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Abstract: The idea that birds are maniraptoran theropod dinosaurs is now considered an evolutionary
consensus. An “open” (i.e., completely or substantially perforate) acetabulum is considered an
important synapomorphy verifying the bird–dinosaur nexus. Here, I present anatomical evidence
from the acetabulum and its important appurtenances, the supracetabular crest and the antitrochanter,
that hip anatomy differs substantially between dinosaurs and birds. Given the thin bone of the
acetabular walls and the varied tissue, both hard and soft, in the acetabular region and especially
the lower part of the basin, it is apparent that many avian skeletons exhibit some anatomical loss
of soft tissue and thin bone, some perhaps related to changes in gait, but also in part related to the
dramatic trend in bone reduction associated with flight, especially in more advanced crown taxa.
Many basal birds and early diverging neornithines tend to have a nearly closed or partially closed
acetabula, thus rendering the current terms “open” or “closed” acetabula inaccurate; they should be
modified or replaced. Given new evidence presented here, the relationship of “dinosaurs” and birds
must be re-evaluated.

Keywords: acetabulum; antitrochanter; archosaur; clade; convergence; dinosauriform; epigenesis; foramen
acetabuli; gallinaceous; gallo-anseres; paedomorphosis; pelvis; supracetabular crest; synapomorphy

1. Introduction

As early as Huxley [1]—and in a modern context, Ostrom [2,3], Padian [4], and
Gauthier [5]—the anatomy of the acetabulum and associated pelvic structures has been
considered an important character linking dinosaurs and birds (Aves sensu traditum [6–8];
the “Avialae” of [5,9]). It remains so today [10,11], and many studies have attempted
to chart the transition from the putatively ancestral theropod locomotory system to that
observed in extant birds (Neornithes) [12–20].

The acetabulum is a concave pelvic surface formed by the ilium, ischium, and pubis,
which accommodates the head of the femur in tetrapods, providing pivotal ambulatory
movement. The femoral head and acetabulum are each lined by an articular surface
lubricated with a film of synovial fluid. Given the putative descent of birds from theropod
dinosaurs, the morphology of the acetabulum took on new importance, but the connectivity
of acetabular morphology and function is still not fully understood. Triassic archosaurs
such as Lagosuchus (synonymized with Marasuchus [21]), Ticinosuchus, and others exhibit a
closed acetabulum with a ventral foramen, and Late Triassic “rauisuchians” like Postosuchus
exhibit an entirely theropodan pelvic anatomy, except for the acetabulum, which is largely
closed. Crocodilians, like other ancient archosaurs, have a closed acetabulum with an
acetabular foramen, likewise seen in pterosaurs and humans. An open acetabulum is
considered one of the most unchallengeable synapomorphies of dinosaurs and birds as
opposed to stem dinosauromorphs and dinosauriforms that had not yet achieved fully
upright posture and still exhibit a closed or partially closed acetabulum [22–24]. Many
modern birds have a mainly open acetabulum, but in others, the walls of the basin are
partially ringed by thin bone covered by a fibrous sheet. The pit of the acetabulum is
perforated by the foramen acetabuli at the confluence of the ilium, ischium, and pubis,
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located near the center of the basin. The rim of the acetabulum, the fibrocartilaginous
labrum, is a white ring of cartilage lined by hyaline cartilage that provides an articulating
surface for the femoral head, which has a pit (fovea) that receives the acetabular ligament.
The deep floor is referred to as the acetabular fossa.

Despite this schematic characterization, it is more difficult to adequately assess acetab-
ular morphology in extant birds than is generally realized. Preparatory methods used to
produce skeletal collections in museums (e.g., defleshing with dermestid beetles, oxidation
methods involving H2O2 and ammonia, chemical bleach, and maceration) can damage
or destroy fragile anatomical features. Fossils present even greater challenges to faithful
preservation: the quality of the preserving sediment, microbial or micro-faunal destruction
of soft tissue and thin bone, compaction and water-rock interaction, differential destruction
from preservation diagenesis, and weathering of the surviving fossilized material are all
factors, too easily forgotten. Taphonomic factors can obscure not only anatomical interpreta-
tion, as is clear from disputes on the composition and homology of fibrous or filament-like
structures in various theropod dinosaurs [25–37] but can also obscure phylogenetic signals
in analyses that are wholly reliant on morphological (particularly paleontological) data or
which attempt to integrate data types, as illustrated by the problem of “stemward slippage”
in attempts to understand the origin of major phyla [38–48]. Given the evolutionary ten-
dency of birds toward reduction and thinning of bone, the avian skeleton (and especially
the acetabulum) is particularly susceptible to taphonomic alteration or distortion during
preparation for collections. It would, therefore, be unsurprising if important data might be
overlooked in the examination of fossil and museum material.

Spurred by these considerations, I here provide a new look at the argument that the
hip joints of birds and dinosaurs are as similar as has been claimed for the past several
decades. In addition to the perforation of the acetabulum with which we have been con-
cerned thus far, there are two additional anatomical components that are of particular
significance in this regard: (1) the formation and function of a supracetabular crest and
(2) the homology and function of the antitrochanter. Three sets of tax must be evaluated to
assess the distribution of these character states and thus critically reexamine the familiar
claim that birds have the hips (and legs) of theropod dinosaurs: first, basal archosaurs
and dinosaurs, to establish the putatively ancestral condition for Aves; second, extant
birds (Neornithes), to establish the derived avian condition; and finally, those basal avian
forms that according to the best knowledge currently available from the fossil record
have temporally and morphologically diverged the least from the primitive avian bau-
plan. This last group—basal birds—will be compared with unambiguously feathered
“maniraptorans”, i.e., Oviraptorosauria, Troodontidae, and Dromaeosauridae (together,
with birds constituting the Pennaraptora of recent authors). These taxa are universally
considered to possess numerous derived avian character states [5,8,10,11,29,31,49–51], but
significant disagreement has arisen regarding the phylogenetic interpretation of these data.
Whereas the pennaraptorans are typically considered to be primarily flightless nonavian
theropods [52], others [10,51,53–59] have argued that some are secondarily flightless (“ne-
oflightless”) theropods derived from volant lineages, that they represent independent,
parallel acquisitions of avian morphotypes in a general process of “ornithization” across
some archosaur lineages [60]; that some pennaraptoran lineages independently acquired
flight while remaining outside of Aves [61,62]; or that they are secondarily flightless birds
that have been misidentified as theropods due to systemic homoplasy associated with flight
loss and its developmental mechanisms [27,29–31,63–67].

Comparative morphological study is the primary basis for homology determination
in all applications of phylogenetic analysis to paleontological data: obviously, analyses are
only as sound as the primary data upon which they are based. Accordingly, this paper
will focus on the morphological and biofunctional level of investigation rather than the
data-analytical. The reader is referred to other works [29–31,50,68] for a review of problems
with phylogenetic analyses of paleontological data in the dispute on the origin of birds.
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Given the range of taxa discussed in this review, the anatomical nomenclature adopted
in the Nomina Anatomica Avium [69], although appropriate for Neornithes and Mesozoic
birds, has not been used. The Nomina Anatomica Avium, like most modern avian anatomical
references, portrays Gallus (domestic chicken) and Anas (domestic duck) with fully open,
dinosaurian acetabula, unlike older images (Figure 1), which show substantial medial
acetabular walls.

Diversity 2024, 16, x FOR PEER REVIEW 3 of 28 
 

 

will focus on the morphological and biofunctional level of investigation rather than the 
data-analytical. The reader is referred to other works [29–31,50,68] for a review of prob-
lems with phylogenetic analyses of paleontological data in the dispute on the origin of 
birds. 

Given the range of taxa discussed in this review, the anatomical nomenclature 
adopted in the Nomina Anatomica Avium [69], although appropriate for Neornithes and 
Mesozoic birds, has not been used. The Nomina Anatomica Avium, like most modern avian 
anatomical references, portrays Gallus (domestic chicken) and Anas (domestic duck) with 
fully open, dinosaurian acetabula, unlike older images (Figure 1), which show substantial 
medial acetabular walls. 

 

 

Figure 1. Pelves (Os coxae + Synsacrum, or innominate bone) of (upper) right lateral view of the 
domestic fowl Gallus gallus ; below, Mallard Anas platyrhynchos in left lateral view. (See lower image 
for anatomical terms),. ote considerable medial “acetabular” walls (mw) surrounding the acetabular 
foramen (foramen acetabuli). Abbreviations: 1, pre- and postacetabular ischium; 2, ilium; 3, pubis; 
4, preacetabular tuberculum; 5, acetabulum with acetabular foramen, surrounded by medial “ace-
tabular wall” (see mw in Gallus above; 6, ischiadic foramen; 7, intervertebral foramen; 8, antitrochan-
ter). Gallus, Encyclopaedia Brittanica, 1911; Anas, The Vertebrate Skeleton, Cambridge Press, 1897; public 
domain.  

The continued illogical application of “phylogenetic nomenclature” [70], “phylo-
nyms” [9], and the arbitrary redefinition of established taxon names necessitates the fol-
lowing nomenclatural clarifications. “Aves,” as noted above, is used sensu traditum. “Ar-
chosauria” is also used sensu traditum [71,72] and is therefore equivalent to the Archosauri-
formes of Nesbitt [73], Ezcurra [74], and de Queiroz et al. [9]. Chiappe [75–77] restricted 
“Ornithurae” from its historical usage [78–80] to a clade consisting only of “the common 

Figure 1. Pelves (Os coxae + Synsacrum, or innominate bone) of (upper) right lateral view of the
domestic fowl Gallus gallus; below, Mallard Anas platyrhynchos in left lateral view. (See lower image
for anatomical terms). ote considerable medial “acetabular” walls (mw) surrounding the acetabular
foramen (foramen acetabuli). Abbreviations: 1, pre- and postacetabular ischium; 2, ilium; 3, pubis;
4, preacetabular tuberculum; 5, acetabulum with acetabular foramen, surrounded by medial “acetab-
ular wall” (see mw in Gallus above; 6, ischiadic foramen; 7, intervertebral foramen; 8, antitrochanter).
Gallus, Encyclopaedia Brittanica, 1911; Anas, The Vertebrate Skeleton, Cambridge Press, 1897;
public domain.

The continued illogical application of “phylogenetic nomenclature” [70],
“phylonyms” [9], and the arbitrary redefinition of established taxon names necessitates the
following nomenclatural clarifications. “Aves”, as noted above, is used sensu traditum. “Ar-
chosauria” is also used sensu traditum [71,72] and is therefore equivalent to the Archosauri-
formes of Nesbitt [73], Ezcurra [74], and de Queiroz et al. [9]. Chiappe [75–77] restricted
“Ornithurae” from its historical usage [78–80] to a clade consisting only of “the common
ancestor of Hesperornithiformes and Neornithes plus all taxa descended from it” [77]
(p. 205) (see also [81–83]); here the term is used in a more inclusive sense [7,29,78,79,84–87]
in which it is equivalent to the “Ornithuromorpha” of Chiappe [88] and many recent phylo-
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genetic analyses. For ease of reference, Table 1 provides brief (and taxonomically informal)
characterizations of the major subdivisions of Archosauria that are relevant to this review.

Table 1. Archosauria and some of its major taxonomic subdivisions. Taxa are informally characterized
for readers unfamiliar with archosaur taxonomy. For detailed discussions, readers are invited to
consult the References. Abbreviations: mya, million years ago.

Taxon Comments

Archosauria
“Ruling reptiles”, Archosauria arose in the late Permian (~298–251 mya), diversified in the aftermath of
the end-Permian extinction, and dominated terrestrial ecosystems in the Mesozoic (~251–65 mya). They
include birds, crocodilians, dinosaurs, pterosaurs (flying reptiles), and many other related forms.

Crurotarsi

All those archosaurs are more closely related to extant crocodilians than they are to other archosaurs
(Crurotarsi are often, but misleadingly, called “Pseudosuchia”). They are characterized by their complex
ankle configuration and were extraordinarily diverse, particularly in the Triassic (~251–201 mya), and
during this time, they often approximated dinosaur morphotypes through parallelism or convergence.
Crocodilians are the only forms to have survived the end-Cretaceous extinction event.

Dinosauromorpha
Dinosaurs and a variety of successively related outgroup taxa, like Lagosuchus and silesaurids, are the
subject of intense study and continuing fossil discoveries. Relationships among dinosauromorph taxa
remain in flux.

Dinosauria

The exact taxonomic composition and interrelationships of the major dinosaurian lineages have been
debated in recent years. Dinosaurs include theropods, sauropods (like Apatosaurus), and ornithischians
(like Triceratops). They dominated terrestrial ecosystems from the Late Triassic to the end of the
Cretaceous.

Theropoda The familiar carnivorous (though some may have secondarily shifted diet) dinosaurs, ranging in size
from the diminutive compsognathids to the gigantic tyrannosaurids.

Maniraptora

A group of theropods erected during the 1980s and crucial to discussions on the origin of birds: they
include five major subgroups (Therizinosauroidea, Alvarezsauria, Oviraptorosauria, Dromaeosauridae,
and Troodontidae) and, putatively, Aves. The most birdlike taxa currently classified as theropods belong
to the Maniraptora.

Pennaraptora Those maniraptorans, viz. Oviraptorosauria, Dromaeosauridae, and Troodontidae possess
unambiguously pennaceous feathers.

Aves Birds, including the Jurassic archaeopterygids, several lineages of basal forms (most discovered in China
in the past three decades), and the enantiornithines and ornithurines (including living birds).

Enantiornithes
“Opposite birds” are a remarkably diverse group, fully volant, that constitute the major radiation of
Cretaceous land birds. Their pectoral girdle and tarsometatarsus are constructed differently from those
of ornithurine birds, indicating parallel refinement of the flight apparatus during early avian history.

Ornithurae
All those birds are more closely related to extant birds (Neornithes) than they are to Enantiornithes. They
appear to have been the less speciose radiation of Cretaceous land birds, perhaps marginalized by
enantiornithine success.

Neornithes Extant birds, from paleognaths like “ratites” to neognathous songbirds.

2. Hip Joint Morphology in Basal Archosauria and in Dinosauria

The acetabulum in Triassic archosaurs is a mostly closed or imperforate structure that
is structurally primitive, with the ilium, ischium, and pubis adjoining each other at the
lower part of the articular cavity [18,22,73,74,89,90]. The acetabular foramen arises at the
junction between the pelvic bones and provides passage for the ligament that attaches
to the femoral head. The surface of the acetabulum is somewhat uneven and exhibits a
thick and strong rim for the attachment of the prominent white fibrocartilaginous collar,
the labrum, bounded by an articular region, lined by hyaline cartilage. The transverse
acetabular ligament, articulating with the head of the femur, parallels nutrient vessels to
the hip joint. Most sauropsid (i.e., reptiles—including birds—and their related amniote
stem forms) acetabula have a small perforation in the pit of the eponymous basin. Basal
archosaurs have an S-shaped femur with no in-turned head and without a well-developed
upper rim (supracetabular crest), whereas dinosaurs have a relatively straight, vertically
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oriented femur with a fully in-turned head; the acetabulum is completely open with an
upper bony rim over the hip socket known as the supracetabular crest [91] that overhangs
the acetabulum and distributes transmitted stresses and prevents unwanted excursions of
the femur (Figure 2).
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Figure 2. Late Triassic herrerasaurian dinosauriform Caseosaurus crosbyensis from New Mexico,
illustrating the well-developed supracetabular crest characteristic of later dinosaurs [91]; use,
CC by 4.0.

Among other modifications to the dinosaurian pelvis, femur, and axial skeleton, the
combination of a vertically oriented femur with fully in-turned head articulating within a
fully perforate acetabulum buttressed by a supracetabular crest allowed smooth pivoting
of the hind limb about the hip joint, directly under the body, during the caudofemoralis-
dominated excursion of the femur through the power and retracting strokes. It is a key
morphofunctionally-integrated character complex in the “hip-driven” system of terrestrial
locomotion, ancestral to archosaurs, whose biomechanical apogee is achieved in the striding,
obligate cursorial bipedalism of theropod dinosaurs [12–19]. This character complex is
already evident in Lagosuchus (Figure 3) and is still more pronounced in silesaurids [92–94]
and herrerasaurians (Figure 2) (note that there is some character discordance in Triassic
dinosaurs, e.g., contrast the condition in Pampadromaeus [95] and Eoraptor [96]), and is fully
established in primitive theropods. The condition in the large Jurassic tetanurine Allosaurus
(Figure 3) may be taken as stereotypical of its development in Theropoda.

A structure frequently homologized with the avian antitrochanter has been reported
in many archosaurs [73,74], including basal dinosaurs [96–98], basal theropods and cer-
atosaurs [99–101], and a miscellany of coelurosaurs [16,102,103]. There is no osteological
evidence that these structures are homologous: the avian antitrochanter forms primar-
ily [69] or almost exclusively [90] from the ischium, whereas the so-called “antitrochanters”
of these nonavian taxa are almost exclusively iliac in composition (see Section 3 for fur-
ther discussion on the development and function of the antitrochanter). Moreover, while
continuity of function is not a requirement of homology, it should be noted that putative
“antitrochanters” of so great a range of taxa cannot possibly have performed the specialized
mechanical role that the true antitrochanter does in extant birds as part of their peculiar
hindlimb locomotory system [90,104]. Taxonomic distribution further argues against ho-
mology and, thus, against the soundness of applying avian anatomical terms to disparate
structures that bear only superficial resemblance to one another.
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Figure 3. Mesozoic pelves: (a) compare, from left to right, pelves of Stegosaurus, an ornithischian;
Allosaurus, a saurischian theropod (both from varied sources); and Postosuchus a Triassic “rauisuchian”
archosaur (note that aside from the open acetabulum in dinosaurs and the closure of the acetab-
ulum in Postosuchus the pelves are otherwise quite similar) (modified from [31]); (b) pelvis of the
dinosaurmorph Lagosuchus (modified from [74], used under CC by 4.0 license). Abbreviations:
457-1: Acetabular antitrochanter present; 460-2: Preacetabular process of the ilium present, longer
than 2/3 of its height, and not extending beyond the front edge of the pubic peduncle; 466-2: Concave
dorsal margin of the iliac blade; 470-1: Pubis-ischium contact present and reduced to a thin proximal
contact; 472-1: Total length of the pubis 3.94–4.87 times longer than the anteroposterior length of the
acetabulum; 473-1: Recessed anterior and posterior portions of the acetabular margin of the pubis;
476-1: Rod-like, posteriorly curved pubic shaft; 483-1: The ischium’s articular surfaces with the ilium
and pubis are separated by a fossa. (Postosuchus, courtesy S. Chatterjee).
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Among Maniraptora, an antitrochanter has been reported in alvarezsaurs [105–108],
therizinosauroids [109–111], oviraptorosaurs [112,113], troodontids [114], and
dromaeosaurids [102,115–119]. The putative “antitrochanters” of alvarezsaurs and ther-
izinosauroids are iliac in composition and in the case of alvarezsaurs it is not even clear that
they are articular structures [104]. The zeal for indiscriminate homologizing of osteological
features sometimes extends to absurd levels: in the dromaeosaurid Mahakala, for example,
the femur is proposed to possess a “fossa articularis antitrochanterica” [sic] [120] (p. 42)
(the authors presumably meant “Facies articularis antitrochanterica”)—a character state
otherwise observed only in enantiornithines and ornithurines—even though Mahakala lacks
an antitrochanter [120]. With these preliminary clarifications made, pennaraptoran taxa in
which an antitrochanter has been reported will be discussed further in Section 4.

3. Hip Joint Morphology in Extant Birds (Neornithes)

In Paleognathae, the acetabula are somewhat occluded, but some of the structural
medial walls may be lost in preparation or handling. Generally, one can see considerable
occlusion in specimens of Struthio (Figure 4a), Aepyornis, and Dromaius (Figure 5); it is more
open in Apteryx. In the volant lithornithids and tinamous (Tinamiformes), the acetabulum
appears partially closed (Figure 5b), conforming closely with Gallus and Anas (Figure 1),
with bony walls of the basin but open at the bottom (in some fossils, the bony interior
has been lost). Lithornithids and tinamous have somewhat smaller antitrochanters and
very limited supracetabular crests (Figure 5) if indeed the term is used correctly because
the structure of the so-called crest is about the same below and above the acetabulum; it
is minimally a misnomer. Antitrochanters are also evident in struthionids, rheas, kiwis,
and other “ratites” (Figures 4a and 5f). Interestingly, the acetabulum is partially or mainly
closed in most ground-dwellers, unlike any putative dinosaurian relatives despite the
presumed similarity in gait (Figure 5).
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Figure 4. Acetabulum of (a) juvenile ostrich Struthio camelus (24-day old wet specimen, normal in-
cubation 36–45 days; the specimen is fragile and preservative renders image with poor resolution), 
and (b) adult Scaled Quail Callipepla squamata showing acetabular closure and substantial medial 
wall, in left lateral view. The approximate diameter of the acetabulum in the Struthio and Callipepla 

Figure 4. Acetabulum of (a) juvenile ostrich Struthio camelus (24-day old wet specimen, normal
incubation 36–45 days; the specimen is fragile and preservative renders image with poor resolution),
and (b) adult Scaled Quail Callipepla squamata showing acetabular closure and substantial medial
wall, in left lateral view. The approximate diameter of the acetabulum in the Struthio and Callipepla
specimens is approximately 3.5 mm and 4.5 mm, respectively. Note the fully developed antitrochanter
(at the upper right of the acetabulum) in the adult quail. (Author’s specimens).
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images and checked with specimen from the author’s collection. Art by K. Grow. 

Figure 5. Pelvis of the basal theropod Coelophysis (a) compared to an array of primarily ground-
dwelling birds: (b) Solitary Tinamou (Tinamus solitarius), (c) Wild Turkey (Meleagris gallopavo),
(d) Japanese Quail (Coturnix japonica), (e) Greater Roadrunner (Geococcyx californianus), (f) Emu
(Dromaius novaehollandiae), (g) Bush Moa (Anomalopteryx didiformis), and (h) Elephant Bird (Aepyornis
hildebrandti). The avian acetabula show a range of closure from partial to nearly complete occlusion.
Note the contrast between the condition in these cursorial birds, which presumably should most
closely approach the putatively ancestral theropod condition with respect to their acetabular mor-
phology, and the condition in Coelophysis. Sources: drawing of Coelophysis provided by the late N.
Colbert; tinamou drawn from photos provided by P. Houde; Coturnix japonica drawn from an original
photo from S. Mehta, interpreted by the author; Dromaius drawn from the pelvis in the author’s
collection; Meleagris drawn from photos in the author’s collection and photos; Geococcyx drawn from
images and checked with specimen from the author’s collection. Art by K. Grow.
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In Neognathae, the acetabulum is typically considered to be open, based usually on
observation of skeletal preparations. The problem with this interpretation is illustrated by
phasianid galliforms and particularly by the Japanese Quail (Coturnix japonica), a common
model species for embryological study. Here, the acetabulum is almost closed by lattice-like
endochondral bone that is easily shattered in skeletal specimens [pers. obs.] (Figure 5d).
There is some variation between taxa, and in two Scaled Quail (Callipepla squamata) carcass
dissections and oxidation preparations, the acetabulum is largely closed by substantial
medial bony walls about 2/3 the depth of the basin, with only a central foramen remain-
ing [121] (compare with Figures 4b and 5c,d). Preparation by oxidation method using 15
to 17% HO might be sufficient to disintegrate some of these interior bony walls in small
specimens, and they can be revealed only by careful dissection [121]. In examining chickens
for biological studies, one sees that much of the anatomy within the acetabulum may have
vanished in preparation, and many older specimens were processed with clorax that can
easily disintegrate bone.

Surprisingly, chickens bred and prepared for human consumption provide further
insight. Dissection of a common rotisserie-prepared chicken demonstrates that commercial
chickens are going to market long before normal maturity in the wild. Such post-hatching
chickens appear partially paedomorphic from post-hatching morphological characters.
They are stuffed with food for about 4 to 6 weeks when they reach market size, without the
skeleton fully formed, as evidenced by still developing epiphyses and considerable cartilage.
On average, the growth timing for such chickens is about 6 weeks or 42 days. In contrast,
wild chickens, depending on the species, take 16 to 24 weeks or 112 to 168 days to full
maturity. One can see that this processing creates a form of induced paedomorphosis, which
explains the large amounts of cartilage all over and incompletely fused and cartilaginous
epiphyses (Figure 6). Studying these specimens provides a glimpse into their post-hatching
ontogeny, the epigenetic landscape at a stage of near completion. It is surprising, given the
frequent characterization of birds as having—like dinosaurs—completely open acetabula to
discover that rotisserie specimens have partially closed acetabula with a perforation covered
by soft tissue (Figure 6a). To make certain this observation was not anomalous, I studied
and dissected 14 individuals of rotisserie chickens and two fully mature Poulet Rouge fowl
(mature chickens that were farm-raised with no additives, including antibiotics). These
acetabula had closed basin walls lined with bone and fibrocartilage with an acetabular
membrane, and the acetabular ligament, which attaches to the femoral head, can be seen
arising from a dimple covered by a strong fascia membrane in the lower upper part of the
basin from the center and connecting to the head of the femur (Figure 6b).

Egawa et al. [122] argue that many anatomical landmarks in birds show developmental
timing that parallels their phylogenetic order of acquisition, a Haeckelian interpretation, im-
plying that the process of terminal addition may play a major role in ontogeny. Yet, so-called
“terminal addition” is nothing more than the end of the epigenetic landscape, whether in or
out of the eggshell, and most vertebrates have considerable additions following hatching
in birds or birth in mammals (note especially marsupials where the premature fetus will
finish much of its ontogeny within the marsupium with a mouth attached to the nipples).
In the case of quail, not only were the acetabula imperforate throughout embryogenesis,
but even the adult acetabulum may be almost closed (Figure 5d). Egawa et al. [122] further
suggested that a dinosaur-type perforated acetabulum arises from acetabular cartilage
loss in chicken embryos. They linked acetabular perforation in “non-avian” dinosaurs
and birds (represented in their study by Struthio and Gallus) with high susceptibility to
bone morphogenetic protein (BMP) antagonists and Wnt ligands [122]. They point out
that in non-archosauromorph sauropsids with unperforated adult acetabula, the pelvic
anlagen are not susceptible to the joint-secreted molecules, whereas in the transition to
non-dinosaurian archosauromorphs with unperforated acetabula in the adult, the pelvic an-
lagen became susceptible to BMP antagonists but less susceptible to Wnt ligands, leading to
no cartilage loss. Tsai and colleagues studied joint function and anatomy in the two extant
archosaur clades (birds and crocodilians). Unsurprisingly, they demonstrated topologically
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and histologically similar articular soft tissues in the hip joints of both groups [123,124].
In all extant archosaurs, the proximal femur has a hyaline cartilage core attached to its
metaphysis via a fibrocartilaginous sleeve, so epiphyseal cartilage in extinct forms would
have been substantial [125,126]. The loss of this epiphyseal cartilage in fossilization, there-
fore, indicates that the preserved ends of the bone in crown group archosaurs are almost
certainly not joint surfaces [126] and this complicates functional inferences [123,124]. In a
later study by Griffin et al. [20], the situation becomes more confusing as the authors note
that “The hip socket in Coturnix quail remained imperforate throughout embryonic devel-
opment” [20] (p. 347) (my emphasis). On the same page, they write that “. . .two derived
avian states. . .resembled early ancestral/developmental morphologies (that is, instances of
localized paedomorphosis): the broad, flat avian ischium resembled the early embryonic state
and that of ancestral archosaurian [my emphasis] condition more than it did the intermediate
dinosaurian conditions.” It should be noted in passing that although studies like those
of Egawa et al. [122], Griffin et al. [20], and many others [127–130] exhibit a surprisingly
Haeckelian recapitulationism, the data they provide are more reasonably interpreted in
accordance with von Baer’s principles of simple conservativism of early embryos, without
the orthogenetic implications of Haeckel’s recapitulation of past ancestors. In the words
of Paul Ehrlich and colleagues: “The resemblance of early vertebrate embryos is readily
explained without resort to mysterious forces compelling each individual to reclimb its
phylogenetic tree.” [131] (p. 66).

The avian antitrochanter is probably a neomorphic structure located lateral to the
posterodorsal rim of the acetabulum of the pelvis (if so, the term “avian antitrochanter”
would be a pleonasm). It is a striking feature in living birds but evolved only relatively
late, appearing as the center of gravity in birds shifted forward due to the enlargement
of the flight musculature. This phylogenetically late addition comports with the fact
that it appears late in embryology and, upon hatching, is still cartilaginous. The avian
antitrochanter is unique among vertebrates, and a significant portion of the femoral-pelvic
articulation is located outside of the acetabulum. Hertel and Campbell [104] demonstrated
that the antitrochanter-femur articulation transfers long-axis rotational movement of the
femur to the pelvis [104]. This ridge, which is easily seen, lies above the acetabulum and is
thickest, just above the mid-portion of the depression. They concluded that this derived
avian feature evolved as an aid in maintaining balance during bipedal locomotion [104]. It is
a brace to prevent unwanted abduction of the hindlimb and to absorb stresses on the femur
in locomotion. The term “antitrochanter” is a misnomer as its facet is not in opposition to
the femur [104], and although it is believed to serve as a brace to control excessive abduction
of the femur to pelvis, in specialized foot-propelled divers (Cretaceous hesperornithiforms,
modern loons, and grebes), the antitrochanters are quite large compared to other birds
(Figure 7), but the femora may project straight out from the sides of the pelvis at a 90◦ angle,
fully abducted. Antitrochanter function in derived birds, therefore, clearly requires further
investigation. Indeed, one would have to explain functionally why the antitrochanter
should be basically similar in “ratites” and hesperornithiforms.

The newly described taxon Telluraves (arboreal land birds or core land birds), erected
from whole genome comparisons, includes small arboreal birds that are all strong fliers and
whose close relationships have long been recognized (like woodpeckers and passerines),
but also (and more controversially) parrots, the diurnal birds of prey (“raptors”), and se-
riemas [8,132]. Most of these taxa exhibit fully open acetabula with greatly reduced medial
walls, which might well be interpreted as a trend in modern birds to jettison all but essential
“baggage”, including bone, i.e., to reduce all anatomical structures that might hinder maxi-
mal flight efficiency. This possibility is further suggested by comparison with the condition
in more primitive land birds, e.g., paleognaths, galliforms, and some cuculiforms (like
the Greater Roadrunner, Geococcyx californianus). In all these taxa, there is still significant
medial occlusion of the acetabulum (Figure 5), presumably both because the antitrochanter
had developed (permitting the form of bipedal locomotion peculiar to birds) and because
there was no additional selective benefit for further reduction of the bony acetabular walls.
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In turkey (Meleagris), there is major occlusion and some chachalacas (Ortalis) may have
nearly complete acetabular occlusion. Interestingly, among those Telluraves which were or
are primarily cursorial, cariamiforms like the extinct phorusrhacids (e.g., Llallawavis [133])
and extant seriemas (relicts of an older Neogene radiation [8,134]) exhibit considerable
medial occlusion of the acetabulum.
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Figure 6. Acetabula of rotisserie chickens. These images show post-hatching additions, notably
considerable cartilage, and the antitrochanter: (a) rotisserie chicken post-hatching, the acetabulum
foramen near the opening, showing considerable cartilage and an almost calcified antitrochanter;
(b) Poulet Rouge fully mature chicken showing a mature ossified antitrochanter and femoral head;
(c) mature Poulet Rouge showing white labrum surrounding the acetabular edge, ossified an-
titrochanter and femoral head (note the remnant of Ligamentum capitis femoris affixes to the femoral
head, helping to stabilize the femur); (d) photo light shone from the base of the acetabulum shows
the extent of medial bony walls and the basin of a fibrous sheet devoid of bone. Epiphyses of rotis-
serie specimens are entirely cartilaginous or in the process of transforming into endochondral bone.
(Rotisserie chicken acetabula, approximately 10 mm; Poulet Rouge, 12 mm). Photos and dissections
by the author.
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ing foot-propelled swimming (like loons and grebes), so the function of the antitrochanter in birds 
must extend beyond preventing excessive abduction of the femur. Hesperornithiforms are often 
termed diving dinosaurs, but given their acetabula anatomy this designation is erroneous. Images 
courtesy M. Everhart and the University of Kansas, Museum of Natural History, and University of 
Nebraska State Museum. Scale cm. 

The newly described taxon Telluraves (arboreal land birds or core land birds), erected 
from whole genome comparisons, includes small arboreal birds that are all strong fliers 
and whose close relationships have long been recognized (like woodpeckers and passer-
ines), but also (and more controversially) parrots, the diurnal birds of prey (“raptors”), 
and seriemas [8,132]. Most of these taxa exhibit fully open acetabula with greatly reduced 
medial walls, which might well be interpreted as a trend in modern birds to jettison all 
but essential “baggage,” including bone, i.e., to reduce all anatomical structures that might 
hinder maximal flight efficiency. This possibility is further suggested by comparison with 
the condition in more primitive land birds, e.g., paleognaths, galliforms, and some cucu-
liforms (like the Greater Roadrunner, Geococcyx californianus). In all these taxa, there is still 
significant medial occlusion of the acetabulum (Figure 5), presumably both because the 
antitrochanter had developed (permitting the form of bipedal locomotion peculiar to 
birds) and because there was no additional selective benefit for further reduction of the 
bony acetabular walls. In turkey (Meleagris), there is major occlusion and some chacha-
lacas (Ortalis) may have nearly complete acetabular occlusion. Interestingly, among those 

Figure 7. Sacra of Hesperornis (above) and Parahesperornis (below), large divers of the Late Cretaceous,
in left lateral view showing nearly closed acetabula. Often called diving dinosaurs, the acetabula show
that they are definitively not allied with dinosaurs. Note also the prominent antitrochanters (arrows).
Hesperornithiforms were capable of full lateral abduction of the hindlimbs during foot-propelled
swimming (like loons and grebes), so the function of the antitrochanter in birds must extend beyond
preventing excessive abduction of the femur. Hesperornithiforms are often termed diving dinosaurs,
but given their acetabula anatomy this designation is erroneous. Images courtesy M. Everhart and
the University of Kansas, Museum of Natural History, and University of Nebraska State Museum.
Scale cm.

4. The Hip Joint Morphology in Basal Birds and in Pennaraptora

The basal avian assemblage, ranging from the Late Jurassic to the Early Cretaceous, in-
cludes the archaeopterygids, Chongmingia, Jinguofortis, Fukuipteryx, Cratonavis, omnivoroptery-
gids (=“sapeornithids”), jeholornithids, and confucuisornithids [7,8,29,31,51,130,135–138].
Included in this group are taxa whose position is labile in phylogenetic analyses [139,140]
but which are generally recovered near archaeopterygids, the most notable of which are
the anchiornithids Anchiornis, Xiaotingia, Eosinopteryx, “Aurornis” (likely junior synonyms
of Anchiornis) [141], and Fujianvenator, the oldest. Rahonavis [142] has variously been con-
sidered a basal bird or a dromaeosaurid [118,139,143]; it will here be discussed under the
same heading as other basal birds. The phylogenetic interpretation of Balaur, described as
either an aberrant dromaeosaurid [102,130,140,144,145] or a flightless basal bird [146–148],
is unclear, and its morphology is both bizarre and specialized; it will not be considered
further here. Zhongornis was initially interpreted as a basal non-pygostylian bird [149],
whereas others argue that it is a scansoriopterygid [150]. Scansoriopterygids were first
described as tree dwellers (e.g., Epidendrosaurus and Scansoriopteryx) but henceforth have
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often been interpreted in reconstructions as ground-dwelling cursors, which is clearly incor-
rect; they were almost certainly trunk-climbers and gliders and they have closed acetabula.
The anatomy and phylogenetic interpretation of the enigmatic scansoriopterygids is too
fraught a subject involving too many complexities to be addressed here, and the reader
is referred to previous work [29,31,151,152] that showed a definitive absence of diagnos-
tic dinosaurian characters. Zhongornis will not be discussed further here. Zhongjianornis
was initially described as a basal bird [153], but further study suggests that it is a basal
ornithurine [154].

The maniraptoran taxa most important to the dispute on the origin of birds are the
pennaraptorans (as noted earlier). Accordingly, and for the sake of simplicity, it is the pelvic
morphology of these taxa—the oviraptorosaurs, troodontids, and dromaeosaurids—that in
the present paper will be compared with that of basal birds.

(a). Basal birds.—In archaeopterygids the acetabulum is medially occluded, as is
clearest from the London specimen [155] (see also [118]), and neither an antitrochanter
nor a supracetabular crest are developed, as is most clearly shown by the London, Berlin,
Eichstätt and Munich specimens ([155–157]).

Agnolin and Novas [115] (Figure 3B) interpreted a slight swelling on the posteroven-
tral rim of the acetabulum in the Berlin specimen as an antitrochanter, but this interpretation
seems incorrect because (1) it is positioned on the posteroventral rim of the acetabulum,
whereas the avian antitrochanter is posterodorsal to the acetabulum [69,90,104]; it is com-
posed solely of the ilium, whereas the avian antitrochanter is composed exclusively or
principally from the ischium [69,90,104] and (2) a comparable structure is not seen in the
pelvis of other specimens. Note that in those archaeopterygid specimens that are preserved
on their backs (or partially rotated onto their backs), as in the London “Thermopolis” [158]
and 11th skeletal exemplars [147], the hind limbs splay markedly (although the ilia are
barely preserved in the “Thermpolis” specimen, the femora are not disarticulated, and
are within their natural range of motion; the same is true of the 11th specimen, where
the ilia are also poorly preserved). Death posture in an articulated, or largely articulated,
skeleton corresponds to a range of motion in life, and in theropods, a sprawling orientation,
even postmortem, is mechanically prevented so long as the femora, with their strongly in-
turned heads, remain in articulation [116,159]. It is therefore unsurprising that the femoral
head of archaeopterygids is not fully inturned (despite repeated claims to the contrary)
as was already clear from the Eichstätt specimen [160] (see also [155]). Wellnhofer [156]
stated that in the “Thermopolis” specimen, the femoral head is fully inturned, but this
is incorrect: the putative head of the right femur in this specimen is a calcite deposit or
other obscuring piece of matrix, an interpretation confirmed by the fact that it does not
fluoresce under UV light [156]. Similarly, in the Daiting specimen, the femoral head is not
fully inturned [161]. Although Paul (2002) claims that a supracetabular crest is present
in archaeopterygids, it is absent in the London, Berlin, Eichstätt and Munich specimens
(Figure 8d) (compare with [90] (Figure 1B–E) and see also [162]); the only particular in-
dication of such a structure is in the large Solnhofen specimen (with the most robust
hindlimbs among the archaeopterygid material), which may in fact belong to a separate
genus Wellnhoferia [156,161,163,164].
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Figure 8. Pelves of Mesozoic birds showing medial acetabular walls: (a) photograph and interpretive 
drawing of Early Cretaceous ornithurine Gansus [165]; (b,c) Early Cretaceous sparrow-size Figure 8. Pelves of Mesozoic birds showing medial acetabular walls: (a) photograph and interpretive
drawing of Early Cretaceous ornithurine Gansus [165]; (b,c) Early Cretaceous sparrow-size enantior-
nithines, (b) Qiliania [166]; (c) Pterygornis [167]; (d) Late Jurassic Archaeopteryx (image composites of
varied sizes, primarily after P. Wellnhofer, based primarily on the Munich specimen, with details
from the London, Berlin, and Eichstätt specimens; (e) Microraptor, the Early Cretaceous four-winged
bird-like glider (dromaeosaur), considered by many an early bird. (Microraptor photo courtesy D.
Burnham); scale cm for e Art by K. Grow.
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Anchiornithids are closely allied with archaeopterygids: “Anchiornis huxleyi shared
derived features with avialans [. . .] Morphological comparisons strongly suggest Anchiornis
is more closely related to avialans than to deinonychosaurians or troodontids.” [141] (p. 4).
The acetabulum in Anchiornis is partially occluded by substantial medial bony walls ([168]
(Figure 4c); [141]; D. Burnham, pers. comm.) (Figure 9). A weak though clearly demarcated
crest is present above the acetabulum ([168] (Figure 4c); [141]), but it is not broad and is
more like a reinforcement rim, as it proceeds down the sides of the acetabular circle. As in
basal birds, there is no antitrochanter.
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Figure 9. Femora and right pubis of Anchiornis, with the hip joint partially visible due to taphonomic
displacement of the proximal femur, showing part of the expansive bony medial acetabular wall
(arrow). Abbreviations: lf; left femur; pb, pubic boot; rf, right femur; rpu, right pubis. Image courtesy
R. Pei.

There appears to be neither a well-developed supracetabular crest nor an antitrochanter
in Xiaotingia [169] (Figure 2c) or “Aurornis” [146] (Figure 2c,d) (if “Aurornis” is a valid taxon
and not a junior synonym of Anchiornis), but these taxa are likely all anchiornithids. The
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situation in the recently described Fujianvenator is also uncertain, but the specimen is very
close anatomically to Anchiornis. There is little reason to believe that Anchiornis and Fujianve-
nator could not have been volant or near-volant, and in most aspects, they morphologically
qualify as basal birds. Note that seriemas (Cariamidae), terrestrial birds with reduced
wings and long legs (South American counterparts of African secretarybirds), are still able
fliers, and both roost and build their nests in trees.

The ilia and ischia are not preserved in Chongmingia [136]. The condition in Jingufortis
is unclear: the acetabulum is obscured by the synsacrum, but the ilium appears to lack a
supracetabular crest or antitrochanter [137]. The acetabulum of Fukuipteryx is open, but
there does not appear to be either a supracetabular crest or antitrochanter [138] (Figure 5d).
The acetabulum of Cratonavis appears to be mostly perforate (with perhaps slight medial
occlusion), but there is neither a supracetabular crest nor antitrochanter [130] (extended
data Figure 3a,b). Rahonavis has a fully perforate acetabulum and poorly developed
supracetabular crest; the purported antitrochanter, however, is iliac in origin [142].

The incongruent distribution and parallel development of character states among basal
birds is a serious obstacle to evolutionary interpretation and phylogenetic reconstruction
at all levels of the basal avian radiation crownward of the archaeopterygids and those
taxa closely related to the archaeopterygids [8,29,51]. Omnivoropterygids (e.g., Sapeornis,
Kompsornis), jeholornithids (e.g., Jeholornis), and confuciusornithids (e.g., Confuciusornis,
Eoconfuciusornis) are usually compressed into their slabs and the hip joints in these taxa are
often not fully visible or well preserved. In other cases, specimens seem to provide conflict-
ing data: for example, some specimens of Sapeornis seem to show at least partial medial
occlusion of the acetabulum, whereas others appear to show substantial perforation [170]
(Figure 8a,b) and the actetabulum of “Shenshiornis”, probably a junior synonym of Sapeornis,
is completely perforate [171] (Figure 4c). A small antitrochanter may be present in confu-
ciusornithids ([172], which incorrectly characterized confuciusornithids as terrestrial birds;
contrast with [173,174]). Confuciusornithids lack a supracetabular crest [172–174], and
both omnivoropterygids and jeholornithids lack supracetabular crests and antitrochanters
([170,175]; [171] (Figure 4c); [176] (Figure 4D)).

The situation in basal birds is perhaps reciprocally illuminated by consideration of
some more derived Cretaceous taxa (Figure 8a–c). Thus, in both the amphibious ornithurine
Gansus (Figure 8a) and enantiornithines like Qiliania and Pterygornis (Figure 8a–c), the ac-
etabula are mostly perforate but nevertheless exhibit bony walls extending slightly into the
acetabular basin (in the more archaic enantiornithines there is substantially greater closure
of the acetabulum than in ornithurines contra [177]; in some, like Sinornis, the closure seems
extensive [80] (Figure 8.4A,B). Interestingly, the poorly known Amazonian herbivorous river
bird, the Hoatzin (Opisthocomus hoazin), has a similar acetabulum with reduced medial walls
[pers. obs.]. Significant medial occlusion—and evidence of taphonomic destruction—is
also evident in the flightless ornithurine Patagopteryx [178], which is often (though perhaps
spuriously) recovered as a basal ornithurine (or “ornithuromorph”) [130,152,178–181]. This
medial occlusion persists in the hesperornithids Hesperornis and Parahesperornis (Figure 7),
highly adapted flightless foot-propelled divers with pachyostotic bones like penguins
(the same condition is observed in Baptornis [182] (Figure 5a); it is interesting in this re-
gard to note that Natovenator, an at least semiaquatic dromaeosaur that appears to have
been adapted for efficient swimming, is reported to have a “small” acetabulum [183].
Partial medial occlusion of the acetabulum continues to be observed in taxa close to Neor-
nithes (e.g., Iaceornis, the pelvis of which was assigned to Apatornis by Marsh [184]) [83]
(pp. 46–52), though not in Ichthyornis [185]. In both enantiornithines and ornithurines, the
maintenance of balance in obligately bipedal locomotion is linked to the presence of an
antitrochanter [104]. The phylogenetically late acquisition of this character state (in addition
to persisting medial occlusion of the acetabulum and the absence of a supracetabular shelf
in basal birds) is consistent with the argument that the acquisition of obligate bipedalism in
birds (with the forelimbs fully decoupled from the hindlimbs during locomotory excursion)
occurred only after they had first passed through a “tetrapteryx” stage [29,31,65,66].
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(b) Pennaraptora.—Character conflict indicative of both parallelism and mosaicism
is even more significant a source of interpretive difficulties when considering the mor-
phology of the pennaraptorans: it is responsible for significant disagreements about the
relationships of paravian taxa [29,31,51,115,139,140,162]. Foremost among these is dis-
agreement on the monophyly of both Deinonychosauria and Dromaeosauridae: both taxa
have recently been recovered as paraphyletic. Some analyses recover troodontids either as
more closely related to Aves than to dromaeosaurids or farther removed from Aves than a
clade (“Eumanirpatora”) of dromaeosaurids sensu stricto and “averaptorans” (unenlagiids,
microraptorines, and anchiornithids); likewise, some analyses recover microraptorines and
unenlagiids as successive outgroups to Aves rather than clustering with more “typical”
dromaeosaurids like the familiar Deinonychus and Velociraptor [51,139,140,162]. For the
determination of homology and character state polarity, special reference must be given
to those pennaraptoran taxa that are basal to their respective clades, but character conflict
alone interferes with the reliable reconstruction of the phylogenetic relationships of these
taxa, as does the possibility of systemic interference with phylogenetic signal from the
profound morphological transformations induced by loss of flight. Reliance on simple
tabulations of step count difference between constrained and unconstrained trees [52] to
determine whether the most basal members of pennaraptoran clades have been correctly
resolved by parsimony analysis of current data matrices is naïve and takes no account of
the statistical significance of differences in tree populations [50]. These difficulties preclude
obvious answers and will be reflected in the brief comparative survey below.

Oviraptorosaurs uniformly display fully perforate acetabula, but the distribution of
the supracetabular crest and antitrochanter is unclear, and their interpretation is diffi-
cult. Caudipterygids lack supracetabular crests and antitrochanters ([186] (pl. VI); [187]
(pl. III); [188] (Figure 5)), as is also the case in caenagnathoids (i.e., caenagnathids and
oviraptorids) ([189] (Figure 6a); [190] (Figure 4L); [191]; [192] (Figure 2k); [193] (Figure 7)).
Avimimus portensosus, however, possesses an ischial antitrochanter that, therefore, appears
homologous with that in birds ([112]; [194] (Figure 4c)). Funston et al. [194], nevertheless,
report a new species, Avimimus nemegtensis, that lacks an antitrochanter. Since it is not
clear why a single genus should be polymorphic for this character state, it is difficult to
interpret this character conflict. It should perhaps be noted that embryonic oviraptorosaur
material preserved close to hatching, as well as neonate oviraptorosaurs, do not reveal
an antitrochanter ([195] (Figures 3 and 10); [196] (Figure 7); [197] (Figure 1)), suggesting
that, as in enantiornithines and ornithurines, the antitrochanter in Avimimus portentosus
appeared only late in ontogeny. Yet, as the material from Avimimus nemegtensis appears
to be equivalent in ontogenetic age to Avimimus portentosus, it remains difficult to explain
why this latter taxon—if it has been correctly referred to Avimimus—lacks an antitrochanter.
It is possible that despite its topological similarity to the condition in birds, the structure in
Avimimus portentosus was independently acquired and is nonhomologous.

Troodontids have fully perforated acetabula, although the condition in crucial taxa, like
Jianianhualong and Jinfengopteryx, is unclear [198,199]. They lack supracetabular crests [114].
Makovicky and Norell [114] reported an iliac “antitrochanter” in troodontids. If correct,
this structure would not be homologous with the avian condition, but as Daliansaurus [200]
(Figure 10a), Gobivenator [201] (Figure 2n), and Sinovenator [202] (Figure 1f) all lack an
antitrochanter, there is reason to doubt the attribution of the structure to troodontids in the
first instance.

Dromaeosaurids, in the comparative context of this review, must be considered in
three discrete phenotypic clusters until the monophyly or paraphyly of the group has
been more concretely determined: microraptorines, unenlagiids, and the “typical” taxa
like Deinonychus and Velociraptor (including those forms which exhibit trends toward
larger body size). The halszkaraptorines are apparently specialized semiaquatic forms
and can, therefore, be bracketed from the present overview. The microraptorine pelvis is
a very close match with that of Archaeopteryx, including medial occlusion of the acetab-
ulum (Figure 8d,e) and absence of either a strong supracetabular crest or antitrochanter
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(Figure 8e) ([120] (Figure 31); [203] (Figure 2); [204] (Figure 24); [205] (Figure 1c)). Inter-
estingly, the acetabulum of Hesperonychus opens dorsolaterally, which would enable it to
abduct the hindlimbs in a splayed fashion as in other gliders like Microraptor, which no
doubt abducted feathered hindlimbs to provide airfoils [205]. Yet, Microraptor is often
depicted flying with the legs drooping beneath the animal [206], which is contrary to the
biomechanics of gliding animals, all of which splay their hindlimbs out in flight. The
Microraptor hindlimb could not have evolved asymmetric, aerodynamic flight feathers if
positioned beneath the animal. It is, therefore, unsurprising that the femoral head exhibits
medial offset in the Microraptor [203] (Figure 8). There is significant medial occlusion of the
acetabulum in unenlagiids, no supracetabular crest (or it is at best weakly developed), and
no antitrochanter [207] (Figure 2c); [208]. In Bambiraptor, the acetabulum shows partial me-
dial occlusion, the supracetabular crest is only weakly developed, and a clearly demarcated
antitrochanter (as opposed to some posterodorsal thickening of the iliac acetabular margin
associated with the ischiadic peduncle) is not evident [209]. In Deinonychus [210] (Figure
64) and Velociraptor [211] (Figures 11 and 12); [212] (Figures 17a and 18), the supracetabular
crest remains weak, a clearly demarcated antitrochanter is absent, and in Velociraptor the
acetabulum continues to exhibit medial occlusion.

5. Discussion

Partial closure of the acetabula and absence of an antitrochanter in early birds is
surprising, for it is inconsistent with the persistent assertion that these taxa had devel-
oped obligate bipedalism like their presumed theropod ancestors. That some pennara-
ptorans (notably the microraptorines and troodontids) also exhibit partial closure of the
acetabulum and lack an antitrochanter is a further incongruity in that these taxa should
exhibit “typical” theropod pelvic girdle modifications for terrestrial cursoriality. Of course,
partial or even full closure of the acetabulum does not of itself entail that an archosaur
was incapable of bipedalism (at least facultatively) or of maintaining a parasagittal gait:
poposauroids [213–217] and rauisuchids like Postosuchus [218] were fully parasagittal and
obligately bipedal, and obligately quadrupedal ornithischians in which the acetabulum
secondarily exhibits either partial (e.g., ceratopsids) or full occlusion (e.g., ankylosaurs) still
held their femora erect rather than splayed [219,220]. Compsognathids are “prototypical”
small theropods [221], yet they lack a supracetabular crest or antitrochanter [221–223] and
still appear to have been obligately bipedal cursors (for an alternative view, see [51,224,225]).
To give only one more example, although they appear to have been ideally suited for arbo-
real trunk climbing and their pelvic osteology (as reviewed above) suggests that they were
not obligately bipedal (let alone cursorial), nevertheless microraptorines may have been
opportunistically piscivorous and capable of hunting lakeshore environments [226,227]. In
many cases, there is not a simple correspondence between gross anatomy and behavior (yet
we also know that early birds were experimenting with a range of trophic specializations,
as indicated by evidence for granivory, folivory, and frugivory in omnivoropterygids and
jeholornithids [8,29,51,228,229]). The cumulative anatomical picture for a given range of
taxa and its integration with supplementary data is necessary for sound behavioral and
ecological inferences. It is in this context that the evidence presented here on the pelvic
osteology of early birds and pennaraptorans reinforces the conclusion that, particularly
when the abductive ability permitted to the hindlimb is considered, the first birds—and at
least taxa like the microraptorines—were not terrestrial cursorial bipeds, like theropods,
but trunk-climbing gliders [29,31,230]. This would be consistent with arguments that
(at least some of) these taxa are “neoflightless” theropods, whose immediate ancestors
underwent transformations in the theropod locomotory system (perhaps because of a
shift to arboreality) [10,51,53–59]. Yet these data are also consistent with the argument
that they are misidentified birds and, like them, are instead descended from more basal,
arboreal archosaurs that had yet to acquire the theropod system of obligately bipedal loco-
motion [27,29–31,63–67]. Homoplasy-driven character conflict confounds morphological
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interpretations and necessarily precludes facile assessment of alternative hypotheses or
overreliance on the results of phylogenetic analyses.

Nevertheless, the data reviewed here are a further indication, supplementing the
discovery of a “tetrapteryx” stage in early aviation evolution, that obligate bipedality in
birds is a secondary, phylogenetically later acquisition, only fully refined in the Cretaceous.
This is fundamentally incompatible with the argument—advanced since Huxley, champi-
oned by Ostrom, repeated ad infinitum—that the obvious reason birds are obligate bipeds
and that they never passed through an evolutionary phase in which all four limbs were
integrated into the flight mechanism, is that birds are descended from obligate bipeds,
viz. theropods. This neat, tidy, almost irresistible line of argumentation (buttressed, so it
has seemed to many, by phylogenetic analyses) has motivated and continues to motivate
fruitless efforts to provide a biologically (or even biophysically) coherent, epistemologically
sound explanation for the origin of avian flight in a terrestrial, gravity-resisted context
(of which WAIR—wing-assisted incline running [231,232]—is but the latest forlorn exam-
ple [29–31,233]). None of this is now consistent with available fossil evidence, or, as this
paper has labored to show, even by a closer consideration of the morphology of neornithine
birds. These data instead suggest that the reason bipedalism in birds differs fundamentally
from bipedalism in all other archosaurs (belated recognition that modern birds are not
quite the well-behaved “ordinary” parasagittal or planar bipeds that they have long been
considered continues to grow [104,234]) is that birds started their evolutionary trajectory to-
ward obligate bipedalism from a different starting point than the system employed to such
success by dinosaurs. It is just as significant that the pennnaraptorans (oviraptorosaurs,
troodontids, and dromaeosaurs)—whose (apparently) basal exemplars exhibit a remarkable
number of derived avian characters—also show evidence of derivation from forms not
unlike basal birds in their pelvic osteology and the locomotory habits that can be inferred
from this osteology. This is a logical explanation for the surprising persistence of medial
occlusion of the acetabulum in many pennaraptorans and the absence, in most, of either
well-defined supracetabular crests or antitrochanters. These data are also consistent with
the extensive hindlimb plumage observed in microraptorines [29,31,51,235]; if Jinfengopteryx
is, in fact, a basal troodontid [140,236] (but see discussions in [115,139,162]) then troodon-
tids also primitively exhibited a “tetrapteryx” bauplan. Taken together, these data suggest
that ancestral pennaraptorans fundamentally differed from theropods in their locomotory
strategies. As is so often the case upon critical comparative examination of pennaraptoran
morphology, the pelvic data that have been reviewed in this paper underscore the question:
are these “theropods” actually “hidden birds” [29,31,50,237].

6. Conclusions

The hypothesis that birds are maniraptoran theropod dinosaurs, despite the certitude
with which it is proclaimed, continues to suffer from unaddressed difficulties [29–31,50,237].
This paper has reviewed the evidence for yet another such difficulty and presented evi-
dence consistent with alternatives to that hypothesis. It is believed that careful study of
neglected areas of avian anatomy, or reexamination of areas long thought to be understood,
will yield further such difficulties, and it is hoped that this paper will be an encouragement
toward such efforts. Until problems like those discussed here—and many others that
continue to be dismissed either by appeal to “consensus” or through overconfidence in the
results of phylogenetic analysis of morphological data—have satisfactorily been resolved,
skepticism toward the current consensus and continued investigation of alternative hy-
potheses are needful for the promotion of critical discourse in vertebrate phylogenetics and
evolutionary biology.
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