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Abstract: The Lachnospiraceae and Ruminococcaceae are two of the most abundant 

families from the order Clostridiales found in the mammalian gut environment, and have 

been associated with the maintenance of gut health. While they are both diverse groups, 

they share a common role as active plant degraders. By comparing the genomes of the 

Lachnospiraceae and Ruminococcaceae with the Clostridiaceae, a more commonly free-living 

group, we identify key carbohydrate-active enzymes, sugar transport mechanisms, and 

metabolic pathways that distinguish these two commensal groups as specialists for the 

degradation of complex plant material. 
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1. Introduction 

1.1. Taxonomic Revision of the Clostridiales Is a Work in Progress 

Classically, the genus Clostridium was described as comprising spore-forming, non-sulfate 

reducing obligate anaerobic bacteria with a gram-positive cell wall. Over the years, the classification 

and naming of new species based on phenotypic traits has led to much confusion about the 

relationships between taxa in this and related groups. In fact, many species classified as Clostridium are 

more closely related to members of other genera than to the type species, Clostridium butyricum [1,2] 

Prior to 2009, the order Clostridiales was divided into eight families, many of which were recognized 

at the time to be paraphyletic [3]. The most recent taxonomic revision of the Phylum Firmicutes in 

Bergey’s Manual of Systematic Bacteriology [4], divided the Clostridiales into ten named families.  

An additional nine families were identified as Incertae sedis (Latin for uncertain placement) in an 

effort to regroup species found to fall outside of the named families. 

In the past decades, surveys of 16S rRNA gene sequence diversity have led to the identification of 

thousands of novel taxa and a new appreciation for the overwhelming diversity of the microbial world.  

At the same time, knowledge about the roles of new species in their environments has remained scanty [5]. 

For diverse groups with confusing taxonomic structure, such as the clostridia, linking the phylogeny of 

novel, uncultured taxa to possible ecological and/or physiological roles requires extensive prior 

knowledge and time-consuming literature review. 

1.2. Lachnospiraceae and Ruminococcaceae are Active Members of the Gut Environment 

Abundance estimates based on 16S rRNA surveys suggest that Firmicutes comprise between 50–80% 

of the taxa in the core human gut microbiota [6,7], and more than 84% of the active fraction [8]. 

Lachnospiraceae and Ruminococcaceae are the most abundant Firmicute families in gut environments, 

accounting for roughly 50% and 30% of phylotypes respectively [6,9]. Lachnospiraceae such as 

Eubacterium rectale, Eubacterium ventriosum, Coprococcus sp. and Roseburia sp. have been associated 

with the production of butyrate necessary for the health of colonic epithelial tissue [10,11], and have 

been shown to be depleted in inflammatory bowel disease [12]. Unusual polysaccharide binding and 

degradation strategies have been described in Ruminococcus flavefaciens [13,14], while another 

Ruminococcaceae, Faecalibacterium prausnitzii, has been shown to be depleted in Crohn’s disease [15]. 

1.3. The Complexity of Plant Material Poses Challenges for Bacterial Decomposition 

Plant biomass is a fibrous composite of fibrils and sheets of cellulose, hemicellulose, lignin, waxes, 

pectin, and proteins forming a complex network that provides support for the plant while resisting 

attack from bacteria and fungi. Due to the size and complexity of the substrate, bacterial glycoside 

hydrolases (GH) are generally produced extracellularly. In anoxic environments such as the gut, 

bacteria utilize complexed, multienzyme catalytic systems found on the cell surface or in organelles 

called cellulosomes. These complexes are modular in design and often include one or more 

carbohydrate-binding modules (CBM) that attach to the substrate enabling easy access [16,17]. 

Surveys of plant degradation in the rumen show that bacteria that can degrade easily available 
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substrates colonize plant material first, and that these communities are replaced by others capable of 

degrading more recalcitrant substrates such as cellulose [18]. Non-adherent Bacteriodes sp. and 

Bifidobacterium sp. have been shown to outcompete gram-positive bacteria (such as Firmicutes) for 

easily hydrolysable starch [19,20], while Lachnospiraceae and Ruminococcaceae persist in fibrolytic 

communities and are uniquely suited to degrade a wide variety of recalcitrant substrates [18]. 

1.4. Genomic Clues to Fibrolytic Function in Gut Environments 

With progress of the Human Microbiome Project and other efforts to understand the complexity of 

microbial communities living on and inside of humans, an increasing number of sequenced genomes 

and datasets have been released [21]. Here we use genomic data to describe two families of 

Clostridiales that are highly abundant in the human gut microbiota, the Lachnospiraceae and the 

Ruminococcaceae. By comparing the distribution and abundance of carbohydrate-active enzymes and 

transporters, and the differences in key metabolic pathways present in the genomes of each group, we 

reveal genetic components supporting plant degradation by these fibrolytic specialists, and provide 

clues to help distinguish gut microbes from their primarily free-living relatives in the Clostridiaceae. 

2. Experimental Section  

2.1. Phylogenetic Arrangement of Lachnospiraceae, Clostridiaceae, and Ruminococcaceae 

Sixty eight high quality (greater than 1,200 bases) 16S rRNA sequences of representative taxa from 

each family in the most recent taxonomic revision of the Phylum Firmicutes in Bergey’s Manual of 

Systematic Bacteriology [4] were downloaded from the Ribosomal Database Project website [22], and 

aligned using MUSCLE [23]. A maximum likelihood tree was created from these sequences with 500 

bootstrap replicates using Escherichia/Shigella coli (ATCC 11775T; X80725) as the outgroup. Tree 

building was accomplished using the Tamura_Nei model [24] with default parameters in the program 

MEGA [25]. Tree visualization was carried out using Figtree [26]. 

2.2. Habitat Association by Group 

Isolation site and habitat preference (gut vs. non-gut) was determined for listed members of each 

group from either the IMG (Integrated Microbial Genomes) metadata table [27] and published reports 

of isolation or 16S surveys. Pathogenic organisms were treated as non-gut residents if they were not 

reported to be part of the normal gut flora of a mammalian species. Logistic regression was performed 

to test whether each group was more likely to be gut associated, and the Wald test was used to test 

whether group assignment significantly predicted gut association. 

2.3. Comparative Analysis of Carbohydrate-Active Enzymes 

The numbers of carbohydrate-active genes and gene families were tabulated for each member of the 

Lachnospiraceae, Clostridiaceae, and Ruminococcaceae found in the Carbohydrate-Active enZymes 

Database (CAZy) [28] (Table S1). GH and CBM families represented in greater than 50% of total taxa 

(more than 15 of 31) and a difference of greater than two times in average abundance between any two 
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groups were chosen for further analysis. All statistical analyses were done in R [29] using the package 

MASS [30]. Gene counts for each family and individual genes were tested for normality using the 

Shapiro-Wilk test [31]. Due to overdispersion and zero values across the data set, we did not transform 

the data [32]. Instead, we compared the fits of the negative binomial and Poisson regression models for 

the gene counts for each family. Clostridiaceae was used as a reference. Significance was estimated 

from the model with the best fit as determined by the p-values reported for likelihood ratio tests 

comparing both models. 

Genomes were further searched for enzymes from each significant GH and CBM family using the 

genome comparison tool in the Integrated Microbial Genomes system [27]. Enzymes with significantly 

different abundances per group were identified by the best fit between negative binomial and Poisson 

regression models as described above for each GH and CBM family. Enzyme functions were assigned 

using UniprotKB [33]. 

2.4. Comparative Analysis of Sugar Transport Genes 

Genomes from each member of the Lachnospiraceae, Clostridiaceae, and Ruminococcaceae found in 

the IMG database [27] were compared in terms of numbers of carbohydrate transport genes. Specifically, 

genomes were searched for 63 PTS (phosphotransferase system) genes, and 137 ABC (Adenosine 

triphosphate-binding cassette) transporter genes identified by KEGG orthology [34]. Gene counts for each 

taxa were tabulated and the difference between groups for each category of transporter genes was tested 

using the best fit between negative binomial or Poisson regression models as determined by likelihood ratio 

test (p-value < 0.05) as described earlier. Individual genes were chosen for further analysis if they had an 

average number of copies per taxa of at least 1% in any group. Significant differences between counts for 

these genes between families were estimated as described above for each category. 

2.5. Comparative Analysis of Metabolic Pathways 

Metabolic pathways characterized in Ecocyc [35] for each member of the Lachnospiraceae, 

Clostridiaceae, and Ruminococcaceae in the Biocyc database system [36] (Table S1) were tabulated for 

each pathway class. Significantly different pathway classes between the three families were identified using 

either one-way ANOVA (for data with a normal distribution based on the Shapiro-Wilks test) [31] or the 

best fit between negative binomial or Poisson regression models as described above. 

For carbohydrate degradation pathways showing a difference between families, the percentage of 

genomes in each family containing the pathway was determined to highlight differences between 

families for these functions. 

3. Results and Discussion 

3.1. Phylogenetic Arrangement of Lachnospiraceae, Clostridiaceae, and Ruminococcaceae 

The topology of the 16S rRNA neighbor-joining tree for the representative taxa chosen for this study 

confirms the clustering of the Lachnospiraceae, Clostridiaceae, and Ruminococcaceae into distinct clades 

(Figure 1) with the exception of Clostridium sporosphaeroides DSM 1294, which is identified as a 

Lachnospiraceae in Bergey’s newest revision [4] yet clearly clusters with the Ruminococcaceae. 
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Figure 1. Molecular Phylogenetic analysis by Maximum Likelihood method: Phylogeny 

was inferred using the Maximum Likelihood method based on the Tamura-Nei model [24]. 

The tree with the highest log likelihood (−16219.1561) is shown. The percentage of trees in 

which the associated taxa clustered together (of 500 bootstrap replicates) is shown next to 

the branches. Initial tree(s) for the heuristic search were obtained automatically by 

applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated 

using the Maximum Composite Likelihood (MCL) approach, and then selecting the 

topology with superior log likelihood value. The tree is drawn to scale, with branch lengths 

measured in the number of substitutions per site. The analysis involved 69 nucleotide 

sequences. Codon positions included were 1st + 2nd + 3rd + Noncoding. All positions 

containing gaps and missing data were eliminated. There were a total of 984 positions in 

the final dataset. Evolutionary analyses were conducted in MEGA5 [25]. 
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3.2. Habitat Association by Group 

The logit model concluded that the three groups differ significantly in their likelihood to be gut 

associated (Figure 2). The Wald test predicted that the Ruminococcaceae and Lachnospiraceae were 

more likely than the Clostridiaceae to be gut associated (X2 = 17.5, df = 2, P (>X2) = 0.00016). 

Figure 2. Proportion of members of each family that are gut associated. The Clostridiaceae 

are less likely to be gut associated based on logistical regression model predictions  

(p-value < 0.05) tested using the Wald test (Χ2 = 17.5, df = 2, P (>Χ2) = 0.00016). 

 

3.3. Comparative Analysis of Carbohydrate-Active Enzymes 

The Lachnospiraceae, Clostridiaceae, and Ruminococcaceae differ with respect to the average 

numbers of carbohydrate-active genes and gene families, particularly the glycoside hydrolases (GH) 

and carbohydrate-binding modules (CBM) (Figure 3), which are more abundant and more diverse in 

the Lachnospiraceae and Ruminococcaceae. 

Figure 3. Comparison of Carbohydrate-Active enZymes (CAZy) with respect to 

abundance in the genomes of Lachnospiraceae, Clostridiaceae, and Ruminococcaceae. 

(a) Average numbers of CAZy families per group. (b) Average numbers of CAZy genes 

per group. CAZy enzyme classes indicated as follows: GH = glycoside hydrolase,  

GTF = glucosyltransferase, CE = carbohydrate esterase, PL = polysaccharide 

lyase. (*) Groups showing significant differences in either one-way ANOVA testing (for 

data with a normal distribution based on the Shapiro-Wilks test) or the best fit between 

negative binomial and Poisson models as described above. 
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A closer look at the average numbers of genes per GH family reveals that significant differences 

exist between these groups for thirteen GH families most of which include enzymes used to degrade 

complex plant polymers. With the exception of GH1, all of these families are more highly represented 

in the Lachnospiraceae, and Ruminococcaceae (Figure 4). GH2, GH3, GH43, and GH51 are associated 

with cleaving pectin and hemicellulose sidechains, GH5 and GH9 contain cellulases, GH13 and GH31 

consist of starch-degrading alpha-glucosidases, while GH10 includes xylanases. GH94 contains 

phosphorylases that cleave beta-glycosidic bonds in cellobiose, cellodextrin and chitobiose. 

Figure 4. Glycoside hydrolase families with significantly different patterns of abundance 

in the genomes of Lachnospiraceae, Clostridiaceae, and Ruminococcaceae based on best fit 

between negative binomial or Poisson regression models (Clostridiaceae as reference) as 

determined by likelihood ratio test (p-value < 0.05). 

 

When GH enzyme families are broken into individual enzymes (Figure 5; Activities are given in 

Table S2), differences between microbial families related to specific plant degradation processes are 

revealed. The enzyme that differs significantly between the genomes of Lachnospiraceae, 

Clostridiaceae, and Ruminococcaceae in the GH1 family is a beta-glucosidase (EC: 3.2.1.21), which is 

found in almost every GH family. Considering other GH families, the Lachnospiraceae and 

Ruminococcaceae have higher numbers of genes equipped to degrade a wide variety of 

polysaccharides. The Ruminococcaceae are enriched in endo-1, 4-beta-xylanase and cellulase genes, 

while both groups have higher numbers of alpha-glucosidases and both alpha and beta-galactosidases. 

Thus, members of these microbial families are better equipped to cleave the cellulose and 

hemicellulose components of plant material. 

Carbohydrate-binding modules that differ significantly between the Lachnospiraceae, Clostridiaceae, 

and Ruminococcaceae include CBM6, CBM22, and CBM48 (Figure 6; Activities are given on  

Table S3). All are significantly enriched in the Ruminococcaceae which has been shown to have 

unusual substrate binding capabilities [14]. CBM6 binds to both cellulose and hemicellulose 

components of plant material, while CBM22 binds primarily to xylan, and CBM48 is associated  

with glycogen. 
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Figure 5. Specific glycoside hydrolase enzymes that differ significantly in abundance 

between the genomes of Lachnospiraceae, Clostridiaceae, and Ruminococcaceae based on 

best fit between negative binomial or Poisson regression models (Clostridiaceae as reference) 

as determined by likelihood ratio test (p-value < 0.05). 

 

Figure 6. Carbohydrate-binding module (CBM) families with (*) significantly different 

patterns of abundance in the genomes of Lachnospiraceae, Clostridiaceae, and 

Ruminococcaceae based on best fit between negative binomial or Poisson regression 

models (Clostridiaceae as reference) as determined by likelihood ratio test (p-value < 0.05). 

 

3.4. Comparative Analysis of Transporter Proteins 

Genomes of the Clostridiaceae contained more PTS (phosphotransferase) genes than the 

Lachnospiraceae or Ruminococcaceae, while the later two groups were more highly enriched in ABC 

(ATP-binding cassette) genes (Figure 7). 

PTS systems transport a wide variety of mono- and disaccharides, especially hexoses such as 

glucose [37]. In PTS transport, substrates are phosphorylated upon entry, which makes their 
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utilization via catabolite repression [38]. Thus, PTS transport enables bacteria living in carbohydrate-

limited environments, such as soils and sediments, to efficiently utilize and compete for substrates as 

they become available. 

Figure 7. A comparison of the average abundance of phosphotransferase system (PTS) and 

ATP-binding cassette (ABC) transporter genes in Lachnospiraceae, Clostridiaceae, and 

Ruminococcaceae genomes from the IMG database [27]. (*) Genes showing significant 

differences between groups (Clostridiaceae as reference) in best fit between negative 

binomial or Poisson regression models as determined by the likelihood ratio test  

(p-value < 0.05). 

 

ABC transporters, on the other hand, tend to carry oligosaccharides, and have less preference for 

hexoses [39,40]. Oligosaccharide import is energetically favorable because it enables the conservation 

of the energy of hydrolysis intracellularly. Regulation of ABC transporters is less well studied than for 

PTS; however, they are thought to be controlled by proteins acting to block specific domains [41]. The 

abundance of ATP transporters in the Lachnospiraceae and Ruminococcaceae is consistent with their 

capacity to utilize complex plant material, and transport degradation products of various sizes and 

compositions. Since carbon is not limited and is present as a range of complex polymers in the gut 

environment, the ability to utilize many different substrates may be more advantageous than the 

efficient intake of a preferred carbon source. 

On the single gene level, the average abundance of sugar transport genes in each genome of 

Lachnospiraceae, Clostridiaceae, and Ruminococcaceae demonstrates the preference of the 

Clostridiaceae for simple hexoses such as glucose and cellobiose, and the wider range of substrates, 

including pentoses, transported by the Lachnospiraceae and Ruminococcaceae (Figure 8). 
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Figure 8. A comparison of average abundance of sugar transport genes in each genome of 

Lachnospiraceae, Clostridiaceae, and Ruminococcaceae. (*) Genes showing significant 

differences between groups (Clostridiaceae as reference) in best fit between negative 

binomial or Poisson regression models as determined by the likelihood ratio test  

(p-value < 0.05). 

 

Figure 9. A comparison of average abundance of genes in each Ecocyc degradation [35] 

pathway for Lachnospiraceae, Clostridiaceae, and Ruminococcaceae genomes. (*) 

Pathways showing significant differences between groups in either one-way ANOVA 

testing (for normal data) (p-value < 0.05) or the best fit between negative binomial or 

Poisson regression models as determined by the likelihood ratio test (p-value < 0.05).  
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3.5. Comparative Analysis of Metabolic Pathways 

Four metabolic pathways were found to differ in terms of average number of genes between the 

Lachnospiraceae, Clostridiaceae, and Ruminococcaceae, namely alcohol degradation, carbohydrate 

degradation, polymeric compound degradation, and generation of precursor metabolites and energy 

(Figure 9). Considering degradation pathway classes for carbohydrates and polymeric compounds, ten 

specific pathways were identified as differing between the Lachnospiraceae, Clostridiaceae, and 

Ruminococcaceae (Figure 10) revealing the capacity to break down a full range of plant-derived 

substrates including cellulose, hemicellulose, and starch. 

Figure 10. Breakdown of Carbohydrate and Polymeric Compound Degradation showing 

percentages for pathways found to be significantly different between Lachnospiraceae, 

Clostridiaceae, and Ruminococcaceae (indicated by (*) in Figure 9). Roman numerals 

reference specific pathway designations in Ecocyc [35]. 

 

4. Conclusions 

Genome comparisons of the carbohydrate-active enzymes, transporters, and metabolic pathways of 

the Lachnospiraceae and Ruminococcaceae in comparison with the Clostridiaceae as described here 

reveal these groups to be more highly specialized for the degradation of complex plant material. 

In gut environments the ability to degrade cellulose and hemicellulose components of plant material 

enables members of the Lachnospiraceae and Ruminococcaceae to decompose substrates that are 

indigestible by the host. These compounds are then fermented and converted into short chain fatty 

acids (mainly acetate, butyrate, and propionate) that can be absorbed and used for energy by the host. 
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