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Abstract: Research focusing on seagrass ecosystems as carbon storage has been conducted in various
Indonesian waters. However, an essential aspect that remains unexplored is the simultaneous analysis
of blue carbon storage in seagrass alongside carbon dioxide (CO2) flux values, particularly within
Karimunjawa waters. This study aims to assess the organic carbon stock and sea–air CO2 flux in
seagrass ecosystems in Karimunjawa. Our hypothesis posits that although seagrass ecosystems re-
lease CO2 into the water, their role as blue carbon ecosystems enables them to absorb and accumulate
organic carbon within seagrass biomass and sediments. This investigation took place in Karimunjawa
waters, encompassing both vegetated (seagrass meadows) and unvegetated (non-seagrass meadows)
areas during August 2019, 2020, and 2022. Over this period, the organic carbon stock in seagrass
and sediment displayed an increase, rising from 28.90 to 35.70 gCorg m−2 in 2019 and from 37.80 to
45.25 gCorg m−2 in 2022. Notably, the expanse of seagrass meadows in Karimunjawa dwindled by
328.33 ha from 2019 to 2022, resulting in a total carbon stock reduction of the seagrass meadows
of 452.39 tC to 218.78 tC. Sediment emerges as a pivotal element in the storage of blue carbon in
seagrass, with sedimentary organic carbon outweighing seagrass biomass in storage capacity. The
conditions in Karimunjawa, including a high A:B ratio, low dry bulk density, and elevated water
content, foster a favorable environment for sediment carbon absorption and storage, facilitated by the
waters’ CO2 emission during the southeast monsoon season. Notably, our findings reveal that CO2

release within vegetated areas is lower compared to unvegetated areas. This outcome underscores
how seagrass ecosystems can mitigate CO2 release through their adeptness at storing organic carbon
within biomass and sediment. However, the presence of inorganic carbon in the form of calcium
carbonate introduces a nuanced dynamic. This external source, stemming from allochthonous origins
like mangroves, brown algae like Padina pavonica, and calcareous epiphytes, leads to an increase in
sedimentary organic carbon stock of 53.2 ± 6.82 gCorg m−2. Moreover, it triggers the release of CO2

into the atmosphere, quantified at 83.4 ± 18.26 mmol CO2 m−2 d−1.
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1. Introduction

The global concentration of atmospheric carbon dioxide (CO2atm) has increased from
340.00 ppm in 1980 to 413.25 ppm as of 2020, attributed to human activities lacking environ-
mental friendliness [1–5]. This increase in CO2atm subsequently amplifies the presence of CO2
within aquatic environments. Through the solubility pump mechanism, the ocean absorbs
CO2atm, transforming it into Dissolved Inorganic Carbon (DIC), which encompassing aque-
ous CO2, carbonic acid (H2CO3), bicarbonate (HCO3

−), and carbonate (CO3
2−) forms [6,7].

However, the equilibrium of the solubility pump was disrupted following the industrial
revolution, leading to an unequal balance between CO2 influx and efflux. Remarkably, even a
minor rise of 1 part per million (ppm) in CO2atm triggers the oceans to absorb an additional
0.97 ± 0.40 GtC of CO2 [8,9]. As a carbon reservoir, the oceans have absorbed approximately
30% of CO2atm, thereby inducing alterations in the oceanic carbonate system [2,10,11]. Refer-
ring to [12], as per the Global Carbon Project (GCP), 55% of anthropogenic carbon remains in
the atmosphere, while 27% becomes absorbed by the oceans.

The open sea functions as a carbon reservoir, playing a pivotal role in reducing
anthropogenic CO2 emissions [10]. Beyond the open sea, there exist coastal habitats
collectively referred to as blue carbon ecosystems, encompassing mangroves, salt marshes,
and seagrass beds, which substantially contribute to carbon absorption and the mitigation of
anthropogenic CO2 within the atmosphere [13,14]. Despite their relatively sparse coverage,
comprising less than 0.2% of the Earth‘s oceans, these habitats are estimated to sequester
around 10% of the annual organic carbon [15]. According to [13], seagrass ecosystems,
occupying less than 0.2% of the global oceanic expanse, have the remarkable capacity to
store 27.4 TgC year−1, amounting to 10% of the ocean’s annual carbon capture. A portion
of the CO2 absorbed by the oceans is integrated into living biomass and sediment deposits,
with the majority remaining in an inorganic state [16]. Coastal ecosystems hold a pivotal
role as intermediary regions between land and sea, functioning as vital carbon sinks [17]. As
highlighted by [14,15], the sediment substrate within seagrass ecosystems hosts a significant
organic carbon stock, which could be halved in the absence of seagrass meadows. Further
emphasized by [18], the decline and loss of seagrass ecosystems could instigate the release of
CO2 into the atmosphere, diminishing carbon absorption and exacerbating global warming.
Natural perturbations such as wave energy, eutrophication, and turbidity, coupled with
human interventions like the direct release of pond waste into water bodies and the use
of trawl nets, can lead to the deterioration of seagrass canopies. This, in turn, directly
or indirectly exposes organic carbon sediments to oxygen-rich conditions, fostering the
decomposition of organic matter [19,20]. Post-disturbance, the rate of organic carbon
conversion in oxic environments is estimated at 0.0005/day, potentially removing 70–80%
of sedimentary organic carbon over a span of 40 years [21].

Functioning as a blue carbon ecosystem, a seagrass meadow serves a multifaceted
purpose beyond carbon sequestration within its biomass and sediment. Its significance
extends to the generation of inorganic carbon through processes like respiration or the
calcification of calcium carbonate, which can notably influence air–sea CO2 fluxes. As eluci-
dated by [17], the air–sea CO2 flux constitutes a pivotal mechanism determining whether
an ecosystem functions as a CO2 sink or a CO2 source. Due to intensified anthropogenic
activities, the degradation of blue carbon ecosystems, including seagrass meadows, has
become a concerning reality. Under these circumstances, the ecosystem’s role in regulating
carbon within the waters might shift from that of a CO2 sink to a CO2 source. The authors
of [22] conducted insightful research on CO2 flux within seagrass ecosystems, discovering
that they can act as sources of CO2, emitting between 0.015 and 0.346 mmol CO2 m−2 d−1

in Iromote Island, Japan. Similarly, [23] carried out a comprehensive investigation on CO2
flux along Gilimanuk Bay in Bali, revealing that seagrass ecosystems act as a source of CO2,
releasing approximately 2.5 ± 3.4 mmol CO2 m−2 d−1.

Indonesia boasts an extensive expanse of seagrass ecosystems, encompassing approxi-
mately 3,000,000 ha, which accounts for 44.48% of the total seagrass area across Southeast
Asia [24]. This habitat demonstrates a noteworthy diversity in terms of species, with an
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estimated range of 12 to 15 seagrass species present [24]. A more detailed study by [25]
has identified 13 distinct seagrass species within Indonesian waters, spanning across 22
out of the 38 provinces. Notably, the regions of Gorontalo (16.51 TgC ha−1), West Sumatra
(13.66 TgC ha−1), North Sulawesi (11.38 TgC ha−1), and Central Java (4.40 TgC ha−1)
exhibit the highest levels of carbon stocks and absorption. In particular, the province of
Central Java emerges as a standout, boasting elevated seagrass carbon stocks and absorp-
tion rates surpassing the national average carbon uptake of Indonesia (which stands at
3.16 TgC ha−1) [26]. Referring to Indonesia’s seagrass distribution map, the preponder-
ance of seagrass beds in Central Java is notably clustered within the aquatic expanse of
Karimunjawa, situated within the Java Sea [24–26].

Previous studies [27,28] have primarily focused on assessing the organic carbon stock
within seagrass biomass in Karimunjawa waters. Carbon sequestration evaluations conducted
at Kartini Harbor and Pancuran Beach in Karimunjawa range from 0.5 to 0.73 TgC ha−1 [27],
whereas at the Pokemon Beaches within the same region, this range extends from 0.13 to
0.23 TgC ha−1 [28]. Parallel research investigating CO2 flux within seagrass ecosystems of
Karimunjawa waters was undertaken by [29], revealing that these waters function as sources
of CO2, with emissions measuring around 8.55–13.27 mmol CO2 m−2 d−1. This aligns with the
findings of [30], who showcased the role of Karimunjawa waters as a CO2 source, registering
values of 1.79–21.64 mmol CO2 m−2 d−1, and particularly identified two stations in the north
of Kemujan Island as CO2 sinks, ranging from −4.41 to −3.69 mmol CO2 m−2 d−1. In the
broader context, the Java Sea acts as a CO2 source, contributing to the release of CO2 into
the atmosphere [31,32]. In light of the Karimunjawa waters acting as a CO2 source and the
seagrass bed’s capacity to store carbon, comprehending the pivotal role of seagrass beds in
curtailing CO2 release within the Karimunjawa waters becomes of paramount importance.
The present study stands as the inaugural endeavor to concurrently explore the organic
carbon stock (OCS) within seagrass meadows and air–sea CO2 flux in both vegetated and
unvegetated areas of Karimunjawa waters. Our hypothesis posits that although the CO2
source status of waters within the seagrass ecosystem is unknown, seagrass beds, as integral
blue carbon ecosystems, can effectively absorb and retain organic carbon within their biomass
and sedimentary layers.

2. Materials and Methods
2.1. Study Sites

Karimunjawa, situated in the Java Sea about 83 km northwest of Jepara, Indonesia
(Figure 1), is an archipelago composed of 27 islands. Within the Karimunjawa waters,
the prevailing currents exhibit a range of velocities spanning from 0.015 to 0.05 m s−1,
encompassing an average depth that varies from 0 to 54 m [33]. Enveloping a multitude
of ecosystems, the Karimunjawa Islands showcase a diverse landscape that encompasses
lowland rainforests, mangrove forests, coral reefs, algae, and seagrass meadows [34].

2.2. Data Collection
2.2.1. Primary Data

Over the course of three years, specifically during the southeast monsoon season of
August in 2019, 2020, and 2022, we meticulously collected primary data encompassing CO2
fluxes and organic carbon (Corg) stocks within sediments and seagrass. To comprehensively
investigate the seagrass ecosystem’s pivotal role in carbon storage and CO2 fluxes, we
partitioned our sampling stations into two categories: vegetated and unvegetated. The
former represents stations adorned with flourishing seagrass meadows, while the latter
symbolizes stations lacking such meadows. In the initial phase, encompassing August
2019, our research included six vegetated stations alongside nine unvegetated stations
(Figure 1). Progressing to August 2020, our focus shifted to ten vegetated stations and
five unvegetated stations (Figure 1). By August 2022, our study featured seven vegetated
stations and a corresponding seven unvegetated stations (Figure 1).
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Figure 1. The research stations in Karimunjawa waters. The 2019 stations are indicated by stars (6 
stations: vegetated and 9 stations: unvegetated). The 2020 stations are indicated by triangles (10 sta-
tions: vegetated and 5 stations: unvegetated). Meanwhile, the 2022 stations are indicated by circles 
(7 stations: vegetated and 7 stations: unvegetated). Seagrass and sediment carbon measurements 
were carried out in both 2019 and 2022, while measurements of air–sea CO2 flux were taken across 
the years 2019, 2020, and 2022. 
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Vegetated (unvegetated) stations were located at depths of 0–1.3 m (2–10 m). 
Throughout the field survey, we diligently measured essential parameters such as sea sur-
face temperature (SST), pH, dissolved oxygen (DO), and sea surface salinity (SSS). Addi-
tionally, our research involved the collection of a total of 94 water samples. These samples 
were divided into two categories: 100 mL for the meticulous analysis of nutrients (includ-
ing nitrates, phosphates, and silicates) and 1500 mL for the thorough examination of chlo-
rophyll-a levels (as outlined in Table 1). 

Table 1. Parameters (water quality), measuring instruments, and analysis methods. 

Parameters Unit Procedure Tools/Methods 
Temperature °C In situ measurement Thermometer and logger 

pH - In situ measurement pH meter 
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Figure 1. The research stations in Karimunjawa waters. The 2019 stations are indicated by stars
(6 stations: vegetated and 9 stations: unvegetated). The 2020 stations are indicated by triangles (10 sta-
tions: vegetated and 5 stations: unvegetated). Meanwhile, the 2022 stations are indicated by circles
(7 stations: vegetated and 7 stations: unvegetated). Seagrass and sediment carbon measurements
were carried out in both 2019 and 2022, while measurements of air–sea CO2 flux were taken across
the years 2019, 2020, and 2022.

Vegetated (unvegetated) stations were located at depths of 0–1.3 m (2–10 m). Through-
out the field survey, we diligently measured essential parameters such as sea surface
temperature (SST), pH, dissolved oxygen (DO), and sea surface salinity (SSS). Addition-
ally, our research involved the collection of a total of 94 water samples. These samples
were divided into two categories: 100 mL for the meticulous analysis of nutrients (in-
cluding nitrates, phosphates, and silicates) and 1500 mL for the thorough examination of
chlorophyll-a levels (as outlined in Table 1).

Table 1. Parameters (water quality), measuring instruments, and analysis methods.

Parameters Unit Procedure Tools/Methods

Temperature ◦C In situ measurement Thermometer and logger

pH - In situ measurement pH meter

DO mg L−1 In situ measurement DO meters

CO2atm ppm In situ measurement CO2 meters

Salinity ‰ In situ measurement Refractometer

Nitrate ppm Laboratory measurements
(100 mL sample)

Spectrophotometer/Spectrophotometry with a
wavelength of 500 nm, nitraver 5 nitrate reagent

powder pillow [35]

Silicate ppm Laboratory measurements
(100 mL sample)

Spectrophotometer/Spectrophotometry with a
wavelength of 452 nm, molybdate reagent powder

pillows [36]

Total phosphate ppm Laboratory measurements
(100 mL sample)

Spectrophotometer/Spectrophotometry with a
wavelength of 890 nm, phosver 3 phospate reagent

powder pillow [37]

Chlorophyll-a mg m−3 Laboratory measurements
(1500 mL sample)

Spectrophotometer/Spectrophotometry with a
wavelength of 630, 647, 664, and 750 nm [36]
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2.2.2. Secondary Data

As for the secondary data, we employed sea level pressure and wind speed from the
European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5),
characterized by a spatial resolution of 0.25◦ × 0.25◦. Moreover, we utilized xCO2atm data
sourced from the Atmospheric Infrared Sounder (AIRS)/Aqua, which features a spatial
resolution of 2◦ × 2.5◦, to enrich our current study.

2.3. Estimation of Carbon Stock and Storage

At each station depicted in Figure 1, we established 2–3 transect lines, and each of these
lines is equipped with five quadrats. The study utilized quadrats measuring 50 × 50 cm
(n = 136; depicted in Figure 2A) to facilitate the assessment of various parameters, including
shoot density, organic matter (%), seagrass biomass (gDW shoot−1), organic carbon content
(%), and organic carbon stock (gCorg m−2). The determination of shoot density involved
a meticulous count of all shoots within each quadrat. Prior to measurement, samples
were meticulously cleansed of epiphytes and sediments and subsequently categorized into
aboveground (AG), encompassing leaves, and belowground (BG), encompassing rhizome
and root.
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Figure 2. (A) Quadrat and (B) Sediment corer. Description: A = the length of pipe; B = the length of
pipe outside the sediment; C = the length of inside pipe; D = length of sediment sample; E = depth of
core (Source: [38]).

For the analysis of seagrass samples (n = 332 samples), a drying process at 105–110 ◦C
was executed until a constant weight was achieved. In the laboratory setting, approximately
1 g of the subsample was weighed and then subjected to an oven at 105–110 ◦C for 4–8 h,
followed by cooling in a desiccator for 15 min. This process was repeated until a constant
sample weight was obtained. The water content was then calculated based on these
measurements. In order to determine the ash content, around 1 g of the subsample was
weighed, then subjected to furnace drying at 400–600 ◦C for 4–6 h, and subsequently cooled
in a desiccator for 15 min. This step yielded essential parameters, namely pre-combustion
mass, post-combustion mass (also referred to as mass after furnace), and dry weight (g DW).

With these parameters in hand, computations were performed to derive organic matter
(using Equation (1)), organic carbon content (using Equations (2) and (3)), aboveground
biomass (AGB), belowground biomass (BGB), aboveground OCS (AG-OCS), belowground
OCS (BG-OCS), and organic carbon stock within the seagrass (OCS-Sg). The average total
organic carbon stocks in living seagrass biomass (Mg Corg ha−1) were calculated by using
the average OCS-Sg (g Corg m−2), which were subsequently converted to a per-hectare basis.

The collected seagrass samples were divided into AG and BG portions before under-
going analysis through the Loss on Ignition (LOI) method:

%LOI =
(mass be f ore combustion − mass a f ter combustion)

mass be f ore combustion
× 100, (1)
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the following formula was used to calculate organic carbon content (OCC) [13]:

%Corg = 0.4 × %LOI − 0.21, (2)

%Corg = 0.43 × %LOI − 0.33. (3)

OCS-Sg was calculated by multiplying the biomass of each seagrass species with the
corresponding percentage of OCC [38]. Sediment sampling was carried out in 2019 and
2022 through the utilization of a sediment corer (Figure 2B). The sediment corer, comprising
subsampling ports with a diameter of 5 cm, was covered during the collection of samples.
Employing a manual hammer, the sediment corer was carefully driven into the sediment,
aiming for a depth of 5–20 cm. Measurements of B (representing the length of the pipe outside
the sediment) and C (indicating the length of the inside pipe) were executed to derive essential
parameters. These measurements facilitated the computation of critical factors, including
a compaction correction (CCF), a correction for core length (H’), and the acquisition of a
volumetric sample. This volumetric sample was subsequently employed in the analysis of
pivotal sediment characteristics. These characteristics encompass dry bulk density (calculated
using Equation (4)), water content, organic matter (evaluated via Equation (1)), sediment
organic carbon content (SOCC, determined using Equations (2) and (3)), and organic carbon
stock within the sediment (OCS-S, derived from Equations (6) and (7)).

Analysis of organic matter in sediments (n = 150 samples) was carried out using the
LOI method. Dry bulk density is calculated based on the following formula [38]:

Dry bulk density(DBD)
(

g cm−3
)
=

Mass o f dry sediment (g)
Original volume sample (cm−3)

, (4)

Original Volume sample
(

cm−3
)
= 3.14 × r2 × length o f corrected sample, (5)

OCS-S is obtained by the multiplication of DBD with SOCC [38]:

OCS-S
(

gCorgcm−3
)
= DBD × SOCC, (6)

OCS-S
(

gCorgm−2
)
= OCS-S

(
gCorgcm−3

)
× length o f corrected sample × 104. (7)

2.4. Estimation of Sea–Air CO2 Fluxes

The calculation of CO2 fluxes, representing the exchange of CO2 gas flow, is calculated
using the following formula [31,32,39–44]:

CO2Fluxes = kwa × KH × (pCO2sea − pCO2atm), (8)

where CO2 fluxes is designated to represent the net carbon dioxide flux (mmol m−2 d−1),
kwa signifies the gas transfer velocity (m s-1), and KH stands for the solubility of CO2 in
seawater (mol m−3 atm−1). When the CO2 flux exhibits a positive value, the water body
functions as a CO2 source; conversely, a negative CO2 flux indicates the water body is
acting as a CO2 sink.

The KH value is calculated through the interplay of temperature and salinity func-
tions [32,45]:

ln KH = −58.0931+
90.5069(

T
100

) + 22.2940× ln
(

T
100

)
+ SSS× (0.02776− 0.02588×

(
T

100

)
+ 0.0050578×

(
T

100

)2
) , (9)
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where T represents the SST (in K) and SSS denotes sea surface salinity (psu). The calculation
of the kwa value follows the W92 formula [46], which has been applied in numerous studies;
nevertheless, this formula is most suitable for offshore sites. Given the coastal context of
this study, it is important to note that utilizing the W92 formula could potentially lead to
an underestimation of the flux. Thus, to address this, RC01 [47] and B04 formulas [48] were
implemented for estimating estuarine CO2 fluxes:

kwa = 0.31 × U2
10 ×

(
660
Sc

)0.5

(W92), (10)

kwa = 1.91 × e(0.35×U10) ×
(

660
Sc

)0.5
(RC01), (11)

kwa = 5.141 × U0.758
10 ×

(
660
Sc

)0.5
(B04), (12)

in these formulas, U10 corresponds to the wind speed at a height of 10 m (m s−1), while
Sc represents the Schmidt number, and the coefficient 660 is applied to Sc for SSS (35 psu)
and SST (2 ◦C). In this study, the kwa value employed in the calculation of CO2 fluxes, as
indicated in Equation (8), represents the average of kwa values derived from Equations (10)
through to (12).

Furthermore, the partial pressure of atmospheric CO2 can be calculated using the
following formula [31,32,41,49]:

pCO2atm = xCO2atm × (pb − pH2O), (13)

where xCO2atm represents the molar fraction of carbon dioxide (ppm), pb is sea level pres-
sure (Pa), and pH2O denotes the saturation vapor pressure of seawater in the atmosphere.
Subsequently, the calculation of pCO2sea (partial pressure of oceanic carbon dioxide) was
carried out utilizing both the SST (in ◦C) and chlorophyll-a (Chla) approaches [32,49]:

pCO2sea =
(

6.31 × SST2
)
+

(
61.9 × Chla2

)
− 365.85 SST − 94.41 Chla + 5715.94, (14)

ln pH2O = 24.4543 − 67.4509 ×
(

100
T

)
− 4.8489 × ln

(
T

100

)
− 0.000544 × SSS. (15)

2.5. Statistical Analyses

The results are presented as the mean ± standard error (SE). In order to satisfy the
assumptions of parametric methodologies, all collected data underwent assessments for
both homogeneity and normality. One-way analysis of variance was used to evaluate
disparities in seagrass carbon attributes (including AGB, BGB, above- to belowground (A:B)
ratio, shoot density, AG-OCS, BG-OCS, and OCS-Sg), as well as sediment carbon parameters
(comprising dry bulk density, water content, %LOI, and OCS-S). Whenever statistically
significant variations (α = 0.05) were observed, subsequent pairwise comparisons of means
were conducted through the Student–Newman–Keuls (SNK) test to pinpoint the specific
sources of divergence [50–52]. The interplay between the dependent variable (Corg) and the
biological as well as sediment characteristics (including shoot density, seagrass biomass,
A:B ratio, dry bulk density, and water content) was scrutinized via Principal Component
Analysis (PCA) within the Rstudio software framework.

3. Results
3.1. Organic Carbon Stock in the Seagrass Ecosystem

The present study reveals the presence of seven distinct seagrass species within the
Karimunjawa waters. These species include Enhalus acoroides (Ea), Thalassia hemprichii
(Th), Cymodocea rotundata (Cr), Oceana serrulata (Os), Halophila ovalis (Ho), Syringodium
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isoetifolium (Si), and Halodule uninervis (Hu). An analysis of OCS-Sg among these seagrass
species demonstrated statistically significant differences (p < 0.001) at a 95% confidence
level. The seagrass species were ordered based on their organic carbon stock content (gCorg
m−2), with Th exhibiting the highest value (19.4 ± 1.8), followed by Ea (11.0 ± 1.5), Cr
(8.1 ± 1.3), Os (5.1 ± 1.1), Ho (3.5 ± 1.0), Hu (3.0 ± 1.7), and Si (0.9 ± 0.5), as depicted
in Figure 3. Th and Ea were observed across nearly all stations, while Cr, Os, Hu, and
Si were found in less than 25% of the sampling locations. Interestingly, when these less
frequently encountered species were present in the sample quadrat, their OCS values could
range from 20 to 50 gCorg m−2. Consequently, the box plots shown in Figure 3 for Cr, Os,
Ho, Hu, and Si display numerous data points extending beyond their upper extremes,
owing to the inclusion of instances where species were absent throughout the study area. In
order to achieve uniformity in the measurement of OCS for both above- and belowground
components, we integrated zero counts for species that were not detected in particular
sampling locations. This strategic approach plays a pivotal role in constructing a more
precise depiction of the variations in OCS.
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Our data underscores a consistent pattern, revealing that the majority of AG-OCS values
were notably lower than the corresponding BG-OCS values. Specifically, the average mea-
surements for AG-OCS and BG-OCS were 15.9 ± 0.9 gCorg m−2 and 17.4 ± 0.8 gCorg m−2,
respectively. Importantly, this disparity was statistically significant (p = 0.02) at a 95% confi-
dence level. These AG-OCS and BG-OCS values are susceptible to diminishment due to the
ongoing annual reduction in the extent of seagrass meadows within Karimunjawa waters.

Over successive years, this area has experienced a concerning decrease. Specifically, in
2019, seagrass meadows spanned 907.3 ha, but by 2022, this area had contracted to 578.97 ha
(Figure 1). This trend is particularly evident when translating OCS measurements into the
context of the seagrass meadow area. This conversion demonstrates a clear reduction in
the overall OCS-Sg within the Karimunjawa study area. Notably, this metric declined from
262.66 Mg Corg in 2019 to 214.59 Mg Corg in 2022.
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A projection based on the hypothetical scenario of maintaining the 2022 seagrass area
equivalent to that of 2019 yields significant insights. It suggests that the total OCS-Sg could
have doubled by 2022. Tragically, the actual scenario reflects the loss of half of the seagrass
meadow areas, although the cumulative OCS-Sg remains above the 200 Mg Corg threshold.
These findings underscore the critical role played by seagrass meadows in preserving the
cumulative OCS-Sg. The sustainability of these meadows emerges as a paramount concern
in this context.

Among the three monitoring stations that gathered data in both 2019 and 2022 (Man-
grove Inn, Alang–Alang, and Bobby, as shown in Figure 1), a noteworthy pattern emerged.
Two of these stations exhibited an increasing trend in OCS-Sg levels. Specifically, at
the Mangrove Inn and Alang–Alang sites, OCS-Sg experienced an increase from 34.5 to
43.3 gCorg m−2 and from 26.6 to 42.6 gCorg m−2, respectively (Table 2). However, a different
trend was observed at the Bobby station, where OCS-Sg decreased from 40.17 gCorg m−2

in 2019 to 28.5 gCorg m−2 in 2022. The augmentation in shoot density played a pivotal
role in driving the rise in OCS-Sg at these locations. Additionally, a notable surge in the
number of seagrass species, more than doubling in count, contributed significantly to
the observed OCS increase at the Mangrove Inn and Alang–Alang sites. Taken together,
the data amassed from 2019 to 2022 showcases a distinct shift. This shift is statistically
significant (p = 0.002) at a 95% confidence level, reflecting an average OCS-Sg increase from
28.9 ± 1.33 gCorg m−2 to 37.8 ± 2.29 gCorg m−2.

The expanse of seagrass meadow in the Karimunjawa waters has been progressively
diminishing over the years. This decline can be attributed to the conversion of land
formerly occupied by mangrove forests into shrimp ponds, a trend that continues to
intensify annually. In 2015, the area dedicated to shrimp ponds spanned 21.93 ha, but by
2021, it had expanded significantly to 47.46 ha (Figure 4). The transition of shrimp pond
operations from traditional to high-density, intensive methods has resulted in the discharge
of untreated effluent directly into the ocean. This discharge poses a concerning threat to
aquatic ecosystems, including seagrass beds, due to potential contamination.

Given that seagrass meadows constitute vital blue carbon habitats capable of mitigating
atmospheric CO2 levels through absorption and storage within their biomass and sediments,
it is imperative to prioritize their long-term viability. Sediment substrates housing vegeta-
tion (seagrass-vegetated sediments) exhibit a notably higher OCS (41.5 ± 2.01 gCorg m−2)
compared to unvegetated substrates (unvegetated sediments) (32.4 ± 2.9 gCorg m−2), with
a statistically significant difference (p = 0.018) at a 95% confidence level. Remarkably, the
highest OCS-S is observed in vegetated stations, particularly at Mangrove Inn in the western
sector (63.6 ± 10.4 gCorg m−2), Lendra in the northern sector (54.6 ± 2.9 gCorg m−2), and
Bobby in the eastern sector (47.3 ± 1.7 gCorg m−2) (Table 3). This emphasizes the pivotal
role of seagrass vegetation in bolstering carbon storage and underscores the importance of
addressing its preservation.
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Table 2. Seagrass species, shoot density, tissue carbon content, biomass, A:B ratio, and OCS at the
study sites along the coast of Karimunjawa (mean ± SE).

Study Sites Seagrass
Species

Shoot Density
(Shoots m−2)

Tissue Carbon
Content/OCC (%) Biomass (gDW m−2) A:B Ratio OCS (gCorg m−2) OCS-Sg

(gCorg m−2)
AG BG AG BG AG BG

East
Bobby

2019 (n = 22) Ea, Th, Cr,
Ho, Hu 446.5 ± 172.7 6.5 ± 0.8 7.6 ± 1.0 2.8 ± 0.3 4.5 ± 0.7 0.7 ± 0.0 15.6 ± 1.4 24.6 ± 3.9 40.17 ± 4.8

2022 (n = 32) Ea, Th, Cr,
Os, Ho 212.7 ± 40.2 4.9 ± 1.2 8.3 ± 1.4 3.6 ± 0.5 2.2 ± 0.5 1.9 ± 0.3 16.0 ± 2.9 15.2 ± 3.3 28.5 ± 6.2

Pokemon

2019 (n = 18) Ea, Th, Cr,
Ho 278.2 ± 85.3 4.9 ± 0.0 5.6 ± 0.0 1.3 ± 0.2 2.1 ± 0.4 0.5 ± 0.1 9.3 ± 0.5 14.8 ± 0.8 18.7 ± 3.6

Barakuda

2019 (n = 18) Ea, Th, Cr,
Hu 158.2 ± 51.2 5.0 ± 0.0 5.6 ± 0.0 1.4 ± 0.0 2.6 ± 0.2 0.6 ± 0.0 7.8 ± 0.3 14.4 ± 1.3 22.2 ± 1.4

West
Mangrove Inn
2019 (n = 18) Ea, Th 39.6 ± 4.5 4.9 ± 0.0 5.6 ± 0.0 2.3 ± 0.2 3.8 ± 0.3 0.6 ± 0.1 13.2 ± 0.9 21.3 ± 1.8 34.5 ± 2.1

2022 (n = 34) Ea, Th, Cr,
Os, Ho 74.8 ± 16.5 7.9 ± 1.5 9.7 ± 1.8 4.4 ± 0.4 3.5 ± 1.1 2.1 ± 0.5 21.1 ± 2.4 21.5 ± 6.6 43.3 ± 8.1

Alang–Alang

2019 (n = 22) Ea, Th, Cr,
Os 156.4 ± 40.1 5.4 ± 1.0 6.2 ± 1.1 2.1 ± 0.2 2.6 ± 0.2 0.8 ± 0.1 12.0 ± 1.1 14.6 ± 1.2 26.6 ± 1.8

2022 (n = 40) Ea, Th, Cr,
Os, Ho 188.8 ± 33.4 7.8 ± 1.1 11.5 ±

1.8 4.7 ± 0.8 3.5 ± 0.5 1.3 ± 0.1 22.3 ± 4.8 20.3 ± 3.3 42.6 ± 6.6

Mrican

2019 (n = 20) Ea, Th, Cr,
Os 107.6 ± 12.7 5.4 ± 0.5 6.1 ± 0.6 1.8 ± 0.2 3.0 ± 0.4 0.6 ± 0.1 10.1 ± 1.1 16.1 ± 2.1 26.1 ± 2.7

Cemara Kecil
2022 (n = 18) Th 205.2 ± 29.0 4.5 ± 0.5 5.3 ± 0.6 1.6 ± 0.3 1.7 ± 0.2 0.9 ± 0.2 10.2 ± 1.4 10.8 ± 0.5 18.9 ± 2.4
North
Lendra

2022 (n = 36) Ea, Th, Cr,
Os, Ho 250 ± 35.0 9.2 ± 1.0 10.4 ±

1.2 3.1 ± 0.5 3.3 ± 0.4 0.9 ± 0.1 18.4 ± 3.5 19.3 ± 2.3 37.7 ± 5.2

South
Pelabuhan

2022 (n = 46) Ea, Th, Cr,
Ho, Si 339.7 ± 37.9 8.2 ± 0.9 9.2 ± 1.0 4.3 ± 0.6 2.7 ± 0.3 1.7 ± 0.2 26.7 ± 3.4 16.0 ± 1.8 42.7 ± 4.8

Menjangan
kecil

2022 (n = 63) Ea, Th, Cr,
Os, Ho 273.6 ± 28.9 9.2 ± 1.3 11.0 ±

1.5 3.9 ± 0.6 4.1 ± 0.5 0.9 ± 0.1 18.8 ± 3.5 22.0 ± 3.0 41.0 ± 6.1
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Table 3. OCS-S at the study sites along the coast of Karimunjawa (mean ± SE).

Study Sites Water Content (%) Dry Bulk Density
(g cm−3) %LOI SOCC (%) OCS-S (gCorg m−2)

East
Bobby
2019 (vegetated; n = 9) 18.7 ± 0.8 0.0051 ± 0.0005 23.0 ± 0.7 9.5 ± 0.3 39.9 ± 0.9
2022 (vegetated; n = 12) 22.7 ± 1.7 0.0048 ± 0.0004 28.7 ± 1.7 12.0 ± 0.7 47.3 ± 1.7
2022 (unvegetated; n = 2) 41.7 ± 8.4 0.0047 ± 0.0006 34.7 ± 1.9 14.6 ± 0.8 37.8 ± 3.6
Pokemon
2019 (vegetated; n = 9) 15.8 ± 0.6 0.0053 ± 0.0005 20.0 ± 0.7 8.3 ± 0.3 35.3 ± 1.0
Barakuda
2019 (vegetated; n = 9) 15.0 ± 0.7 0.0049 ± 0.0002 19.5 ± 0.7 8.0 ± 0.3 34.8 ± 1.0
West
Mangrove Inn
2019 (vegetated; n = 9) 21.1 ± 0.8 0.0035 ± 0.0002 25.3 ± 0.8 10.6 ± 0.4 42.3 ± 1.0
2022 (vegetated; n = 10) 19.0 ± 1.4 0.0036 ± 0.0002 36.0 ± 5.2 15.2 ± 2.2 63.6 ± 10.4
2022 (unvegetated; n = 2) 16.3 ± 2.2 0.0070 ± 0.0002 27.4 ± 0.1 11.4 ± 0.0 48.8 ± 1.1
Alang–Alang
2019 (vegetated; n = 9) 17.8 ± 1.1 0.0043 ± 0.0004 22.0 ± 1.1 9.1 ± 0.5 38.1 ± 0.3
2022 (vegetated; n = 10) 18.6 ± 1.2 0.0041 ± 0.0004 27.0 ± 1.6 11.3 ± 0.7 47.1 ± 3.3
2022 (unvegetated; n = 2) 14.1 ± 0.4 0.0072 ± 0.0000 22.6 ± 0.3 9.4 ± 0.1 41.2 ± 0.3
Mrican
2019 (vegetated; n = 9) 11.1 ± 1.7 0.0046 ± 0.0004 13.7 ± 1.8 5.6 ± 0.8 24.7 ± 2.9
Cemara Kecil
2022 (vegetated; n = 10) 31.9 ± 3.5 0.0033 ± 0.0004 33.2 ± 3.3 13.9 ± 1.4 48.2 ± 4.8
2022 (unvegetated; n = 2) 21.6 ± 0.6 0.0059 ± 0.0006 17.9 ± 2.2 7.4 ± 0.9 29.5 ± 3.9
North
Lendra
2022 (vegetated; n = 10) 19.6 ± 1.3 0.0046 ± 0.0002 31.7 ± 1.4 13.3 ± 0.6 54.6 ± 3.0
2022 (unvegetated; n = 2) 21.1 ± 1.9 0.0048 ± 0.0000 9.7 ± 3.4 3.8 ± 1.5 15.7 ± 6.3
South
Pelabuhan
2022 (vegetated; n = 15) 16.5 ± 1.0 0.0045 ± 0.0003 22.1 ± 1.0 9.2 ± 0.4 38.9 ± 1.8
2022 (unvegetated; n = 2) 25.0 ± 2.7 0.0063 ± 0.0003 20.2 ± 2.2 8.3 ± 0.9 31.8 ± 2.5
Menjangan kecil
2022 (vegetated; n = 15) 27.3 ± 2.6 0.0039 ± 0.0004 26.7 ± 1.2 11.1 ± 0.5 41.1 ± 2.4
2022 (unvegetated; n = 2) 27.0 ± 0.7 0.0061 ± 0.0000 27.4 ± 0.2 6.9 ± 0.1 25.6 ± 0.0

The combined effect of various predictors accounted for 55.6% of the variability
observed in OCS-S (Figure 5). The outcomes of the PCA analysis revealed that the A:B ratio
and water content exerted a positive influence on the OCS-S, while dry bulk density had
a negative impact (Figure 5). These findings align with prior research, as noted in [19,53].
In general, a higher shoot density and greater BGB correlate positively with higher OCS-
S, owing to their capacity to capture particles and accumulate Corg in the sediment, a
concept substantiated by [52]. The elevated OCS-S can be attributed to the intricate canopy
structure’s elevated complexity, as discussed in [19,54].
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Figure 5. The results of the PCA analysis conducted on carbon stock and storage in seagrass and sediments.
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3.2. Air–Sea CO2 Fluxes

During the southeast monsoon season in Karimunjawa’s waters, a noticeable disparity
in CO2 flux values came to light between vegetated and unvegetated areas. Specifically, the
vegetated regions exhibited a significantly higher average CO2 flux value of 24.4 ± 4.55 mmol
CO2 m−2 d−1. In contrast, the unvegetated locations displayed a somewhat lower average
CO2 flux value, approximately 20.0 ± 4.34 mmol CO2 m−2 d−1. This discrepancy amounted
to a notable 4.4 mmol CO2 m−2 d−1 reduction in CO2 concentration when compared to the
CO2 flux values observed in vegetated zones.

In 2022, there was a notable elevation in CO2 flux, particularly evident in the northern
part of vegetated stations (Lendra: 156.96 mmol CO2 m−2 d−1) and the western region
of the vegetated station (Mangrove Inn: 97.05 mmol CO2 m−2 d−1). This surge in CO2
flux can be attributed to elevated SST during the sampling period at Lendra Beach and
Mangrove Inn. In these areas, the SST reached a relatively high 33.5 ◦C within the vegetated
area and 32.1 ◦C within the unvegetated zone, in contrast to other stations where the
average SST in Karimunjawa was about 29.93 ◦C. The heightened temperatures prompted a
concurrent rise in pCO2sea values, with Lendra recording a pCO2sea value of 529.745 µatm,
and Mangrove Inn showing pCO2sea values of 493.697 µatm in 2019 and 486.091 µatm in
2022. Additionally, stronger winds contributed to the CO2 flux. This trend is evident in
Figure 6, which highlights a strong positive Pearson correlation between CO2 flux and
several variables: pCO2sea (r = 0.975 with p < 0.001), SST (r = 0.790 with p < 0.001), and kwa
(r = 0.580 with p < 0.001) (see Figure 6).
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variables along the x and y axes. Statistical significance is denoted by asterisks (*), with *, and ***
indicating p-values of <0.05, and <0.001, respectively. The data points are represented as dots, which
serve to display the spread of the data. A more tightly clustered distribution of data around a sloping
straight line indicates a stronger correlation, whereas a broader dispersion suggests a weaker one.
The correlation coefficient (Corr) and the orientation of the straight line together convey the strength
and direction of the relationship between the variables. A positive Corr value, as well as a straight
line that slopes upwards to the right and another that slopes downwards to the left, all indicate a
positive relationship. Conversely, a negative Corr value, in conjunction with a straight line sloping
downwards to the right and another sloping upwards to the left, signifies a negative relationship.

3.3. Organic Carbon Stock and Air–Sea CO2 Flux

In the context of investigating the interplay between seagrass and CO2 flux in Karimun-
jawa waters, a distinct separation was made between vegetated stations enriched with addi-
tional carbonate sources (vegetated + source carbonate in 2022) and other seagrass-covered
stations (vegetated in 2022) (depicted in Figure 7A). Drawing insights from Figure 7A, it
becomes evident that three stations—Lendra, Mangrove Inn, and Menjangan Kecil—stand
out due to their notably elevated levels of OCS-S and CO2 flux.
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per unit area; and (C) the distribution of CO2 fluxes per unit area at the study site located along the
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coast of Karimunjawa. The stations are labeled as follows: 22_V_K + source carbonate (depicted
in purple) represents vegetated stations with additional source carbonate in 2022; 22_V_K (in blue)
signifies vegetated stations in 2022; 22_UV_K (in green) represents unvegetated stations in 2022; and
19_V_K (in pink) represents vegetated stations from 2019.

Of these stations, those characterized by seagrass vegetation along with supplemental
carbonate sources (represented in purple) exhibit the highest content of sediment organic
carbon (53.2 ± 6.8 gCorg m−2). This reading surpasses the organic carbon content found
in the vegetated stations of 2022 (blue, 45.2 ± 2.6 gCorg m−2), the vegetated stations of
2019 (pink, 35.9 ± 1.6 gCorg m−2), and even the least unvegetated zones of 2022 (green,
32.4 ± 2.9 gCorg m−2) (as shown in Figure 7B). This observation underscores the pivotal
role that seagrass plays in facilitating the accumulation of organic carbon stock within the
sediment layers.

In contrast, the highest recorded air–sea CO2 flux value was observed at the vegetated
station featuring an additional carbonate source, registering a mean of 83.4 ± 18.3 mmolCO2
m−2 d−1 (depicted in Figure 7C). These stations with supplemental carbonate sources are
derived from three distinct origins: (1) Mangrove Inn (fed by allochthonous inputs from
mangrove, as shown in Figure 8A); (2) Menjangan Kecil (where Padina pavonica constitutes
more than 50% of the seagrass meadow composition, as depicted in Figure 8B); and
(3) Lendra (enriched with calcareous epiphytes, as seen in Figure 8C).
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When comparing this value to vegetated waters devoid of additional carbonate sources,
a noticeable disparity emerges with lower values of 18.1 ± 0.9 mmol CO2 m−2 d−1 (in
2019) and 12.8 ± 2.7 mmol CO2 m−2 d−1 (in 2022). This highlights how the presence of
supplementary carbonate sources within vegetated waters enhances their inorganic carbon
content, thereby elevating their pCO2sea levels and leading to an augmented release of CO2
into the atmosphere. Furthermore, when evaluating the sea–air CO2 flux values between
vegetated and unvegetated waters, a notable difference is evident, with the CO2 flux of
unvegetated waters surpassing that of vegetated waters by 28.5 ± 8.1 mmol CO2 m−2 d−1.
This observation underscores the role of seagrass vegetation in reducing the quantity of
inorganic carbon within the water, resulting in lower pCO2sea values and, consequently, a
reduced flow of CO2 into the atmosphere.

4. Discussion

Building upon the findings from [55], it was determined that Th exhibited the highest
Gross Primary Production (GPP) (9.95 ± 7.25 mmol O2 g DW−1 d−1) among a diverse
range of 15 seagrass species, taking into consideration the seagrass biomass ratio within the
seagrass meadow. Conversely, as elucidated by [56], smaller seagrass species such as Ho
displayed elevated OCS-Sg due to their thriving presence within sediment environments.
In contrast, smaller-sized seagrass varieties like Si might not support as substantial OCS-Sg
as Ho. These earlier investigations align with our own finding that Th boasts the most
significant standing OCS-Sg at 19.4 ± 1.8 gCorg m−2. Meanwhile, Si exhibited the smallest
OCS-Sg, registering at 0.9 ± 0.5 gCorg m−2. Ho, surpassing Si, demonstrated an OCS-Sg of
3.5 ± 1.0 gCorg m−2.

In 2022, the total OCS within the study area registered a decrease, totaling 218.78 tC,
in stark contrast to the reading of 452.39 tC recorded in 2019. This decline can be attributed
to a substantial reduction of 328.33 ha in seagrass coverage. Notably, certain regions have
undergone transformation, transitioning into shrimp ponds and fishing zones equipped
with trawl nets. Such alterations in land use have direct repercussions on the viability
of seagrass and lead to the contraction of the seagrass meadow. As cited in [57], global
statistics indicate that a considerable 29% of the overall seagrass expanse has been lost,
consequently compromising the carbon sink capacity of these ecosystems. The ongoing
trend of land conversion to pond setups bears the potential for further shrinkage of seagrass
areas. Consequently, this continuous decline in seagrass territory could subsequently result
in an annual reduction in carbon uptake by these ecosystems. Given the imperatives of
climate mitigation, prioritizing seagrass conservation and restoration within the waters of
Karimunjawa becomes paramount. This is especially crucial in regions with limited species
diversity and scant seagrass coverage.

The OCS-Sg in this study (ranging from 0.05 to 1.03 tC ha−1) falls within Indonesia’s
range of 0.94–1.15 tC ha−1 [25]. Notably, a significant portion of organic carbon, about
58.10%, is stored in sediments, while the remaining portion is distributed between above-
and belowground seagrass biomass, accounting for 41.90%. These findings align well with
comparable studies indicating a prevalence of sediment Corg > seagrass Corg, both globally
(87.63% > 12.37%) [13], in Indonesia (97.99% > 2.01%) [58], and on the Korean Peninsula
(96–99% > 0.67–3.33%) [52].

The substantial proportion of seagrass Corg highlights the pivotal role of seagrass in
carbon absorption, underscoring the high potential of Karimunjawa waters’ sediments to
sequester even more carbon in the future. Additionally, this study reveals that the content
of OCS in vegetated sediments (31.6 ± 3.15 gCorg m−2) surpasses that of unvegetated
sediments (16.2 ± 3.44 gCorg m−2), an observation supported by previous findings [52,59].
Furthermore, it is worth noting that blue carbon ecosystems, as mentioned by [52,59],
exhibit remarkably high sediment carbon accumulation rates (CARs), which are 30–50 times
greater than those found in terrestrial forests.

The elevated OCS-S value observed in vegetated areas in comparison to unvegetated
sites underscores the significant contribution of seagrass to both the deposition and long-
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term preservation of OCS-S. This phenomenon can be attributed to the synergy of factors,
including the protracted decomposition of organic matter under anoxic sediment conditions,
in conjunction with the abundant Corg content and elevated Carbon-Nitrogen-Phosphorus
(CNP) ratios associated with seagrass habitats [52]. Remarkably, the heightened CARs
observed in seagrass ecosystems are closely linked to the gradual degradation of organic
materials within anoxic sediment environments, along with the substantial proportions
of Corg and the elevated CNP ratios characteristic of seagrass habitats [52]. Furthermore,
there is a well-documented prevalence of elevated Corg deposition rates within seagrass
beds that are relatively sheltered, experience low hydrodynamic conditions, and receive
moderate to low nutrient inputs [60].

Large seagrass species (such as Ea and Th) exhibit a heightened capacity to attenu-
ate ocean currents through their dense canopies, thereby proving effective in facilitating
sediment deposition [61]. Notably, sediment attributes, including water content, are ac-
knowledged to exert a positive impact on OCS-S. Conversely, attributes like dry bulk
density are recognized for their adverse influence on OCS-S. Similar conclusions have been
drawn by other studies, affirming that diminished sediment density allows for mineral
organic particles to outweigh it in composition [61], while concurrently displaying elevated
water content [62] that contributes to heightened OCS-S. Based on the findings derived,
it is deducible that the waters around Karimunjawa possess a substantial potential for
harboring abundant OCS. This is attributed to the pronounced influence of robust seagrass
biomass, a notable A:B ratio, diminished dry bulk density, and elevated water content.

The air–sea CO2 flux results observed in the Karimunjawa waters during the southeast
monsoon (ranging from 2.99 to 156.96 mmol CO2 m−2 d−1) surpassed those of prior studies
conducted by [32] in the Java Sea, which ranged from 0.1 to 20 mmol CO2 m−2 d−1. Notably,
all monitoring stations in this study were identified as contributors to CO2 exchange with
the atmosphere. Evidently, areas featuring seagrass meadows (vegetated zones) displayed
a positive CO2 flux value, signifying a CO2 source. Amidst relatively uniform wind
conditions across the study sites, these vegetated regions exhibited elevated CO2 flux,
primarily due to ocean temperature effects.

The challenge of CO2 dissolution in warm tropical waters is underscored by elevated
sea temperatures, as indicated by previous research [59,63,64]. Consequently, CO2 tends to
be liberated back into the atmosphere, rendering tropical waters a predominant source of
CO2 [29,31,32,65–67]. Conversely, in subtropical waters characterized by lower tempera-
tures, the increased solubility of CO2 facilitates oceanic absorption (CO2 sink) [68–72]. This
aligns with research focused on CO2 flux within the Northeast Atlantic Ocean during sum-
mer, where the presence of a high pCO2sea (426.77 ± 0.83 µatm) coincided with maximum
temperatures (22.93 ± 0.05 ◦C) [72].

The air–sea CO2 flux within vegetated regions is also subject to the influence of in-
organic carbon, which can elevate pCO2sea, thereby leading to heightened air–sea CO2
exchange. This phenomenon is vividly depicted in Figure 9A, wherein the presence of
calcium carbonate reservoirs within seagrass vegetation yields a notable impact on bolster-
ing the organic carbon stores in the aquatic environment. As a result, the air–sea CO2 flux
reaches an elevated level of 83.4 ± 18.3 mmol CO2 m−2 d−1. This relationship is mirrored
in the sediment domain as well, with organic carbon levels reaching 53.2 ± 6.8 gCorg m−2.
Various studies have asserted that the supplementary inorganic carbon within seagrass
beds is contributed by sources such as mangroves [23], macroalgae [73–76], and land-based
pollutants, which can lead to the colonization of epiphytes (macrophytes) [77]. Notably,
additional sources of carbonate (inorganic carbon) can be attributed to the presence of
mangroves in the Mangrove Inn (depicted in Figure 8A). The introduction of allochthonous
carbon from upstream sources stems from contributions originating from rivers and man-
groves. As elucidated by the findings of [23], the allochthonous influx of mangroves,
primarily in the form of groundwater input (measured at 18.1 ± 5.8 mmol CO2 m−2 d−1),
emerges as a significant factor driving the escalation of pCO2sea. This underscores the
pivotal role of water in acting as a substantial source of CO2 within mangrove ecosystems.
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Figure 9. A schematic diagram illustrating the following: (A) The presence of vegetated seagrass and
alongside source carbonates (Padina pavonica, calcareous epiphytes, and allochthonous mangrove),
leading to an augmentation of OCS as well as an elevated release of CO2 into the atmosphere; (B) a
comparison between vegetated and unvegetated seagrass scenarios, highlighting that vegetated
seagrass not only exhibits a higher capacity for storing OCS but also contributes to a comparatively
lower release of CO2 into the atmosphere.



Diversity 2023, 15, 978 18 of 23

Ecosystems of seagrass, encompassing algae and epiphytes, exhibit an increase in their
inorganic carbon content. This increase is notably attributed to the calcification process
within the macroalgae Padina pavonica, belonging to the Phaeophyceae class, as observed
in Menjangan Kecil (Figure 8B). Likewise, calcareous epiphytes contribute to this trend,
notably in Lendra (Figure 8C). In seagrass meadows enriched with substantial nutrient
concentrations, the presence of green and red algae predominates, whereas seagrass beds
characterized by lower nutrient levels are predominantly populated by brown algae, such
as Padina pavonica [78]. This investigation reveals that both Mangrove Inn and Lendra
have elevated nutrient levels (measuring 0.78 and 0.85 mg L−1, respectively), where green
calcareous epiphytes are prevalent. On the other hand, Menjangan Kecil displays lower
nutrient levels (0.66 mg L−1) and hosts Padina pavonica (brown algae), constituting over
50% of the seagrass meadow composition. Notably, the calcification processes in both the
macroalgae and the green calcareous epiphytes lead to the generation of calcium carbonate
(CaCO3), thereby establishing the waters as a source of CO2, resulting in positive CO2
fluxes. These intricate interactions highlight the dynamic relationship between seagrass
ecosystems, algae, and epiphytes, as well as their roles in influencing the inorganic carbon
content and subsequent CO2 fluxes within the aquatic environment.

The process of photosynthesis engenders CO2 consumption, leading to a rise in
water pH and consequent enhancement of carbonate saturation (CO3

2−), a phenomenon
pivotal for supporting CaCO3 precipitation (as depicted in the equation in Figure 9A). The
subsequent calcification of CaCO3 engenders an upsurge in carbonate (CO3

2−) within the
water, contributing to an increase in pCO2sea and, subsequently, a significant return of CO2
to the atmosphere (as illustrated in Figure 9A).

In accordance with [74], calcium carbonate takes form in three crystalline structures:
calcite, aragonite, and magnesium calcite. Among the Phaeophyceae class, only two genera,
Padina spp. and Newhousia imbricata, are recognized for their calcification capabilities,
precipitating aragonite, a compound with distinct solubility characteristics in seawater,
further augmenting inorganic carbon [74]. Earlier research [14] posits that seagrass mead-
ows within tropical regions serve as vital hubs for calcium carbonate production. The
calcium carbonate content notably depends on seagrass species marked by larger sizes
and prolonged leaf lifespans. These factors contribute to heightened calcareous epiphyte
presence, facilitating an elevated accumulation of particulate inorganic carbon (PIC) and
saturation state of CO3

2− [79,80]. Furthermore, they play a role in CO2 removal from water
by actively participating in CaCO3 precipitation [75].

The occurrence of calcium carbonate precipitation brings about transformations in the
inorganic carbon system, thereby amplifying pCO2sea, a process that prompts the liberation
of dissolved CO2 from seawater into the atmosphere. This phenomenon has been sub-
stantiated by previous studies [14,74,81–86]. Collectively, these outcomes underscore that
organic carbon stocks alone cannot be deemed the sole, determinant factor in delineating
the status and role of seagrass-dominated waters [83,84,87]. The intricate interplay of
various processes, including CO2 consumption, carbonate saturation, and CaCO3 precipita-
tion, collectively contribute to the intricate balance of the inorganic carbon system within
these ecosystems.

On the contrary, this study has revealed that aquatic environments with abundant
vegetation have the capacity to effectively sequester a larger quantity of organic carbon
within their sediments. For instance, in comparison to sediments devoid of vegetation,
which contained approximately 1840 ± 666 gCorg m−2 of organic carbon, a previous
investigation conducted in the Baltic Sea demonstrated that sediment enriched with Zostera
marina vegetation harbored a substantial 7785 ± 679 gCorg m−2 of organic carbon [88].
Consequently, while vegetated regions might act as sources of CO2, they also contribute
significantly to the mitigation of CO2 emissions into the atmosphere. In scenarios devoid of
vegetation, CO2 emissions could escalate, potentially even reaching double the emissions
observed in vegetated environments.
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The findings of this study underscore the pivotal role of seagrass ecosystems in
effectively sequestering organic carbon within both their biomass and sediment layers.
Notably, the carbon content within organic sediments present in vegetated areas (seagrass
sediments) surpasses that of their non-vegetated counterparts (non-seagrass sediments),
as depicted in Figure 9B. This disparity in carbon storage indirectly influences the CO2
flux within the surrounding waters; the existence of seagrass vegetation correlates with a
diminished CO2 flux, as contrasted with areas where seagrass is absent (unvegetated), as
illustrated in Figure 9B.

Nonetheless, it is important to acknowledge that various factors can augment CO2
flux within seagrass ecosystems. Notably, the introduction of carbonate sources (inorganic
carbon) from allochthonous mangroves, Padina pavonica, and calcareous epiphytes, as
depicted in Figure 9A, can intensify CO2 flux. Regrettably, this study did not encompass
measurements of inorganic carbon and calcium carbonate calcification. Consequently,
safeguarding the health and carbon storage capacity of seagrass demands a proactive
approach, which includes mitigating detrimental human activities like the direct disposal
of pond waste into the waters and the use of trawl nets. Furthermore, the imperative
for seagrass conservation and restoration within Karimunjawa waters becomes evident,
particularly in areas with limited species diversity and sparse seagrass coverage.

5. Conclusions

This research stands as the inaugural account of blue carbon within the context of sea-
grass and sea–air CO2 flux in Karimunjawa waters. Our study illuminates the paramount
significance of seagrass ecosystems in the Karimunjawa region, elucidating that vegetated
areas (seagrass meadows) boast substantial sediment organic carbon stocks. Notably, these
vegetated areas contribute to the reduction of CO2 release into the atmosphere, as evidenced
by their lower air–sea CO2 flux values in comparison to unvegetated regions (non-seagrass
meadows). These findings underscore the pivotal role of seagrass meadows in carbon
sequestration and the storage of carbon within both seagrass biomass and sediment layers,
potentially curtailing the release of CO2 into the atmosphere.

However, it is worth acknowledging that the presence of a calcium carbonate source in
the form of inorganic carbon can amplify sediment organic carbon stocks and correspond-
ingly escalate the release of CO2 into the atmosphere. The inclusion of inorganic carbon
(calcium carbonate) originating from sources like allochthonous mangroves in Mangrove
Inn, calcification processes in brown algae Padina pavonica at Menjangan Kecil, and calcare-
ous epiphytes at Lendra was not encompassed within this study’s scope. Consequently,
future research endeavors should delve into specific investigations to calculate the contri-
bution of inorganic carbon (carbonate) alongside organic carbon, especially across different
seasons (such as the northwest monsoon). Such studies would shed light on the intricate
dynamics of water–air CO2 flux within seagrass meadows and the net carbon absorption
potential of seagrass ecosystems.
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