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Abstract: Understanding the genetic structure and differentiation in endangered species is of signifi-
cance in detecting their phylogenetic relationships and prioritizing conservation. Here we sampled
five endangered Cycas species endemic to southwest China and genotyped genetic structure and
differentiation among them using the genotyping-by-sequencing (GBS) method. C. hongheensis
showed high genetic diversity, but the other four species showed low genetic diversity. The genetic
diversity between wild and cultivated populations was similar for C. debaoensis and C. guizhouen-
sis, respectively. Low genetic differentiation and high gene flow were found among C. debaoensis,
C. guizhouensis, and C. fairylakea, and C. hongheensis differentiated from them at ~1.74 Mya. TreeMix
results showed historic migration events from C. guizhouensis to C. hongheensis, showing southward
migration pathways. C. hongheensis showed increased effective population size with time, while
the other four species underwent bottleneck events at ~1–5 Mya when continuous cooling events
occurred. Our results indicate that the migration, differentiation, and speciation of Cycas species are
associated with historical cooling events.

Keywords: Cycas; endangered species; species differentiation; genotyping-by-sequencing; genetic diversity

1. Introduction

The genetic diversity of species determines their adaptation and survival to local
environments, particularly within the context of global climatic change [1]. Historical
climate change and habitat fragmentation caused by human activities pose threats to
small and isolated populations of plants [2]. Low genetic diversity likely increases the
extinction risk of species [3]. Gene flow and genetic differentiation between populations
are generally influenced by habitat fragmentation, overexploitation, and reproductive
behavior [4]. Stresses from extreme environmental conditions can exacerbate inbreeding,
accumulated genetic load, and other latent genetic issues [5], which likely decrease low
effective population size and genetic diversity [6]. Genetic variations, or polymorphisms,
reflect the viability and evolutionary potential of natural populations [7], which is crucial for
understanding the evolutionary history of extant populations, particularly for endangered
species that need effective conservation and management strategies.

It is necessary to study the genetic diversity of endangered plants to scientifically
guide protection because the extinction of endangered plants may lead to the destruction
of the entire ecosystem [8]. To study genetic diversity, gene marker techniques have been
used in plant protection, such as single nucleotide polymorphisms (SNPs), microsatellites
(SSRs) [9,10], and random amplified polymorphisms (RAPDs) [11]. SNPs are the most
diverse at the DNA level and can reflect the genetic variation of endangered species [12],
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particularly in small populations [13]. Qian et al. [12] evaluated the genetic structure and
differentiation of endangered Pinus bungeana using SNPs and proposed potential historical
migration events between populations. In a previous study, we used SNPs to evaluate the
differentiation history of short-leaved yellow cedar (Pseudotsuga brevifolia) populations and
proposed that climate change led to their southward migration [14]. Cai et al. [15] studied
the genetic variation of Horsfieldia tetratea, one plant species with extremely small popula-
tions (PSESP), supporting the development of effective conservation strategies for species.

As one of the most primitive gymnosperm species in the world, cycad species are key
objectives in the evolutionary history of seed plants [16,17]. Cycads comprise two families,
Cycadaceae and Zamiaceae, with 10 genera and 344 accepted species [18]. Around ~40% of
the species are threatened based on the International Union for Conservation of Nature
(IUCN) Red List [17,19]. East Asia is the ancestral area of Cycadaceae, and the extant
Cycadaceae originated before the Eocene period (~43 Mya) [20]. Cycas is the oldest genus
in the monotypic Cycadaceae family, with ~118 species [21–23], and the Cycas genus is
divided into six sections, i.e., Stangerioides, Asiorientales, Indosinenses, Cycas, Panzhihuaenses,
and Wadeae [23]. The section Indosinenses is regarded as a sister section to the other sections.
We here sampled five endangered Cycas species with small population sizes, i.e., Cycas
debaoensis, C. guizhouensis, C. fairylakea (C. szechuanensis W.C.Cheng & L.K.Fu in POWO and
C. szechuanensis subsp. fairylakea (D.Yue Wang) in WFO), C. diannanensis, and C. hongheensis.
The first four species belong to the section Stangerioides, and C. hongheensis belongs to the
Indosinenses section [17]. The C. debaoensis and C. hongheensis are mainly distributed in
Yunnan and Guangxi provinces, China [17,24,25]; the C. guizhouensis is an endangered
plant endemic to southwest China [26,27]; wild C. fairylakea species live in Guangdong
and Guangxi provinces [28]; and the C. diannanensis is endangered and endemic to the
Red River region in Yunnan province [29]. Furthermore, C. guizhouensis and the other
four species are plant species with extremely small populations (PSESP) [30]. Cycas species
have been facing potential endangerment challenges due to the overexploitation of orna-
mental plants in nature.

Previous studies mainly focused on cycad phylogeography, population genetics, and
conservation strategies [20,25,31–37], and found low genetic diversity and high genetic
differentiation among Cycas species [20,29,34,38,39]. However, most of these studies were
based on a few molecular markers, and little is known about the genetic evolution and
demographic history of Cycas species [40,41]. Thus, it is urgent to detect the genetic
diversity, differentiation, and historical population dynamics of Cycas species [38,41]. We
investigated genetic diversity and differentiation for five Cycas species and their historical
dynamics with climate change using genotyping-by-sequencing (GBS). Understanding the
genetic background of Cycas species provides the basis for developing in situ and ex situ
conservation strategies.

2. Material and Methods
2.1. Sample Collection

We sampled 133 individuals from five Cycas species, C. debaoensis, C. diannanensis,
C. fairylakea, C. guizhouensis, and C. hongheensis, in Yunnan, Guizhou, Guangxi, and
Guangdong provinces, China (Figure 1 and Table 1). Among these samples, there were
29 cultivated C. debaoensis and 31 cultivated C. guizhouensis individuals that had been
transplanted from nature (Table 1). Around ~50 g of fresh leaves per plant were sampled
and dried in allochronic silica gel for DNA extraction.

The genomic DNA of young leaves from these 133 individuals was extracted using a
plant genomic DNA extraction kit (TIANGEN BIOTECH, Beijing, China). The purity of the
extracted DNA was detected using a Nanodrop spectrophotometer (ND-1000, Thermos
Fisher Scientific, Wilmington, NC, USA), and DNA electrophoresis was simultaneously
performed in a 1% agarose gel to ensure DNA integrity. A Qubit 2.0 fluorometer (Invitrogen,
Carlsbad, CA, USA) was used to accurately measure the DNA concentration. High-quality
DNA was used for subsequent GBS library construction and sequencing.
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Figure 1. Sampling sites and geographic distributions of the five Cycas species in China.

Table 1. Genetic diversity of Cycas species based on all sits (variant and fixed).

Species N Populations Variant Sites Private Poly sites Poly (%) p Ho He π

C. debaoensis 53
CS 29

1121 21 1011 90.187 0.877
0.242 0.201 0.200

WS 24 0.268 0.220 0.198

C. diannanensis 17 1121 1 862 76.896 0.894 0.203 0.184 0.234

C. fairylakea 21 1121 9 854 76.182 0.899 0.190 0.171 0.222

C. guizhouensis 36
CS 31

1121 10 1026 91.525 0.890
0.186 0.166 0.200

WS 5 0.400 0.336 0.198

C. hongheensis 6 1121 0 311 27.743 0.928 0.428 0.360 0.447

Abbreviation: N, population sample size; Variant sites, variant nucleotide sites; Private, the number of variable
sites unique to each population; Poly, a percentage of polymorphic loci; Ho, the average observed heterozygosity
per locus; He, the average excepted heterozygosity per locus; π, the average nucleotide diversity; FIS, the average
Wright’s inbreeding coefficient; CS, cultivated population; WS, wild population.

A total of 0.1–1 ug genomic DNA per sample was digested with two restriction
enzymes, EcoRI and PstI (New England Biolabs, Beverly, MA, USA), at 37 ◦C for 8 h. The
ligation products of all samples were equally pooled and size-selected into 300–500 bp
fragments using agarose gel electrophoresis. After manipulating gel purification, derived
fragments were used as templates for PCR amplification via 25 cycles with EcoRI and
PstI adapter universal primers using Prime Star Max DNA Polymerase (Takara, Dalian,
China). Finally, the amplicons were size-selected once more into 350–500 bp fragments.
The resulting ddRAD library was sequenced on the Illumina HiSeq X ten platform with the
paired-end 150 (PE 150) sequencing strategy (Novogene Bioinformatics Technology Co.,
Ltd., Beijing, China). We matched the clean reads individually to the barcodes and remnant
restriction sites at both ends [42].
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2.2. SNP Calling

Quality control of the FASTQ-format raw data was performed with the software
FastQC [43], while adapter sequences and abnormal nucleotide bases at the 5′terminus were
removed. Preprocessed sequence reads were subjected to Stacks v2.0’s, “process_radtags”
module to confirm the demultiplexed reads and to check the restriction enzyme sites using
default parameters. The quality control for the per-base quality of reads and removal of
potential adaptor sequences was performed using FastQC and Cutadapt. Reads were then
mapped to C. hongheensis as a reference genome using Bowtie2 [44]. The bash command cat
was used to combine the two sequences of each sample generated by paired-end sequencing
into one sequence. SNP calling for each sample was performed using the Stacks pipeline
to build loci (ustacks), create a catalog of loci (cstacks), match samples back to the catalog
(sstacks), transpose the data (tsv2bam), add paired-end reads to the analysis, call genotypes,
and perform population genomics analysis [45]. For the stacks parameter, m = 5 was set to
the minimum coverage depth, and m = 12 was set to the maximum distance between stacks
within an individual. The cstacks module-built directories for all samples have n = 12, set as the
maximum number of mismatches allowed between individuals. In the population module,
we set p = 8 and r = 0.6 to call consensus SNPs. The remaining parameters were defaults.

2.3. Genetic Diversity and Structure Analysis

We calculated the number of private alleles, expected heterozygosity (He), observed
heterozygosity (Ho), nucleotide diversity (π), and inbreeding coefficient (FIS) using the
“populations” module in Stacks [45].

Population structure was performed from a Bayesian-based analysis using the software
Admixture v 1.3.0 [46], and results were visualized in Plink v 1.90 [47]. A population
structure analysis of 1–6 clusters was set up (K = 1–6), and the cross-validation error (CV
error) was calculated by Admixture v 1.3.0 with the sum of the values of 10 permutations.
Principal component analysis (PCA) was performed using the R package adegenet to identify
the genetic variation of populations [48].

2.4. Gene Flow and Genetic Differentiation

We used a composite-likelihood approach implemented in TREEMIX (v1.13) to test
gene flow among the five Cycas species [49]. The TREEMIX algorithm was run from
0 to 6 migration events using the –m parameter. Residuals were used to select the
best-fit model.

The coefficient of genetic differentiation (FST) among populations was calculated in the
program vcftools [50]. The values of Nm were estimated from FST, as Nm = (1 − FST)/4 FST
for indirectly estimating gene flow [51]. Analysis of molecular variance (AMOVA) was
conducted to assess genetic differentiation within populations in Arlequin 3.5.2.1 [52], and
the significant level of the variance components was computed using 1000 permutations.

2.5. Population Demographic History

The maximum likelihood (ML) phylogenetic tree of the populations was constructed
using the IQ-tree with the recode-INFO-all model [53].

Effective population size was inferred by Stairway Plot v2, a model-flexible method for
inferring historical changes in population size based on site frequency spectrum (SFS) [54].
We set the mutation rate at 1.0 × 10−8 per site and the generation time at 40 years (Interna-
tional Union for Conservation of Nature, 2020). A folded SFS-formatted file was generated
by the Python script “easySFS”.

Fastsimcoal 2 (v 2.5) was used to detect bottleneck events based on Ne [55]. The
mutation rate was set to 1.0 × 10−8 because the common mutation rate of the Cycas family
is 1.0 × 10−8 [56]. Statistical models were estimated 50 times, each with 10,000 simulations
and 40 executed loops (ECM cycles) for each estimation [57]. The optimal model was
selected with the highest parameters.



Diversity 2023, 15, 643 5 of 15

3. Results
3.1. SNP Characteristics of Cycas Populations

The cstacks module processing generated 3,649,319,605 ± 832,280,494.5 reads, and
the average depth per site was 7.5×. We identified 538,982 raw SNPs and then obtained
18,597 loci with 5605 variant sites after SNP calling and filtering with the population module.

3.2. Genetic Diversity of Cycas Species

The populations of five Cycas species showed similar observed heterozygosity
(Ho = 0.145–0.428), expected heterozygosity (He = 0.128–0.360), and nucleotide diversity
(π = 0.151–0.447) (Table 1). Among the five Cycas species, C. hongheensis (Ho = 0.428,
He = 0.360, π = 0.447) (Table 1) showed the highest genetic diversity, while C. debaoensis
exhibited the lowest genetic diversity (Ho = 0.145, He = 0.128, π = 0.151) (Table 1). The
genetic diversity (Ho, He, and π) between cultivated populations and wild populations was
similar for C. debaoensis and C. guizhouensis, respectively (Table 1).

3.3. Genetic Phylogenetic Relationship of the Five Cycas Species

The population structure analysis showed that the C. debaoensis species differed
from the other four species (K = 2) (Figure 2 and Table S1). When K = 3 (best delta
K, Figure 2), C. debaoensis, C. fairylakea, and C. guizhouensis separated, while C. hongheensis
and C. diannanensis showed introgression from C. fairylakea and C. guizhouensis (Figure 2).
When K = 4, C. hongheensis and C. diannanensis still clustered together, corresponding to
their closest geographic distribution (Figures 1 and 2). The cultivated and wild populations
were not separated for C. debaoensis and C. guizhouensis, respectively (Figure 2).
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Figure 2. Genetic structures of populations of five Cycas species. Population structure bar plots
show the clustering of samples from K = 2 to 4. The best K = 3. Each vertical bar indicates a single
individual, and the height of each colored bar represents the proportion of assignments to a given
cluster. The red line segment distinguishes between wild species (left) and cultivated species (right)
within the species.
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The principal component analysis (PCA) analysis confirmed the structure results
(K = 3). C. debaoensis, C. fairylakea, and C. guizhouensis separated, while C. hongheensis and
C. diannanensis clustered in the center (Figure 3).
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Figure 3. Plots of the first two dimensions of a principal component analysis (PCA) for all individuals
of the five Cycas species.

3.4. Genetic Differentiation and Gene Flow among the Five Cycas Species

The genetic differentiation coefficients (FST) ranged from 0.005 to 0.591 among the five
Cycas species (Table 2). We detected low levels of genetic differentiation (FST = 0.005–0.012)
and high levels of gene flow (Nm = 20.58–49.75) among C. debaoensis–C. fairylakea–
C. guizhouensis (Table 2). C. hongheensis showed relatively high genetic differentiation
and low gene flow compared to other Cycas species (Table 2). Analysis of molecular vari-
ance (AMOVA) showed that 18.66% of the genetic variation of the five Cycas species was
attributed to populations and 81.34% to individuals (Table 3).

Table 2. Matrix of pairwise FST and Nm coefficient of Cycas species.

C. debaoensis C. diannanensis C. fairylakea C. guizhouensis C. hongheensis

C. debaoensis 1.688 20.583 41.417 0.239
C. diannanensis 0.129 1.353 1.439 0.285

C. fairylakea 0.012 0.156 49.750 0.173
C. guizhouensis 0.006 0.148 0.005 0.188
C. hongheensis 0.511 0.467 0.591 0.571

Top-right matrix refers to the pairwise gene flow coefficient. Lower-left matrix refers to the pairwise genetic
differentiation coefficient.
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Table 3. Analysis of molecular variance (AMOVA) in five Cycas species.

Source of Variation df SS σ %

Among species 4 9.489 0.052 18.66
Among individuals within species 112 24.383 −0.009 −3.12

Within species 117 27.5 0.235 84.45
Total 223 61.372 0.278

Note: df: degree of freedom; SS: sum of squares; MS: mean of squares; σ: each species and the percent of the total
variance explained by each source of variance; %: percentage of variance.

Among 1–3 migration events in TREEMIX, C. Guizhouensis has a strong gene flow
pointed to C. hongheensis, which revealed historic migrations from C. guizhouensis to
C. hongheensis, indicating a southward migration of Cycas species (Figures 1, 4 and S2).
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Figure 4. TREEMIX results showing historical mitigation events among the five Cycas species. Upper
left corner shows residual fit plots in the TREEMIX analysis. We divided the residual covariance
between each pair of populations by the average standard error across all pairs. We then plot in
each cell this scaled residual. Colors are described in the palette on the right. Residuals above zero
represent populations that are more closely related to each other in the data than in the best-fit tree
and thus are candidates for admixture events.
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3.5. Demographic History of the Five Cycas Species

The optimal result model was confirmed based on the minimum ∆ Likelihood (Table S1).
Fastsimcoal results showed that C. hongheensis differentiated from the other four Cycas
species at ~1.74 Mya (Figure 5). The differentiation time between C. guizhouensis and the
other three Cycas species was at ~0.40 Mya. The recent differentiation event occurred at
~0.16 Mya between C. debaoensis and C. fairylakea (Figure 5).
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Figure 5. Best-fitting model inferring demographic histories and differentiation for the five Cycas
species implemented by the Fastsimcoal 2.5. Number unit: years ago.

The effective population size of C. hongheensis increased at ~5 Mya, while the other
four species underwent bottleneck events at ~1–5 Mya. The effective population size of
C. fairylakea and C. guizhouensis started to decrease at ~ 5–10 Mya, and C. debaoensis and
that of C. diannanensis started to decrease at ~4–5 Mya (Figure 6).
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4. Discussion

Climate change and human activities likely result in habitat fragmentation, limit the
geographic ranges of plants and even lead to their extinction [58–60]. Maintaining the
genetic diversity of natural populations is key to the survival and evolutionary poten-
tial of species [61,62]. Cycads, as one of the extant gymnosperm groups, are important
for conserving genetic diversity and understanding the origin and early evolution of
seed plants [20]. Most Cycas species are narrowly distributed [63], but they have expe-
rienced a long evolution process and likely possess high genetic diversity [64]. Here,
using genotyping-by-sequencing (GBS), we found that the migration, differentiation, and
speciation of Cycas species are associated with historical cooling events.

As an ancient gymnosperm species, cycads are considered to possess high genetic
diversity and low genetic differentiation among populations [65,66]. Genetic structure in
plant populations is shaped by mating systems, population density, and the continuity of
geographical distribution [67–69]. Due to the dioicous characteristics and long life cycle of
Cycas species, they are considered to have high genetic diversity [20]. However, a lack of
pollinators or seed dispersal limits gene flow between populations [70,71]. Liu et al. [20]
found that the distribution and phylogeography of Cycas species are shaped by the long-
distance seed dispersal driven by ocean current systems. In this study, C. hongheensis has a
longer evolutionary history than the other four Cycas species [65,66], which likely explains
its high levels of genetic diversity. Maintaining the genetic diversity of C. hongheensis
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is important to ensure its continued survival and evolutionary potential [61]. However,
the other four Cycas species showed low genetic diversity. Previous studies showed
relatively high genetic diversity among the four species, e.g., C. debaoensis (Ho = 0.389,
He = 0.484 for cpDNA) [72], C. guizhouensis (Ho = 0.311, He = 0.419 for cpDNA and SSR) [27],
C. diannanensis (HT = 0.627 for cpDNA) [29], and C. fairylakea (mean Ho = 0.550 and
He = 0.420 for SSR) [73]. The difference in genetic diversity is likely due to different methods,
i.e., several loci in the SSR and cpDNA analyses but 18,597 loci in this study with GBS.

One reason to explain the relatively low genetic diversity of the four Cycas species
that experienced bottleneck events at ~1–5 Mya [74,75] is that the loss of heterozygos-
ity is positively correlated to bottlenecks [76]. In addition, an alternative reason is that
four Cycas species have a limited geographical range with small and isolated populations,
which likely results in high levels of genetic drift and inbreeding [61,62]. It is consistent
with other narrow-ranged species, for example, the threatened species Thuja sutchuenensis
(FST = 0.011–0.191 for cpSSR) [77] and three endangered Rhododendron species (FST = 0.128–0.387
for RAD-seq) [78]. Thus, rare species with small populations generally have low genetic di-
versity compared to those species with large and widespread geographical populations [79,80],
such as Paeonia decomposita [81], Mentha cervine [82], and Omphalogramma souliei [83]. The en-
dangered status likely results from intensive human activities [84], e.g., deforestation [85],
grazing [86], and road construction [87], which lead to habitat fragmentation and low
population size [88].

Understanding long-term demographic history is important not only to elucidate the
genetic characteristics of species [89,90] but also to detect the effects of climate change
and habitat fragmentation on historical population dynamics [91]. Cycads originated
before the mid-Permian and showed the greatest species diversity during the Jurassic-
Cretaceous [92,93]. However, the extant cycads have undergone a synchronous global
re-diversification at ~12 Mya [16]. We here found that C. hongheensis increased population
size, but the other four species underwent bottleneck events at 1~5 Mya, which is consistent
with previous studies [16,27,29,72,94]. C. hongheensis differentiated from the other four
Cycas species at ~1.74 Mya, which supports the hypothesis that Cycas L. originated in the
Quaternary in south China [31]. The divergence time (~1.74 Mya) among Cycas species and
bottleneck times (1~5 Mya) of Cycas species correspond to the Pliocene epoch (2.6~5.3 Mya),
which was a period of global cooling and drying. Climate change is generally considered
an important factor in threatening the survival of plants, particularly those rare and en-
dangered plants with narrow distributions and small population sizes [95]. For example,
during the Quaternary (~2.58 Mya), climatic oscillations exerted significant impacts on the
genetic diversity of plants in the northern hemisphere [96]. Most cycad plants prefer to live
in warm and moist habitats such as valleys or slopes of ridges and cliffs [21]. This likely
explains the southward migration of cycad species from C. guizhouensis to C. hongheensis
found here. Thus, the glacial-interglacial fluctuation restricted the dispersal of Cycad plants
and thus gene flow between populations [25,29,34,39].

Overexploitation not only directly threatens the survival of Cycas species but also
destroys their habitats. Thus, it is urgent to take effective measures for the conservation of
Cycas species. In situ and ex situ protection are effective for the protection of cycads [97,98].
Ex situ conservation and reintroduction measures can improve the population size and
genetic diversity of endemic and endangered species, but it is likely that introgression
occurred from cultivated to wild Cycas species [97,99]. This is common in Populus, as many
varieties are intentionally introduced, providing conditions for artificial hybridization and
introgression [100]. Compared to wild populations, cultivated ones generally have low
genetic diversity because founder effects and genetic drift occurred during the process of
demonstration and cultivation [77,101], such as Spondias purpurea [102], Morus species [103],
and Zanthoxylum [104]. In this study, cultivated C. debaoensis and C. guizhouensis species
transplanted from nature to be reintroduced after breeding did not differ from wild popula-
tions. That is because wild seedlings are currently transferred to parks [72], and individuals
cultivated in the same place might have come from multiple wild source populations.
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However, limited pollinators and seed dispersal may negatively affect the reproductive
systems of Cycas species [105]. For example, the pollination limitation of the alpine shrub
Rhododendron aureum weakens its reproductive ability [106]. Thus, it is key to protect the
species in its natural habitat (in situ) through setting up nature reserves and protection
stations, strengthening artificial pollination, raising local farmer conservation awareness,
limiting human activities, conducting research on fast reproduction, and strengthening
government management [107,108].

5. Conclusions

In summary, we utilized genotyping by sequencing (GBS) to analyze the genetic
structure and differentiation of five endangered cycad species in southwestern China.
Results indicate that C. hongheensis showed high genetic diversity, but the other four species
showed low genetic diversity that likely resulted from bottleneck events at ~1–5 Mya. The
genetic diversity between wild and cultivated populations was similar for C. debaoensis and
C. guizhouensis, which is consistent with the results of genetic structure, PCA, and Fst. The
population differentiation history and gene flow analysis showed that Cycas species had a
southward migration pathway. Moreover, the migration, differentiation, and speciation of
Cycas species are associated with historical cooling events. Thus, we proposed strategies
for protecting cycad germplasm resources in their natural habitats (in situ) through the
construction of nature reserves and other protection stations to strengthen field monitoring.

Supplementary Materials: The following supporting information can be downloaded at:
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models with the Fastsimcoal 2.5.
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