihood solution). A concern here lies in the
willful abuse of the gamma distribution without a better understanding of how haplotype diversity H
and the sample size N may be actually related through the frequency of haplotypes—remember, at
this point we are assuming we cannot trust the proportion/frequency representation of an allele in
our sample.

For each of the 100 replicates in each sampling size within the three simulated populations
we used the corresponding haplotype diversity for that population and the number of haplotypes
observed in that replicate to estimate the likelihoods of the number of individuals in the sample
(sampling size) using a gamma function as defined above (shape defined by the reciprocal of haplotype
diversity and the rate defined by the reciprocal of the number of haplotypes). From each likelihood
distribution we recorded the sampling size with the highest probability to compare with the simulated
sampling size in each replicate. Finally, we calculated the difference between the “real” sampling
size—the one from our simulations—and the sampling size inferred using the gamma distribution
method, as a measure of the precision of our method.
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2.2. Sampling Theory

Ewens [19] developed a sampling theory of selectively neutral alleles, that based on the number
of samples and the mutation parameter 0, allows one to estimate the expected number of different
alleles (here, we address alleles from a haploid genome, i.e., haplotypes) in a sample. Assuming a
sample of n individuals, the mean number of haplotypes in a sample can be approximated by:

0o o 0
h) = 2 N
Eh) =g+ 1 Torn_1

where, /1 is the number of different haplotypes in the sample, # is the number of individuals in the
sample, and 6 = 4N.u.

If 0 is very small, the expected number of haplotypes should be quite low regardless of the
number of individuals sampled. On the other hand, if 0 is extremely large, the number of haplotypes
should tend to 7 as noted above; of course there is a close relationship between Ewens’ sampling theory
and our understanding of H. Using this equation, we can estimate the distribution of the number of
haplotypes for different sampling sizes, with a variance:

6 6 6°
Var(h)=E(h) — [+ — 5+t ——]
0c (6+1) (0+2n—1)

In general, the variance increases with 0 for n of biological interest. Ewens’ derivations rely on
the assumption that the sample size is much lower than the actual population size. Considering this
approach, rather than one based in haplotype diversity H, may allow us to avoid the problem of
uncertain haplotype frequencies in an empirical data set.

For each of the three populations with theta equal to 2, 10 or 20, and through the range of sampling
sizes considered in this study (2 to 128) we applied Ewens’ formula to estimate the expected number
of haplotypes (and the variance) for each sampling size. We then compared the observed number
of haplotypes in each sample with the expected number of haplotypes by Ewens’ formula for each
sampling size and estimated the “observed” sampling size in our sample. The accuracy of the method
was calculated as the difference between the “real” sampling size—the one from our simulations—and
the number of individuals for the sample estimated using Ewens’s method.

2.3. Segregating Sites

Under the standard coalescent model there are specific probability distributions associated with a
sample of sequences, the number of segregating sites S, and a prior assumption of 6:

== 500 (1] ) oitrter

Figure 2a illustrates this distribution for 0 = 2, segregating sites k from 1 to 20, and number of
individuals 7 from 1 to 20. This represents a low-diversity population, and unless few segregating
sites are observed there may be a broad range of sample sizes consistent with such an observation.
Figure 2b illustrates the same probability distribution, but assuming 6 = 10, with a range of both k
and 7 from 1 to 50. When the prior knowledge or assumption of diversity is higher, the range of
segregating sites that could give a more accurate inference of # is higher, with a sharper distribution

on n for lower to intermediate k.

For each of the three populations with theta equal to 2, 10 or 20, and with a range of sampling
sizes from 2 to 128, we applied Wakeley’s [17] equation 4.3 (presented above) to estimate the expected
number of segregating sites for each sampling size. We then compared the observed number of
segregating sites in each sample with the expected number of segregating sites for each sampling size
and estimated the “observed” sampling size in our sample. The accuracy of the method was calculated
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as the difference between the “real” sampling size—the one from our simulations—and the inferred
number of individuals in the sample.

Theta= 2

(a)

Theta= 10

Figure 2. Probability surface of observing a number of segregating sites k for a given sample size n
when 0 is set. In (a), 6 = 2; in (b), 6 = 10.

2.4. Comparing Methods
To summarize and compare the three methods we calculated the mean of the difference between
simulated and predicted for each combination of 0 and type of method.

3. Results

The summary statistics of the simulated populations are presented in Table 1; the R code used
to performed the simulations and estimate the summary statistics is presented in Appendix Al.
As expected, the haplotype diversity, number of haplotypes and number of segregating sites increase
with 6.
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Table 1. Summary information on the simulated “field” populations that were used in this study.

. Haplotype Number of Number of
Population Theta Diversity Haplotypes Segregating Sites
Population 1 2 0.34 11 12
Population 2 10 0.93 47 71
Population 3 20 0.96 79 164

3.1. Haplotype Diversity and Gamma Estimation

Opverall, using haplotype diversity (and our educated guess at how this diversity reflects the input)
tends to underestimate the simulated sample (Figure 3). For the smaller sampling sizes the difference
between the predicted sampling size and the simulated sampling size is close to zero, meaning the
method provides little error (Figure 3a). But for larger sampling sizes (Figure 3b) the predicted value
greatly overestimates the number of individuals and the error is big. The efficiency of the method
improves for larger 0, theta = 20 has smaller differences between simulated and predicted sampling
size (Figure 3). The probability distributions using the gamma method and the predicted sampling
sizes for each combination of theta and sampling size are provided in the supplementary material
(Figure S3).
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20-=

[+
N
B 40-
il 10
S
=Y
£
&
8 ot PR a0 4 O
* gee
s ot gl X Theta
E<] ‘. - h e d oy a%e
(] T — E A A B ®
5 R P ot S 2y two
2 0 RNt RIS T
> o ten
el
3 ——
Ko twenty
=3 e —
E
w
S
@
(3
[
o
3-10-
o
-20 -
1 T ) 1
2 4 8 16
Simulated sampling size
(a)

Figure 3. Cont.
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Predictive method: Gamma distribution
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Figure 3. Difference between the simulated sampling size and the predicted sampling size using the
gamma distribution method. (a) sampling sizes of 2, 4, 8 and 16; (b) sampling sizes of 32, 64 and
128. The horizontal line at zero shows the ideal situation with the estimation equal to the simulated
sampling size. The red lines show the limit where the difference between simulated and predicted
equals the sampling size; that is, beyond the red lines the error is too large to make a sensible prediction.
Please note that the data are jittered to enhance visualization, and that the y-axes differ between
(a) and (b).

3.2. Sampling Theory

Using Ewens’ sampling theory to estimate the number of individuals from the number of
haplotypes gives a difference between the simulated and predicted sampling size that is centered on
zero and that only has larger error for 6 = 2 (Figure 4). The precision of the method increases for larger
values of 0.

3.3. Theta and the Segregating Sites Approach

The implementation of Wakeley’s formula for estimation of the relationship between the number
of segregating sites k, the number of individuals n and 0 presented the larger differences of precision
between populations with different 8. The estimation of # for 6 = 20 are totally flawed, with predicted
values that overestimate the real # and errors that are far larger than the sampling size (Figure 5).
The estimations of # tend to be underestimated in 8 = 2 and overestimated in 8 = 10, in particular for
smaller sampling sizes (Figure 5a). The differences in the estimation between 0 of 2 and 10 are reduced
for larger sampling sizes (Figure 5b).
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Predictive method: Ewens's sampling theory
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Figure 4. Difference between the simulated sampling size and the sampling size for the sample
predicted using Ewens’ sampling theory. (a) sampling sizes of 2, 4, 8 and 16; (b) sampling sizes of 32,
64 and 128. The panels separate the three different values of 8: two, ten and twenty. The horizontal line
at zero shows the ideal situation in which the estimation equals the simulated sampling size. The red
lines show the limit where the difference between simulated and predicted equals the sampling size;
that is, beyond the red lines the error is too large to make a sensible prediction. Please note that the
data are jittered to enhance visualization, and that the y-axis differs between (a) and (b).
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predicted using Wakeley’s segregating sites theory. (a) sampling sizes of 2, 4, 8 and 16; (b) sampling
sizes of 32, 64 and 128. The zero line shows the ideal situation in which the estimation equals the

simulated sampling size. The red lines show the limit where the difference between simulated and
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between (a) and (b).



Diversity 2016, 8, 1 11 of 15

3.4. Comparing Methods

To summarize the differences between methods, we present in Figure 6 the mean difference
between the simulated and predicted sampling size for each combination of method and mutation
rate. The method of sampling theory is the more efficient, with a mean difference close to zero,
particularly for values of theta of 10 and 20. The method of segregating sites based on Wakeley’s theory
works relatively fine for intermediate diversity levels (theta = 10), it slightly underestimates for large
sampling sizes when diversity is low (theta = 2), and it is really skewed (overestimates sample size)
when diversity is extremely high (theta = 20). The gamma method appears to be only useful for small
sampling sizes (2, 4 and 8), so it will not be discussed any further.

Gamma Sampling theory Segregating sites
100 =
75+
50 - S
25+
°
L
9
8 o
a
- 100+ <]
[ =1
©
k3
g 757 Theta
>
E two
o 50 @
[} L <) ® ten
o)
% 25+ ® twenty
Q [}
0]
°
E ole—o—oa® Le—o o oo v v
5 1004 °
§
S _._._._‘;
—o—o—9o o o o —o—
= 0 L -
°
°
-100 =
° :
3
<
-200 - o
-300 ~
°
T T T T 1 T 1 1 T T T T I T T T T 1 T 1 T 5
2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128

Sampling size

Figure 6. Mean difference between the simulated and the predicted sampling size for each combination
of method (Ewens, Gamma, Wakeley) and 0 (2, 10, 20). The zero line (in green) shows the ideal situation
in which the estimation equals the simulated sampling size. Please note that the y-axis differ between
0 panels.

4. Discussion

What we have shown is, in effect, the high variance in genealogical and mutational data associated
with the coalescent process in population genetics [26]. Though our early efforts suggested a broad
utility in ranking the abundance of taxa in a mixed sample of metabarcoding data, the result of our
extended simulations indicate a preponderance of high-variance, biased results in estimating the
number of individuals in a sequence data set. In considering basic haplotype diversity H, the observed
number of haplotypes, as well as the number of segregating sites S, attempts to use genetic diversity
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tend to greatly underestimate the simulated sample of individuals, at least for larger sampling sizes
and/or low values of the mutation rate 6. Fundamentally, this problem can be seen in Figure 2 for
0 = 10; although there is an observable and relatively sharp distribution of probability relating a
particular number of segregating sites k for a given number of individuals #, the surface is quite wide
with respects to n as k increases for a given 0.

The one component of these summary statistics that indicates an unbiased relationship between
0, n, and the number of haplotypes is, of course, a simple reflection of Ewens’ [19] sampling
theory. This suggests that if we already have a good understanding of 6 for a particular population
(for example if metabarcoding efforts are documenting the mix of individuals in a system that is already
well-characterized for most species), then observing a number of haplotypes in a metabarcoding sample
allows some nominal indication of how many individuals are likely to have been included. Overall,
however, if our goal is to improve the ability to quantitatively describe the biodiversity in a system
using metabarcoding approaches, we show that such an approach is of poor utility unless the diversity
of the system is high and the number of individuals input to the metabarcoding analysis is modest.
Given the additional uncertainty associated with assumptions of comparable diversity from prior
evaluation of each population, there are no benefits in cost or estimation over traditional (i.e., Sanger)
barcoding of individual specimens.

Some of the error or bias in estimation we note from our simulation work reflects common
problems in sampling data and exploring them with summary statistics. Felsenstein [27] had noted
that a high variance (in fact, driven by bimodal distribution of resultant statistics) in the number of
segregating sites S would be expected with low sample size. Effectively, the comparison of a small
number of sequences in a high-diversity system has a large probability of pairwise contrasts across
the oldest node of a genealogy [27], and at very small sample sizes there is a potential that two
closely-related sequences are sampled rather than reflect the TMRCA of the genealogy. Additionally,
the saturating relationship between sample size and observed diversity has been pointed out by
Wakeley [17] as a feature of efficient estimation of 6 from a natural sample; turning the crank on this
equation backwards results in an inefficient inference of n from the other parameters.

Additionally, our approach is predicated on the idea that prior analysis of a given population—a
genetically discrete and relatively homogeneous evolutionary unit, which can be difficult to delimit in
and of itself [6,8,18]—will effectively suggest the diversity to be found in subsequent samples. There
are certainly instances where the diversity at a barcode locus has been so extraordinarily high that
haplotype diversity approached 1, and the number of haplotypes recovered in a sample was very close
to the number of individuals in that sample, such as the barnacle Balanus glandula [28-30]. However,
this same unusual example of a hyperdiverse barnacle also requires recognition that there are at
least 2 distinct evolutionary lineages in this taxon with broadly overlapping geographic ranges [30],
which dramatically affects our understanding of the diversity recovered as well as the underlying
genealogical process and association with regional diversity. Overall, to obtain accurate estimates of
the number of individuals input to a metabarcoding study has proven quite difficult [9,31].

In addition to being cautious about identification of the most appropriate reference lineage for
study of genetic diversity using these methods, we also note that many loci used in “barcode” studies
will deviate from the assumptions of neutral molecular evolution [15]. Some ribosomal genes, for
example, will exist in many copies in a genome [32,33]. Additionally, the commonly-used COI gene
region for barcoding metazoan communities [31,34] is known to exhibit significant effects of purifying
selection on the diversity recovered from a population [35,36]. Our own modeling work initially
included simulations intended to reflect this dynamic in mitochondrial loci (results not shown), but for
the sake of clarity we here address only the diversity patterns assuming strict neutrality.

The statistics we evaluate are not independent from one another; they pertain to the same
genealogical process assumed to underlie a sample of DNA sequence data and are different ways
of summarizing this coalescent process. Although some methods, e.g., approximate Bayesian
computation, have been used to infer the demographic history of a sample of sequences using the
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aggregate of summary statistics available [37], the relationship shown here appears to be too tenuous
to make an advance in our ability to estimate relative abundance of taxa from such metabarcoding data.
It does seem that among high-6 populations there may still be comparisons appropriate in a relative
sense: greater haplotypic diversity from a metabarcoding sample would suggest more individuals of
that species were in the sample. In this way we can evaluate order-of-magnitude results, and have less
need for prior information from a population. From the metabarcoding data themselves, each discrete
population offers an estimate of 6 and a number of observed, distinct haplotypes; this information is

likely sufficient to bin abundances into more inclusive groupings of “common”, “intermediate”, and
“rare” (e.g., a simplified Preston or Whittaker plot [38]).

5. Conclusions

The results of our modeling and comparison with previous attempts to quantify biodiversity using
high-throughput sequencing seems to leave metabarcoding research with three options: (1) continue to
individually sequence using Sanger methods; (2) only use metabarcoding data for presence/absence of
a taxon; (3) in cases where the amplification bias may be considered negligible, as with closely-related
lineages, the frequency of reads may be useful for approximating the relative but not absolute abundance
of lineages in a sample. Though there are concerns about how well read/sequence frequency reflects
the relative abundance of populations in an environmental sample—driven largely by differential
amplification success of target genomes [3,7-9,12,13], it is worth noting that at least two recent
studies—one on nematodes and one on marine fouling communities—found a strong correlation
between the proportion of metabarcoding reads from a taxon and the relative abundance of that taxon
given point counts [31,39], as well as a strong correlation with taxon frequency from individual barcode
data. If this relationship is supported in further studies, and if we can use information such as the
number of haplotypes in a taxon as complementary information for minimum abundance, then we
may start to improve on our ability to recover actual ecology from actual molecules.

Supplementary Materials: The following are available online at www.mdpi.com/1424-2818/8/1/0001/s1,
Figure S1: Distribution of the number of haplotypes for each combination of theta (two, ten, twenty) and sampling
size (2,4, 8, 16, 32, 64, 128). Figure S2: Distribution of the number of segregating sites for each combination of theta
(two, ten, twenty) and sampling size (2, 4, 8, 16, 32, 64, 128). Figure S3: Probability distribution of the number of
individuals back calculated using the gamma approach. Each panel shows a combination of simulated sampling
size and the mutation rate in the original populations. Appendix S1: R code to simulate populations and estimate
genetic diversity parameters.
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