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Abstract: Biological invasions pose significant challenges in the Anthropocene, impacting ecosystem
biodiversity and functioning. Ecological Niche Modeling is widely used to evaluate potential areas at
risk of invasions, aiding in the prevention of invasive-species expansion and guiding conservation
efforts in freshwater ecosystems. The main objectives of this study were to model the ecological niche
and evaluate remaining suitable habitat areas for the occurrence of five potentially invasive species
of freshwater decapods in South America: Dilocarcinus pagei, Macrobrachium amazonicum, M. jelskii,
M. rosenbergii, and Procambarus clarkii. Occurrence data from the Global Biodiversity Information
Facility were complemented with a literature systematic review. Variables used in the models were
obtained from the Worldclim and EarthEv databases. Ecological Niche Modeling was performed
using the Biomod2 and sdm package algorithms. Our results indicated a suitable area of up to 11%
of South America. Model evaluations yielded favorable TSS and AUC values (>0.7 and >0.8). The
suitable areas projected for South America included several hydrographic basins and Protected Areas.
The information generated in our study can help identifying areas susceptible to decapod invasion in
South America and support local management and decisions.

Keywords: biological invasions; crustaceans; niche modelling

1. Introduction

The introduction of species into environments outside their natural distributions
has caused significant ecological damage in several ecosystems, representing the second
leading cause of biodiversity loss worldwide [1,2]. The presence of non-native species
negatively affects native counterparts, causes extinctions, and disrupts the biotic structure
of the ecosystem, while also affecting the economies of several countries [3,4].

In South America, the number of non-native and invasive freshwater species has
increased in the last decade, mainly due to climate change and the degradation of aquatic
ecosystems such as predatory fishing and urbanization [5–8]. Non-native species can tol-
erate a wide range of environmental conditions due to their ecological plasticity, having
advantages in resource competition with native fauna, drastically reducing local popula-
tions, and leading to significant biodiversity loss and extinction [9].

Freshwater macro- and microcrustaceans have a high invasive potential and are linked
to the exploitation of natural resources and anthropogenic impacts, in particular decapods,
which are frequently associated with aquaculture in developing countries [10,11]. Decapods
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are adapted to freshwater ecosystems, tolerating different salinities and temperature varia-
tions which gives them an advantage in colonizing new environments by affecting their
reproductive cycle and embryonic and larval development [12–14]. Additionally, several
non-native species share the characteristic of tolerating extreme or atypical conditions
during their reproductive cycles [15,16].

The South American subcontinent covers more than 17 million km2 and represents
approximately 23% of all freshwater bodies in the world, making it one of the world’s
most biodiverse regions [17]. Furthermore, the introduction of non-native species and the
possibility of biological invasions are constant threats to South America’s biodiversity. Due
to its large territorial extension and latitudinal amplitude, South America has different
climates, ranging from intense humidity in the Amazon Forest to strong aridity in the
Atacama Desert and the Caatinga. It also presents an extensive combination of terrains that
interfere with terrestrial and aquatic ecosystems. Thus, the selection of climate, topographic
and hydrological variables is important to evaluate the possible impacts of non-native
decapod species on South American aquatic ecosystems [18,19].

In South America, P. clarkii (Girard 1852), Macrobrachium amazonicum (Heller 1861),
M. jelskii (Miers 1878), M. rosenbergii (De Man 1879), and D. pagei (Stimpson 1861), are five
important freshwater decapods with a strong invasive potential. Procambarus clarkii and
M. rosenbergii are native to North America and Asia, respectively, and were introduced in
South America for commercial purposes, while M. amazonicum, M. jelskii and D. pagei are
native to the Amazon region, but can be considered transplants in other regions of South
America, because their introductions were provided by anthropogenic actions [20].

The non-native species, P. clarkii and M. rosenbergii, are widely distributed globally, and
their impacts on the native species’ community are well-known [21–24]. The occurrence of
these species in protected areas can have long-term negative effects on aquatic ecosystems,
reinforcing the need for careful attention to the cultivation of this species. Procambarus clarkii
is considered one of the most invasive crustacean species in the world, and its introduction
outside its natural environment has mainly been for commercial purposes in aquaculture
or as a pet [25]. Thus, P. clarkii has caused impacts on various sectors of the economy, such
as rice fields, damaging fishing nets, and negatively affecting amphibian communities and
aquatic plant diversity [26,27]. Additionally, P. clarkii can be a vector of diseases and an
important transmitter of the crayfish plague, which is of great concern to the native crayfish
community [28,29].

The other species, M. amazonicum, M. jelskii, and D. pagei, are native to the Amazon
region [26,30]. The species Macrobrachium jelskii and M. amazonicum were introduced to
serve as food for some species of fish previously introduced in culture tanks and reservoirs
in the region [31], while the introduction of D. pagei in other regions of South America is
maybe accidental, through the transport of fish and macrophytes [26], and there are records
of these species in some basins in the southeast region of Brazil and close to the Pantanal
biome. Most of the research carried out in South America on non-native decapods is limited
to studies on shrimp farming, and little is known about the potential of farmed species to
invade inland waters and cause negative impacts [32–34].

Currently, the use of Ecological Niche Modeling (ENM) tools provides important
knowledge for monitoring and controlling the establishment of non-native species, as well
as supporting decision making on habitat conservation and priority areas for preserva-
tion [35–37]. ENMs are increasingly used in geoprocessing and biogeography projects
for mapping areas with a high risk of biological invasions [38,39]. ENM associates bio-
geographic and climate data with species distribution to predict suitable areas for species
occurrence [40,41].

MaxEnt is highly popular in ENM studies for its predictive capacity, bias reduction,
and use of background points to make accurate predictions even with incomplete informa-
tion, making it suitable for modeling large projection areas [42]. Recent studies have used
MaxEnt to review species pseudo-absences and found it to be more robust and effective
than other methods [43,44].
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Therefore, the aims of this study were to (i) model the ecological niches of three
transplant species of freshwater decapods in South America: D. pagei, M. amazonicum, M.
jelskii and two non-native species M. rosenbergii and P. clarkii; and (ii) determine the extent
of suitable habitat areas for the occurrence of those species in South America.

2. Materials and Methods
2.1. Study Area

The South America subcontinent territory is located at tropical latitudes, under the
influence of the Intertropical Convergence Zone and related circulation systems, creating
diverse patterns of weather, climate and climate variability [45]. Three large freshwater
basins dominate the South American subcontinent: Amazon, Orinoco and la Plata, and four
structural elements are relevant to the shape and behavior of these three large basins: (1) the
Andes; (2) foreland basins in the eastern Andes south of the Orinoco to the Chaco-Paraná
basin; (3) the Guiana and Brazilian shields reflecting Precambrian cratons and orogenic
belts of metamorphic rocks; and (4) the Central Amazon Basin, a large cratonic descendant
with some graben structures dating to the early Paleozoic era, connecting the foreland
basins to the west with a graben that locates the Amazon estuary on the Atlantic coast [46].

2.2. Species Selection

The study focuses on five freshwater decapod species with high potential for invasion
in South America, including the already invasive P. clarkii and M. jelskii, which cause
negative impacts such as predation and competition with native species and D. pagei, M.
rosenbergii and M. amazonicum, classified as transplant species with great potential for
invasion [5,26,47–52].

Dilocarcinus pagei is a freshwater crab with a high osmoregulation capacity and re-
sistance to different environments, potentiating the possibility of it becoming an invasive
species [53]. Although native to the Amazon region, as is also true for M. jelskii and M.
amazonicum, there are no records of this species being cultivated for economic and com-
mercial purposes. The apparent lack of commercial interest may decrease the likelihood of
deliberate introductions in new regions. However, accidental introductions through the
transport of fish or macrophytes could explain the presence of this species in the Paraná
River basins, Pantanal, and other regions in South America [26,50].

Macrobrachium amazonicum is a species native to the Amazon region, with its natural
distribution in the hydrographic basin of the Amazon and Orinoco River [54,55]. This
species is a notable representative within its genus because it can inhabit inland areas and
is not limited to coastal and estuarine regions [51]. It is considered the shrimp species
with the greatest potential for commercial cultivation in the region, which increases the
possibility of being introduced outside of its native area [56].

Macrobrachium jelskii has habitat and morphological characteristics very similar to
those of M. amazonicum. However, its distribution is more restricted to coastal areas from
Venezuela to the Bahia and Espírito Santo states in Brazil. It does not adapt as easily to
inland waters as M. amazonicum, although there are occasional records of this species in
the interior of the subcontinent, such as in Brazil (Minas Gerais and São Paulo States) and
Bolivia [26,57].

Macrobrachium rosenbergii is a freshwater shrimp native to inland waters of the Indo-
Pacific region and widely distributed in India, Vietnam, and Indonesia [58]. It was in-
troduced in South America in the mid-1980s in the Amazon region, and in recent years,
concerns have been raised about its potential impacts [59,60]. There are occasional records
of this species in northeastern Brazil (Gurupi and Parnaíba Rivers) and the Paraná River
basin near to Argentina’s border [61–63].

Procambarus clarkii is a crayfish native to North America, widely distributed in northern
Mexico and the south-central United States [64] with few records in South America; its
presence in Colombia and in São Paulo state (Brazil) may signal its invasive potential [65,66].
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2.3. Species Occurrence Data

For the systematic review and to compile data of the presence of five species, four
databases were explored—Web of Science www.webofscience.com (accessed on 29 January
2021), Scopus www.scopus.com (accessed on 29 January 2021) Scielo https://www.scielo.
br (accessed on 29 January 2021), and Aquatic Science and Fisheries Abstract (ASFA),
proquest.libguides.com/asfa (accessed on 29 January 2021). The same search term was used
across all databases: “(Procambarus OR Macrobrachium OR Dilocarcinus) AND (estuar* OR
wetland* OR mangrove* OR freshwater OR “aquatic environment” OR “aquatic ecosystem*”
OR lake* OR river* OR pond* OR reservoir* OR “drainage basin*” OR lagoon* OR “river
basin*” OR stream* OR waterfall* OR watercourse* OR brook* OR creek*)”. The systematic
review used peer-reviewed articles published from 1945 to January 29th, 2021. All articles
found in the four databases search were exported to a .RIS file, classified, and duplicates
were removed using EndNote Program (version x9.3.2) [67]. These articles were exported
to Microsoft Excel [68] to apply the inclusion and exclusion criteria. All articles with species
occurrence records with geographic coordinates were included. Articles without geographic
coordinates, but with location descriptions, were separated and later georeferenced using
the Google Earth website earth.google.com/2022 (accessed on 1 July 2022). Experimental
studies with captive animals, laboratory or aquaculture tanks, reports, scientific notes
(except new species records), pre-prints, and book chapters were not included in the
screening. The remaining occurrences were collected from the records published in the
Global Biodiversity Information Facility (GBIF 2022) database. A PRISMA matrix [69]
was generated to provide a better visualization of the results and to detail the occurrence
data collection. The main records were those found through the systematic review of the
literature, while additional records were obtained from GBIF occurrences.

2.4. Niche Modeling and Variable Selection

The occurrence data of selected species were statistically combined with biogeographi-
cal predictor variables extracted from WorldClim worldclim.org (accessed on 1 July 2022)
and EarthEnv earthenvi.org (accessed on 1 July 2022) databases to predict the species’ suit-
able niches based on the selected environment [70]. As EarthEnv variables are only available
at a resolution of 30 arc-second (1 km) and Worldclim variables at a resolution of 2.5 arc-
minute (4.5 km), it was necessary to standardize all predictor variables to approximately
5 km2 for all layers using the raster package [71] on R-program (4.1.2 version) [72] and the
QGIS program (3.16.16 version) [73]. The variables were cropped with consideration to the
South America shapefile as a “mask” using the tidyverse [74] and rnaturalearth [75] packages.

The EarthEnv data is available in high resolution for rivers and lakes and shows
monthly average values over each water body [76,77]. However, for large lakes where
conditions can be highly variable, the raster presents a single value that does not adequately
cover the range of environmental conditions and habitats available for freshwater environ-
ments. To address this issue, the 19 Worldclim bioclimatic variables were also added in
the modeling. This approach has been previously used in modeling studies for various
non-native or invasive species [38,78,79].

The EarthEnv variables were selected based on the species’ biology, therefore hydrocli-
mate, topography, flow, and precipitation were used. All variable layers were extracted
from netCDF-4 files available on the EarthEnv platform and were clipped to the same
extension and resolution as the Bioclimatic variables. Once standardized, the variables
were included in the same dataset, totaling 60 predictor variables from both databases.
After including these layers into a single dataset, multicollinearity between the variables
was assessed using the Variance Inflation Factor (VIF) in the usdm package [80] of the
R-project. Finally, highly correlated variables were excluded from the niche modeling,
with the default cutoff set at greater than or equal to 10 to avoid collinearity in statistical
models [80].

www.webofscience.com
www.scopus.com
https://www.scielo.br
https://www.scielo.br
worldclim.org
earthenvi.org
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2.5. Modeling Protocol

All occurrence records of the selected species were filtered to ensure unique coor-
dinates and exclude problematic points, such as those in oceans, biased towards large
institutions, capitals, redundant data, and duplicates. To further remove any sampling and
spatial biases that could negatively impact model construction, the spThin package was
used [81]. To perform ENM for the five decapods species, predictive variables for the entire
globe were selected in the same way as the occurrence records.

The niche modelling for all species was carried out based on their respective native
regions and projected onto the area of interest. For example, to perform niche modeling
of P. clarkii, the model was built using North America and projected onto South America.
Likewise, the niche modelling for M. rosenbergii was performed for the entire Asian conti-
nent and projected onto South America. This approach aims to minimize spatial sampling
bias and avoid the overfitting of the models, which can occur when using species records
from the entire globe. In this sense, a more reliable and realistic model is expected.

Models were evaluated using the area under the ROC (receiver operating characteristic)
curve (AUC) and the true skill statistics (TSS). AUC values range from 0 to 1, with values
of 0.9–1 considered excellent and 0.8–0.9 considered good. TSS values are threshold-
dependent and can range from −1 to +1, with positive values ranging from 0.2 to 0.5
considered poor, from 0.6 to 0.8 considered useful, and values greater than 0.8 considered
excellent [82,83].

The random selection of pseudo-absence points was used [84] as it was observed that
these algorithms tend to perform better because they manage to reduce spatial bias and
select points where the species have low suitability for occurrence [44]. In this sense, the
number of pseudo-absences was standardized for each species to reduce this bias further,
since an insufficient or excessive number of pseudo-absences can generate over-prediction
models, which produce maps with either very high suitability for the species or with no
biological sense. Thus, the models were run using 10 replicates of each randomly generated
pseudo-absences set with the default number of 1000 pseudo-absences for all species.
Records were entered using a 2.5 arc-minutes resolution for South America and randomly
divided into test and training, using 20% and 80% of the data, respectively, according to
Thuiller’s proposal [85].

The nine algorithms selected from the Biomod2 package were generalized linear
models (GLM) [86], generalized boosted models (GBM) [87], generalized additive models
(GAM) [86], classification tree analysis (CTA) [88], artificial neural networks (ANN) [89]),
surface range envelope (SRE) [90], flexible discriminant analysis (FDA) [91], multivariate
adaptive regression spline (MARS) [92], and random forest (RF) [93]. These algorithms
generated predictions using the default settings of the Biomod2 model [94]. Individual
predictions were then averaged to create an ensemble approach, with the four algorithms
showing the best performance selected based on the average TSS and AUC values for all
species. The four highest means of the TSS individual algorithm, with a cutoff value of 0.7,
and the four highest means of the AUC individual algorithm, were selected to produce the
final ensemble approach [95].

In addition, we produced a second model using the MaxEnt algorithm that used
background data as absence data. This model was created using the sdm package [95]
and default settings of 10,000 background points [43]. The modeling was performed at a
resolution of 2.5 arc minutes and divided randomly into test and training subsets, with
20% and 80%, respectively, similar to the Biomod2 package. We identified the contribution
of each variable to the model for each species using the default settings of the Biomod2
and sdm packages, which selects variables using Pearson’s correlation. We generated
suitability maps by combining the means of each generated model using the four best-
performing algorithms according to the TSS value for the ensemble [95]. AUC values were
also considered for algorithm selection, and only algorithms with an AUC greater than 0.8
were selected for the ensemble. The models used were classified as good or excellent [96,97].
The dataset of the models was grouped into a single map through the raster and terra
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packages [71] in R. For each species, we calculated the total suitability area using the field
calculator and the GRASS GIS r.class tools [98] in QGIS, with a cut-off point above 0.75.
Finally, priority areas with a high risk of invasion were defined by superimposing the
suitability areas of each species on the Protected Areas (PAs) and Watersheds shapefile
layers, available in the databases of the International Union for Conservation of Nature
(IUCN 2021).

3. Results
3.1. Species Presence Data

The systematic review of the literature resulted in 10,850 articles from the four
databases, obeying all inclusion criteria and search terms. After removing the duplicates
using Endnote, 9597 unique articles that were exported to Microsoft Excel (2306 version,
2016). Further screening excluded 8592 articles that did not meet the inclusion criteria,
leaving 1005 articles that contained species locations. After the final screening step, which
removed duplicate coordinates and papers with identical locations, there were 551 arti-
cles remaining. All articles selected in the data screening are included in Supplementary
Table S1.

The systematic review data are presented in the PRISMA flow diagram in Supplemen-
tary Figure S1. Through the literature review, we found approximately 20% more occurrence
records compared to those obtained through GBIF (n = 6801). In total, we recorded a total of
1367 occurrences which were included in the occurrence-record spreadsheet. Out of these
records, there were 42 unique coordinates for D. pagei, 213 for M. amazonicum, 116 for M.
jelskii, 105 for M. rosenbergii, and 908 for P. clarkii. The considerable increase in records of
occurrences, obtained through the systematic review of the literature, can be observed in
the maps of Supplementary Figure S2, resulting in the better performance of the models as
the number of occurrences increased.

3.2. Niche Modeling

All the variables selected (bioclimatic, hydrological, topographic, flow, and precip-
itation) by VIF to create the ENM for each species are listed in the table provided in
Supplementary Table S2. Despite the exclusion of many predictor variables, the only
common variable among all five species after VIF selection was the sum of monthly precip-
itation in November (prec11). The other variables that were present in at least four of the
five species were the minimum elevation (Elev1), the precipitation of the warmest quarter
(BIO18), and the average diurnal interval for hydrological variables (hydro2) (Table 1).

Table 1. Average of variables’ importance for the construction of the models of each species calculated
by Pearson’s correlation. P. clarkii = Procambarus clarkii, D. pagei = Dilocarcinus pagei, M. rosenbergii =
Macrobrachium rosenbergii, M. jelskii = Macrobrachium jelskii, M. amazonicum = Macrobrachium amazon-
icum. bio1 = Annual Mean Temperature, bio4 = Temperature Seasonality, bio8 = Mean Temperature of
Wettest Quarter, bio9 = Mean Temperature of Driest Quarter, bio13 = Precipitation of Wettest Month,
bio14 = Precipitation of Driest Month, bio18 = Precipitation of Warmest Quarter, prec2 = Sum of
monthly precipitation February, prec5 = Sum of monthly precipitation May, prec7 = Sum of monthly
precipitation July, hydro2 = Mean Diurnal Range, hydro9 = Mean Temperature of Driest Quarter,
hydro14 = Precipitation of Driest Month.

Species Variable Importance

M. amazonicum hydro14 (0.26) bio4 (0.25) hydro2 (0.18)
D. pagei bio14 (0.41) bio8 (0.39) bio18 (0.27)
M. jelskii prec5 (0.55) hydro2 (0.49) bio9 (0.45)
P. clarkii bio1 (0.49) prec7 (0.12) prec2 (0.07)

M. rosenbergii bio13 (0.31) hydro9 (0.24) bio8 (0.2)

The temperature and precipitation variables had a significant influence on the most
important predictor variables for constructing the models for each species (Table 1), with
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the terrestrial variables of WorldClim being important for all species. Additionally, precip-
itation, elevation, and hydrology were important for at least one species. We also noted
the November precipitation variable (prec11) which was selected by VIF for all species in
the present study (Table S2) but was not considered as one of the three most important
variables (Table 1).

Table 2 displays the mean TSS and AUC values for each algorithm used in the modeling
performed with the Biomod2 [84] and sdm [95] packages. The algorithms with the highest
mean TSS and AUC values were RF (0.86) and (0.96), GBM (0.82) and (0.95), GAM (0.77)
and (0.92), and GLM (0.76) and (0.90), respectively. The other algorithms (SRE, CTA, MARS,
FDA, and ANN) that were considered less predictive by the model evaluation were not
included in the ensemble.

Table 2. Mean AUC and TSS for each algorithm used in the niche modeling of the species M.
rosenbergii, P. clarkii, M. jelskii, D. pagei, and M. amazonicum. GLM = generalized linear models,
GBM = Generalized Boosted Models, GAM = generalized additive models, CTA = classifica-
tion tree analysis, ANN = artificial neural networks, SER = surface range envelope, FDA = flex-
ible discriminant analysis, MARS = multivariate adaptive regression spline, RF = random forest.
P. clarkii = Procambarus clarkii, D. pagei = Dilocarcinus pagei, M. rosenbergii = Macrobrachium rosenbergii,
M. jelskii = Macrobrachium jelskii, M. amazonicum = Macrobrachium amazonicum.

D. pagei M. amazonicum M. jelskii M. rosenbergii P. clarkii

Algorithm TSS ROC TSS ROC TSS ROC TSS ROC TSS ROC

SRE 0.52 0.76 0.42 0.71 0.27 0.64 0.44 0.72 0.51 0.76
CTA 0.60 0.78 0.60 0.71 0.65 0.84 0.80 0.91 0.83 0.94
RF 0.85 0.94 0.82 0.95 0.83 0.95 0.89 0.97 0.89 0.98

MARS 0.76 0.90 0.73 0.92 0.71 0.90 0.81 0.94 0.80 0.96
FDA 0.64 0.84 0.68 0.89 0.69 0.89 0.81 0.92 0.80 0.96
GLM 0.76 0.84 0.71 0.91 0.76 0.85 0.79 0.93 0.81 0.95
GBM 0.83 0.95 0.79 0.94 0.78 0.93 0.87 0.97 0.85 0.97
GAM 0.71 0.90 0.77 0.92 0.77 0.90 0.77 0.89 0.84 0.97
ANN 0.72 0.88 0.53 0.80 0.54 0.79 0.70 0.86 0.74 0.89

MaxEnt
** 0.73 0.84 0.82 0.94 0.72 0.94 0.77 0.93 0.75 0.94

Mean * 0.80 0.90 0.77 0.93 0.79 0.91 0.82 0.93 0.85 0.97

* The final mean only with the algorithms selected for the ensemble. The algorithms that were selected for
the ensemble are highlighted in bold. ** The MaxEnt algorithm was generated separately and was not part of
the ensemble.

The suitability maps for all species created by MaxEnt are shown in Figure 1A–E. All
models generated by MaxEnt had good performances, as indicated by their AUC and TSS
values, with values above 0.9 and 0.7, respectively, except for D. pagei, which presented an
AUC value of 0.84. Nevertheless, this still represents a useful predictive model (Table 2).
The ensemble maps created by Biomod2 also presented excellent performance, based on
the average AUC and TSS values, as shown in Figure 2. All species had AUC values greater
than 0.9, with D. pagei having slightly lower values in some algorithms, but still with an
excellent average of 0.9. The algorithms presented varied TSS values, but all had an average
above 0.7.
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(D) Macrobrachium rosenbergii, (E) Procambarus clarkii.

The ensemble result maps with niche suitability areas are shown in Figure 2A–E.
Dilocarcinus pagei (Figure 2A), and M. amazonicum (Figure 2B) suitability maps were very
similar, overlapping in almost the same hydrographic basins in the central region of South
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America. The areas of greatest suitability are in the la Plata basin, in Brazilian territory and
the middle portion of the Uruguay–Brazil basin and the Amazon River basin. The M. jelskii
suitability map (Figure 2C) showed its greatest suitability areas close to the Brazilian coast
that correspond to the river basins of East Brazil, the South Atlantic Coast, and Uruguay–
Brazil, the South Atlantic Coast. Finally, the niche models for M. rosenbergii (Figure 2D)
and P. clarkii (Figure 2E) showed excellent performance with the largest areas of suitability
among all species. The areas of greatest suitability are in mainly in the Southern South
America (la Plata River basin). More than 1.9 million km2 of South American territory have
a suitability greater than 0.75 for P. clarkii, while 953,640 Km2 of South American territory
is suitable for M. rosenbergii (Table 3).

Table 3. Suitability areas for each species modeled in square kilometers (Km2) and the percent-
age relative to the territory of South America occupation. P. clarkii = Procambarus clarkii, D. pagei
= Dilocarcinus pagei, M. rosenbergii = Macrobrachium rosenbergii, M. jelskii = Macrobrachium jelskii,
M. amazonicum = Macrobrachium amazonicum.

Ensemble MaxEnt

Species Suitability Area
(km2)

Suitability Area
(%) Suitability Area Suitability Area

(%)

D. pagei 315,772.00 1.78 219,116.00 1.24
M. amazonicum 528,434.00 2.99 282,224.00 1.59

M. jelskii 313,870.00 1.77 280,939.00 1.59
M. rosenbergii 953,640.00 5.39 171,715.00 0.97

P. clarkii 1,962,112.00 11.09 846,132.00 4.78

Thus, we highlighted all the PAs and the main watersheds susceptible to invasion as
priority areas for conservation, and this is shown in Supplementary Table S3. These areas
were defined by overlapping the IUCN layers of PAs and hydrographic basins for South
America, with the areas of suitability greater than 75% extracted from the maps of fitness of
the five species modeled for this study.

4. Discussion
4.1. Suitability of Areas to Species Invasion

From the three that occur naturally in South America, M. amazonicum was the species
that attracted the most attention in terms of its high invasion potential. This species is the
most commercially exploited among the Macrobrachium species [56], and the results of the
study highlight the urgent need for management strategies. Our results indicate that a
large area (±3% of the entire territory of South America) is suitable for the occurrence of M.
amazonicum. This area overlaps with several watersheds in the Southeast Region of Brazil
and areas close to the Mato Grosso Pantanal, which also includes regions of Paraguay and
Argentina [99], as well as areas of environmental protection.

The species that showed the greatest suitability area were P. clarkii and M. rosenbergii,
with ~11% and 6% of the total South American territory being suitable for these species,
respectively. Procambarus clarkii is a well-studied species that is ecologically and economi-
cally important. As a result, numerous modeling studies have been conducted to predict its
invasive potential in both present and future scenarios, with global or regional projections.
These studies have results similar to those presented in our study [5,48,100]. In addition, a
study in Mexico demonstrated that P. clarkii can overlap habitats with native freshwater
shrimp belonging to the genus Macrobrachium, resulting in significant impacts on the com-
munity of these species [101]. However, no affected organisms or impacts resulting from
the presence of P. clarkii in South America have yet been described. Nevertheless, due to its
great invasive potential, the presence of this species in aquatic ecosystems is a cause for
concern [102,103].

For M. rosenbergii, little is known about the effects of introducing this species in South
America, although there is evidence of invasions and impacts on native species on almost
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all continents [51]. The Amazon region requires particular attention and containment
strategies due to the Amazon Forest domain and nearly the entire Amazon River and
Orinoco basin. Several native species occur in this region, including the native range of
three of the five species in this study, as well as others with great ecological importance
for the Amazon freshwater ecosystems [104,105]. The primary cause of the escape and
establishment of M. rosenbergii in non-native environments is the lack of monitoring and
maintenance of culture tanks [106], and all impacts discussed in the literature have only
been described from other continents. This serves as a warning for a possible long-term
biological invasion of M. rosenbergii in South America. Additionally, native species are
at risk of competition for food and resources because M. rosenbergii can tolerate diverse
environmental conditions [62].

The suitable areas modelled for M. jelskii were limited to regions close to the Brazilian
coast, being a limiting factor for possible colonization within the continent, a natural imped-
iment to the advancement of the species. However, the species has been found in interior
regions, indicating that its ecological plasticity may allow for successful colonization in
new areas. Anthropogenic actions may be the main cause of the introduction of this species
outside the Amazon region, as is the case for M. amazonicum and D. pagei. Nonetheless, little
is known about the biology and ecology of these species, and it is imprecise to calculate the
impacts caused outside their natural distribution [105].

The presence of this species in coastal and estuarine regions within the Atlantic Forest
domain, which includes several biological reserves, PAs, RPPN and Integral Protection
Areas, raises concerns about its spread in South America. Although some authors consider
M. jelskii an invasive species, the lack of studies demonstrating impacts makes this statement
questionable [25,107,108].

4.2. Niche Modeling

The MaxEnt algorithm was used to generate models of the ecological niche for different
species, with AUC values above 0.9 indicating good suitability areas, which were compared
to models generated by other algorithms [83]. However, TSS values were lower for some
species, with only M. amazonicum having TSS values above 0.8. The ensemble of the best
models generated by the different algorithms was used to select the best models for each
species, resulting in AUC means above 0.9 for all species. Procambarus clarkii had the highest
TSS and AUC values due to a higher number of presence records. Sampling biases and
noise were minimized with systematic reviews, which contributed to the species occurrence
data by increasing the sample universe and reducing spatial bias [109]. Terrestrial variables,
especially bioclimatic and topographic variables, were used to build the models. The lack
of more accurate data for freshwater ecosystems makes the use of terrestrial variables
advisable. However, for large extensions such as a country or continent, predictors with a
high enough resolution and global scale are needed [76,110].

The use of MaxEnt and algorithms from the Biomod2 package brought relevant
information to the present work because even using two different modeling tools, the results
were similar, both in the suitability maps and in the model evaluation, with excellent results
according to the literature. However, the differences observed in the suitability models
generated by the MaxEnt algorithm and by the ensemble are due to the difference in the
sensitivity and performance of the algorithms, which does not influence the quality of the
model [111,112]. While the study provides new information on the potential niches of exotic
and invasive species, further research is needed to better understand their distributions in
Brazil. Future work should focus on collections and fieldwork in high-risk areas to verify
whether they are already colonized, as well as projecting future results in conjunction with
climate change data to gain more accurate information about species expansion.

Few studies used the overlapping of terrestrial and aquatic predictor variables simulta-
neously, especially when referring to crustaceans [113,114]. In this sense, by concomitantly
associating terrestrial variables and aquatic variables as a single set of predictive variables,
we managed to build a more robust model capable of mitigating the inherent deficits of each
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database. This is the first work that modeled crustacean species associating the WorldClim
terrestrial bioclimatic variables and EarthEnv aquatic variables.

Another corroboration of our results is that the training models, using only WorldClim
data, presented results that were overfitted or without biological meaning and, when
designed for the interest region, presented a low performance. Something similar occurred
in [79] who also obtained a low predictive capacity. However, when associating the
WorldClim variables with the IPCC predictive variables, which allowed for the contrasting
of biases of the two variables, they exhibited greater environmental similarity between
the training areas and testing, resulting in predictions with better performance. Some
studies managed to predict the invasive capacity of certain species, including P. clarkii, by
associating the Worldclim predictor variables with the aquatic variables available in the
United States Great Lakes database [37,115]. Additionally, [116] showed that new SDM
tools, including EarthEnv’s unique freshwater variables, are estimating invasion probability
with increasing accuracy, especially when combining local habitat data. However, it is
almost unanimously agreed that the characterizations of freshwater conditions available in
the databases are still primitive and with many limitations that need improvement to make
the ENM even more robust. This condition still makes the aquatic species ENM dependent
on terrestrial variables [76,117].

The contribution of precipitation variables to the model construction was significant
for all species, as it aligns with the reproductive cycle and favorable environments for
larval development. The rainy season, particularly from November to March, is correlated
with the reproductive peak for some species such as M. jelskii [118,119]. High precipitation
leads to a decrease in salinity, favoring embryonic development and larval growth, while
dry seasons result in higher salinity and, in turn, favor reproduction in some species. The
importance of precipitation variables in the models was further supported by studies
showing the positive relationship between rain volume, nutrient input and decreasing the
salinity [120–123]. In contrast, in the dry season, salinity is higher, favoring reproduction
in these periods, resulting in a high production of eggs throughout the year in most
species [14]. This factor corroborates the precipitation variables of the driest month (bio14
and hydro14) that were the most important for the D. pagei and M. amazonicum models,
respectively.

The reproductive physiology of decapods is directly affected by air and water temper-
ature, as they promote the growth of gonadal tissues [124–126]. In addition, the average
diurnal interval (Hydro2), which analyzes the fluctuation of the maximum and minimum
water temperature throughout the year, was important in the construction of the models
of M. jelskii and M. amazonicum. Studies with M. amazonicum and other species of Macro-
brachium reinforce that this temperature fluctuation can directly influence the number of
individuals [12,127]. Finally, the average temperature of the warmest quarter (bio8) was
important for the construction of the models for M. rosenbergii and D. pagei. Thus, the
period of the year with the highest temperatures and the highest precipitation rates allows
the decapod species to have more reproductive success, and these variables are important
for their ecological niche definition.

5. Conclusions

Our results demonstrated that the Southeast Region of Brazil and the Pantanal are
particularly vulnerable to invasion by freshwater decapod species. In addition, our study
underscores the importance of the conservation and preservation of vulnerable habitats,
particularly those located within Biological Reserves and Protected Areas, to prevent
colonization by invasive species. However, we believe that our findings can inform efforts to
protect aquatic and terrestrial biodiversity and guide the development of conservation and
management measures to mitigate the risks of invasion and promote sustainable development.
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www.mdpi.com/article/10.3390/d15070841/s1, Figure S1: Flowchart of the PRISMA Matrix refer-
ring to the systematic literature review process; Figure S2: Occurrence maps of species; Table S1:
Paper list resulting from the systematic review; Table S2: Predictor variables list, extracted from
WorldClim and EarthEnv databases. Highlighted with an X are the variables selected through the
Variance Inflation Factor (VIF) for each species; Table S3: Area of suitability greater than 75% of the
species Dilocarcinus pagei, Macrobrachium amazonicum, Macrobrachium jelskii, Macrobrachium
rosenbergii and Procambarus clarkii, which overlap the hydrographic basins and protected areas in
South America.
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