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Abstract: Cervus elaphus populations are spreading and growing in many parts of Europe. This
growth can have detrimental effects on biodiversity and ecosystem function. Successful strategies to
manage large herbivores require reliable information on density and population trends. This paper
presents a methodology to achieve a sustainable distribution of red deer by age and sex classes over
time. Instead of traditional algebraic methods, the method consists of a simple iterative process that
uses convergence to obtain the dominant eigenvalue and eigenvector of the biological matrix from
an initial population. This eigenvalue represents the annual growth rate of the population, and the
eigenvector represents the ideal age and sex class distribution of the population. The method has
been applied to a fenced preserve in the province of Toledo, Spain. An annual population growth
rate of 1.63 (dominant eigenvalue of the biological matrix) was obtained from an initial population
and the biological matrix of the deer on the preserve. The convergence of this rate occurred in year
14, but the carrying capacity allows for a population close to the population in year 17 according to
the prediction, which is therefore considered to be the year when the ideal population distribution
is achieved. This methodology allows managers to numerically justify how to control population
growth to preserve biodiversity and sustainability.
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1. Introduction

There is increasing interest in the management of red deer (Cervus elaphus) because
populations are spreading and growing in many parts of Europe [1–3]. This population
growth can vary in terms of the biological attributes of individuals and populations, such
as body weight, productivity, antler size, and survival by sex [4,5]. It also can also have
detrimental effects on biodiversity and ecosystem function [6,7], resulting in damage
to trees due to the bark stripping or browsing effects of large herbivores, crop damage,
wildlife–livestock interactions, and transmission of pathogens, with the corresponding
economic losses [2,8].

The management of large herbivores is particularly challenging [9,10]. There are a
variety of ways to reduce ungulate numbers and mitigate the damage they cause, such
as harvesting [11], translocation [12], contraception [13], the introduction of large carni-
vores [14], fencing to prevent vegetation browsing [15], vaccination to prevent disease
transmission [16], management of food and water points to prevent contact between wild
and domestic animals [17], etc.

However, while inadequate management leads to unintended situations such as
evolutionary impacts on populations due to highly selective harvesting [1], or extinction of
the population due to overexploitation [18,19], passive management, combined with the
absence of natural predators, countryside abandonment, and large agricultural fields as an
unnatural food source, can allow some wild animal populations to increase exponentially,
causing the environmental and economic harm [1,20–22].
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As a result, wildlife managers need to integrate ecological processes, social, cultural,
and political values, as well as economic feasibility into their management strategies [23].
Successful strategies to manage these species require reliable information on density and
population trends [24]. Management models show how wild populations are develop-
ing [18,25–27]. These models can also simulate population dynamics over time to compare
different management practices [28] and control and guarantee the sustainability and
stability of the increasing population.

Red deer (Cervus elaphus) have been a part of the large European mammal fauna
since the Middle Pleistocene [29]. These animals have been living in the Iberian Peninsula
without interruption since at least the Late Pleistocene [30], with Iberia serving as a refuge
during glacial periods [31]. The Iberian red deer (Cervus elaphus hispanicus) is one of
the most significant and traditional large game species in the Iberian Peninsula. It has
been one of the main game animals from the time of the first hominids until today. Red
deer are distributed widely throughout the Iberian Peninsula. The estimated population
exceeds 500,000 individuals [32]. The Mediterranean habitat, mixing forest and grassland,
is the perfect landscape for the Iberian red deer, providing the animal with both food and
protection [33]. When the number of individuals exceeds the carrying capacity, it can cause
more vulnerable species to disappear, resulting in a loss of biodiversity for other animals.

Of the different management models that are available, matrix models provide good
results to simulate population dynamics over time [34–37]. A matrix model groups ani-
mals into age classes in a vector, and the matrix contains the reproductive and mortality
population as a probability, which determines rates for each age class and sex [38]. They
are square matrices (A) that involve a linear transformation from a vector space, V, into
itself. The vectors (v) of space V are called eigenvectors, and their change in scale due to
the transformation is called their eigenvalue (λ). This feature can be written as the equation
Av = λv. Eigenvalues and eigenvectors of these matrix models depend on biological rates,
but obtaining eigenvalues and eigenvectors from a matrix is an algebra-intensive task [39].
There are online tools that can calculate the Leslie matrix, the first eigenvector, and the
first eigenvalue [40], or user-friendly R-packages such as “popbio” [41], but they do not
ensure that the stable population distribution will be obtained, and they require wildlife
managers who can program in R or other programming languages. These models do not
necessarily clarify the link between cause and effect in population dynamics, especially
since they pertain to decision-making towards a resource goal. Although these models do
have limitations, the influence of spatial–temporal plant and climate variability and the
effect of density on mortality, fecundity, and individual growth make it difficult to obtain
reliable input data [42].

When an inefficient management situation is detected, it is necessary to quantify when
and how to reverse it. This study focuses on the definition of quantitative sustainable
management strategies for Iberian red deer populations in Mediterranean habitats based
on the Leslie matrix [38]. Governments control red deer populations by the number of
hunting licenses they offer, which is determined in the approved management projects.
The quantitative method proposed in this work is an affordable management option to
achieve a sustainable deer population. It is based on calculating management parameters
to structure the population and quantify its growth and productivity, with the goal of
sustainable stability.

The main goal of this work is to implement an iterative convergent numeric method
based on the projection of a biological matrix that avoids calculating the eigenvector
and eigenvalue using the characteristic polynomial and indicators in order to achieve a
stabilized sustainable distribution of an Iberian red deer population managed based on age
and sex classes and keep the population at this level.
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2. Materials and Methods
2.1. The Study Area

The study area is located in Quintos de Mora estate in the southwest corner of the
province of Toledo, in the municipality of Los Yébenes. It belongs to the National Park
Department of the Ministry for Ecological Transition and the Demographic Challenge, and
it is categorized as a Natural Space in the province of Toledo [43] (see Figure 1).
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Figure 1. Images with the location of Quintos de Mora preserve. (a) Spain with the province of Toledo in
dark red and the location of the preserve (blue point). (b) Quintos the Mora preserve delineated in yellow.

It is a fenced preserve with a total area of 6864 ha [32] and an altitude between
735 m.a.s.l. and 1265 m.a.s.l. The climate is the Mediterranean, with an annual rainfall of
between 600 and 700 mm. The average monthly maximum and minimum temperatures
vary between 34.5 ºC in the warmest month and 1.6 ◦C in the coldest month. The dry
season lasts from mid-June to mid-September.

It has a classic Mediterranean vegetation cover with high biodiversity. The most
common species are Quercus ilex ssp. Ballota, Quercus faginea, Quercus pyrenaica, Cistus
ladanifer, and Genista hirsuta.

In terms of wildlife, the most important species are red deer (Cervus elaphus), wild
boar (Sus scrofa), fallow deer (Dama dama), roe deer (Capreolus capreolus), rabbit (Oryctolagus
cuniculus), hare (Lepus granatensis), and fox (Vulpes vulpes). Approximately 1963 deer have
been inventoried, which means a density of 28.60 deer/100 ha [43]. In Spain, this density of
0.28 ind/ha is estimated as to be a normal-high value for this type of population [44]. Every
year, the autonomous agency of national parks estimates the population by applying the
transect sampling method during the rutting season [45]. The principal use of the preserve
is deer and wild boar biological control through culling. Interventional studies involving
animals or humans, and other studies that require ethical approval, must list the authority
that provided approval and the corresponding ethical approval code.

To apply the proposed methodology, the carrying capacity of the study area must first
be calculated to determine the maximum number of individuals that can live on the Quintos
de Mora preserve. The model that was applied to estimate the carrying capacity considers
feeding requirements, water availability, areas of refuge, impacts on the habitat, climate,
and landscape (Reglamento de Ordenación de la Caza en Andalucía, Decree 126/2017
of 25 July). The estimated carrying capacity was 1407 individuals (0.2 ind/ha) [43]. The
current population exceeds this figure by 556 individuals (see Appendix A).
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The current management planning determines the biological values to be entered
into matrix A, below the OCC, which avoids undesirable interdependence phenomena.
The staff working on the preserve in recent years provided the number of individuals by
age and sex classes and their birth and death rates. These figures are needed to complete
the model [45] (Reglamento de Ordenación de la Caza en Andalucía, Decree 126/2017
of 25 July). There are ten age classes per sex because individuals older than ten years of
age are usually harvested as part of the management planning. These data are supported
by specialised references, such as Soriguer [46]; Montoya Oliver [44]; Landete-Castillejos
et al. [47]; and Rodriguez-Hidalgo et al. [48]. Table 1 shows the average statistical biological
values for a standard Iberian red deer population with density conditions below optimum
capacity applied to the model and maximum growth [49].

Table 1. Biological values applied in the model [49].

Rate Value

Birth rate (Calves birth/reproductive female) 0.564
Birth sex ratio (M:F) 1:1

Females calves death rate
(Less than 1 year old) 0.12

Males calves death rate
(Less than 1 year old) 0.15

Young females death rate
(From 1 to 2 years old) 0.06

Young males death rate
(From 1 to 2 years old) 0.1

Adult females death rate
(From 2 to 10 years old) 0.03

Adult males death rate
(From 2 to 10 years old) 0.05

2.2. The Model

Leslie introduced the population projection matrix model in 1945 [38]. This model
has been widely applied to analyse the evolution, management, harvesting, etc. of wildlife
populations since then [34], and it has expanded those results to the male side of the group.
These models are defined by the standardized finite difference linear system of equations:

Xt = AXt−1 and Xi ∈ Rn/n ∈ N (1)

where Xt and Xt−1 are column vectors containing the number of individuals within each
age class and sex at time t and t−1, respectively. A is the square primitive matrix with
biological characteristics that express the reproductive and mortality population behaviour.
A is known as the Leslie Matrix [38], which is expressed as follows:

A =



F11 F12 F13
P21 0 0
. . . . . . . . .

. . . F1n−1 F1n

. . . 0 0

. . . . . . . . .
0 0 0

. . . . . . . . .
0 0 0

Pij 0 0
. . . . . . . . .
. . . Pn(n−1) Pnn

 (2)

where F1j is the fecundity of females and age group j, and Pij is the survival probability
from age j−1 at time t−1 to age j at time t of the sex group i. Both, F and P integrate the
factors that determine population growth, such as birth rates and the probability of an
individual reaching the next age class by discretization period.
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This means that, for a given period, the vectors containing the number of individuals
within each age class and sex are obtained from:

X2 = AX1; X3 = AX2; . . . ; Xt = AX(t−1), (3)

X2 = AX1; X2 = A2X1; . . . ; Xt = A(t−1)X1, (4)

In general, Xt = A(t−1) X1 expresses the projection of the population for t periods of
time from the proposed initial situation.

On the other hand, the Leslie Matrix, A, is a square and diagonalizable matrix, so
eigenvalues and eigenvectors can be obtained. Its dominant eigenvalue, λ1, represents the
population growth rate.

AV1 = λ1 V1, (5)

where V1, is the right eigenvector of A, which corresponds to the dominant eigenvalue, λ1.
When λ1 > 1, from a mathematical point of view, the total number of individuals

in the population increases exponentially over time. If λ1 < 1, the individual population
decreases and heads towards extinction. Lastly, if the eigenvalue is λ1 = 1, the population
remains constant over time [50]. This means that the right eigenvector of A, V1, which
corresponds to λ1, represents the distribution of the stable, sustainable population by age
and sex classes, with values proportional to λ1 [50].

The previous applications of this method to population dynamics required the res-
olution of the characteristic polynomial, by traditional algebraic methods, to obtain the
eigenvalues and their corresponding eigenvectors of matrix A. This process requires specific
mathematical software, which makes it difficult for ecosystem managers to apply it.

The method proposed in this work simplifies the process through an iterative con-
vergent numeric process that avoids calculating the eigenvector and eigenvalue using
the characteristic polynomial. This iterative process gives the stable growing population
structure determined by the value of the dominant eigenvalue, λ1„ that will lead to the
sustainability that is sought.

Considering that every vector Xi has its coordinates in a principal base of eigenvectors,
(αi1, αi2 . . . , αin), then the expression of Xi is:

Xi = (αi1 V1 + αi2 V2 + . . . + αin Vn), (6)

The structure and the behaviour of the model are, therefore, obtained through the
convergence of the vector Xt when t→∞, which makes it possible to identify the value of λ
that stabilizes the population structure and growth, over time.

Considering the relationship between Xt and X1, (see Equation (4)) the expression of
the limit is:

lim
t→∞

Xt = lim
t→∞

At−1X1 = lim
t→∞

(
α11λt−1

1 V
1
+ α12λt−1

2 V2 + · · ·+ α1nλt−1
n Vn) = lim

t→∞
λt−1

1 (α11V 1 + α12
λt−1

2

λt−1
1

V2 + · · ·+ α1n
λt−1

n

λt−1
1

Vn) (7)

Since λ1 is the dominant eigenvalue, then λ1 > λi ∀ i 6= 1 and lim
t→∞

λt−1
i

λt−1
1

= 0

When i = 1, the result of the limit is:
lim

t→∞
Xt = limλt−1

1
t→∞

α11V1 when the period of time is t.

Considering a sufficiently long period, the vector of the number of individuals by age
class and sex, Xt„ converges on a new vector proportional to the dominant eigenvector
V1, λ1

(t−1) α11 V1, where λ1
(t−1) and α11 are numeric constants, and α11 represents the

proportionality between the limit of Xt and V1.
The iterative procedure consists of calculating X2, X3, · · · , Xt−1 until Xt and Xt−1 are

proportional and the constant of proportionality is λ1:

X2= AX1; X3= AX2 = A2X1; . . . ; Xt= AXt−1 = At−1X1 = λt−1
1 V1 (8)
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The iterative process obtains the numerical projection of matrix A, where the value
of λ1 as a dominant eigenvalue is stabilized. λ1 is the stabilized constant between Xt−1
and Xt. This means that, from time t onwards, the proportionality constant between Xt+i−1
and Xt+i does not change and is λ1. This convergence on the dominant eigenvalue also
means that the initial vector X1 has converged to the eigenvector V1. We can represent Xt
in the limit as:

Xt = At−1X1 = λt−1
1 V1 (9)

This mathematical conclusion makes it possible to make a simple reiterative calculation
to obtain the stable population composition and the growth ratio during the process.
This makes it a quantitative management tool that can be used for ecological control. In
summary, the method first needs to describe a mathematical–biological matrix, A, based on
knowledge of the biological species. The iterative calculation of projections then obtains
the dominant eigenvalue and the corresponding eigenvector over t. At this point, the
population structure is proportional to the dominant eigenvector, V, and its total number
of individuals is the sum of its components. Based on these results, it is possible to
stabilize the growth of a population, and the results are ecologically and mathematically
testable [51]. To achieve this objective, populations are considered to naturally maintain
their growth with λ1 > 1, so the management objective will be to control the excessive
growth, keeping λ1 = 1 when the optimal carrying capacity for that medium has been
exceeded. Management will focus on quantifying culling to maintain the age structure that
stabilizes the mathematical projection system.

The transition matrix is based on linear dependencies through natural and manage-
ment factors that generate the growth dynamic of the population, which is stabilized
using the aforementioned management culling. The result of this approach, considering
Verhulst’s theoretical hypothesis, is an S-shaped logistic distribution of the population
(see Figure 2) with a horizontal asymptote corresponding to the year when the theoretical
carrying capacity is reached.
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Figure 2. Number of individuals per year for Verhulst’s theoretical hypothesis for population
dynamics (in red), and the growth rate per year (in blue).

In this study, we adopted the optimal carrying capacity (OCC), instead of the maxi-
mum carrying capacity (MCC). The optimal carrying capacity is the carrying capacity for
which the population birth rate does not drop because of density-dependence, overpopula-
tion, diseases, or lack of a correct nutrition. This OCC is the number of individuals that cor-
respond to the mathematical inflection point of the sigmoid “S”. The growth rate decreases
from the inflection point (year 17 in Figure 2) because of any of the mentioned phenomena.
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The theoretical S-shaped curve has been replaced by the projection’s matrix model,
which is based on U-shaped exponential growth (see Figure 3) and is much easier to handle
mathematically. This also makes it possible to go from the theoretical models of Verhulst
and Pearl to a Malthusian model, simplifying the mathematical integration and parametric
adjustments. Applying the described methodology, the population stabilizes at year 17.
Figure 3 also shows the number of individuals culled for the stabilized population.
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3. Results

In this work, the authors developed a simulation for a hypothetical initial population
to explain how the model works, because the model must be tested from values below
the OCC to see the increasing evolution of the population. The simulation considered
an initial population of 100 deer on this preserve in the past. The range of the projection
intervals was one year, and individuals were grouped into twenty age classes, the level of
maximum detail, ten for females and ten for males, according to their age in years. The
last class (i = 10) includes animals that are ten years of age or older. The model obtains the
movement of individuals through age classes over time, with a probabilistic law based
on biological survival, making future time projections for annual periods possible. The
distribution of the initial population corresponds to vector X0 (see Table 2). The next step is
to obtain the year when this population reaches the carrying capacity. This is performed by
applying matrix A to X0, which should be very different from V„ to study the convergence
process with the iterations of the matrix model. Figure 4 shows that the population peaks
at the carrying capacity of 1407 deer by approximately year 17 after the initial situation, for
a theoretical unconstrained exponential growth applying Equation (5). Table 2 shows the
distribution of the individuals in year 17 by sex and age class.

Table 2. Distribution of the initial population X0, the target population X17, and the population in
year 18 X18.

Females Males Total

Age 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

X0 10 10 8 8 8 6 0 0 0 0 10 10 8 8 8 6 0 0 0 0 100
X17 133 101 81 68 57 47 39 33 28 95 133 97 75 62 50 41 34 27 22 47 1271
X18 155 117 95 79 66 55 46 38 32 119 155 113 88 72 58 48 39 32 26 66 1478
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The model identifies the maximum sustainable harvesting rate to achieve a density
similar to the optimum carrying capacity and indicates the justified ecological culling by
classes to provide stability based on the calculated carrying capacity. The model therefore
provides a stable distribution of each age class and a stabilized growth rate.

The exponential progression that takes the population from 100 individuals to approx-
imately 4500 in just 25 years is remarkable. This value cannot be observed without the
application of a prediction model (See Figure 4).

The next step consisted of applying the iterative procedure to calculate the year
when lambda, λ1, converges to a constant value. This convergence value expresses the
proportionality between consecutive vectors. At the same time, the population would
evolve into a structured stable composition. According to Figure 5, lambda converges at
approximately year 14.
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This means that, when the initial population (Table 2) is entered into the model and its
development over the years is studied, growth becomes stable beginning at t = 14, in this
case, with a dominant eigenvalue λ1 = 1.163, which means a total growth of 16.3% every
year, as shown in Figure 5.

When t = 17, there is stable age distribution (see Table 2), which is the goal. The
ideal distribution analysis, X17 (Table 2), indicates that the sex ratio is 1.156. This value
is acceptable since natural mortality is higher in males. Table 3 shows the percentage of
individuals for each class in X17 that determines the desired stability.

Table 3. Ideal distribution by age classes, in percentage.

Stable Distribution (%) TOTAL

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
10.5 7.9 6.4 5.3 4.5 3.7 3.1 2.6 2.2 7.5
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
10.5 7.7 5.9 4.8 4.0 3.2 2.6 2.2 1.8 3.7 100

From year 17 onwards, managers will remove some individuals from the population
to maintain the optimum carrying capacity value. This means that the ecosystem can
maintain its population equilibrium, and the managers can justify the profits from the
culling. In addition, there is a healthy population. The application of the model to obtain
the population for t = 18 shows that the total population is higher than the population that
corresponds to the optimum carrying capacity, and the distribution per age and sex classes
does not follow the ideal (Table 2).

This means that, starting in year 17, managers would need to start selective culling
to keep this density below the carrying capacity. The proposal would therefore be to cull
the difference between X17 and X18 (Figure 6). This means that sustainable management
would require managers to cull 207 individuals annually to preserve biodiversity, taking
the values proportional to the vector V. These values make it possible to plan management
and justify profits from this natural resource, while controlling and ensuring theoretical,
numerical, and biological sustainability at this point.
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In summary, the steps of the process would be as follows (See Figure 7 and Appendix A
to see how an iteration works).

1. The manager must obtain the birth and death rates by age and sex classes to obtain
the matrix A, the initial population distribution by age and sex classes X1, and the
optimum carrying capacity of the preserve.

2. The eigenvalue can be obtained in a fast iterative process, (software such as Excel can
be used) that ends when this value is the same as the ones obtained in the previous
five iterations (see Figure 7).
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3. The chosen eigenvector Xt−i is the one from Xt, Xt−1, Xt−2, Xt−3, Xt−4, and Xt−5
whose total population is the closest to the optimum carrying capacity.

4. From year t−i onwards, managers will remove some individuals from the population
to maintain the optimum carrying capacity value.
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After the biological behaviour has been studied, along with the factors involved in
the evolution of the population, if the manager identifies population levels above the OCC,
it indicates a dependency phenomenon in the state that favours diseases and the need to
decrease the population by culling in the following iterative phases:

1. The management culling to lower the population structure should be proportional
to the eigenvector that was calculated in the stabilization process. The sum of the
components of this vector must be lower than and close to the OCC value.

2. For the following periods, the culling quotas by age classes should stabilize the
population according to the dominant lambda value.

3. Stabilize the population structure and quantity and make them sustainable, with a
management plan that will be updated periodically and with statistical sampling of
abundance by the age classes in matrix A.

4. Discussion

This paper proposes a quantitative method for managing wild species that provides
maximum growth but avoids dependency phenomena because it keeps populations be-
low the OCC of the area. The results show that the method determines not only the
exact numerical values of population increase, but also the ideal distribution of the pop-
ulation by age and sex, considering the carrying capacity of the study area, to ensure
sustainability (Table 2).

The dominant eigenvalue (λ1) of matrix A gives information about the total annual
growth without harvesting (Figure 5) as an indicator of a population’s fate. This result
contributes to the knowledge of how eigenvalues, as vital rates, help obtain the dynamic
behaviour of a population [39]. The proposed method shows an efficient and available
approach to calculating the eigenvalue and determining the year after which the eigenvalue
converges to a constant value. This procedure avoids the challenging task of obtaining the
dominant eigenvalue and its associate eigenvector [39]. Previous Leslie matrix models sim-
ulated and studied the evolution of wild ungulates [52–55]. However, these models focus
on the historical and long-term evolution from a demographic perspective and normally
simulate only the female part [55,56] or focus on harvesting rates. These models make no



Diversity 2023, 15, 612 11 of 16

assumptions about the underlying form of the age-specific natural mortality and fertility
rates, which is a relevant simplification from the wildlife management point of view [57].
These classical approaches to solving Leslie matrices give the dominant eigenvalue and
the associate eigenvector but do not provide the evolution of the population composition
from the initial situation to the population distribution of the eigenvector. The method
proposed in this paper shows this evolution, year by year, from the initial situation to the
eigenvalue. The authors did not find any models in the literature that had been obtained
from the convergence of the projection of the Leslie matrix to quantify the evolution of the
population structure, while incorporating sexes and age classes into the same matrix, that
considers different kinds of male and female interactions in this evolution.

In this study, the value of the dominant eigenvalue is 1.16, very close to the the-
oretical value λ1 = 1, which indicates that its associated eigenvector contains a stable
distribution [50,51]. The total population therefore grows 16% annually, which is in line
with Martínez and Martín’s [51] results for the red deer in the same area but grouping
the population into different classes. It also indicates that the size of the total population
should be 1407 when the OCC is reached and stabilization occurs, lowering the lambda
from 1.16 to a lambda equal to 1 through culling. This use of the eigenvalue leverages the
achievement of conservation goals [58]. Since hunting is supposed to keep the population
sustainable, the harvest rate must be equal to the reproductive output [8]. In our study, the
harvest rate is 16%.

The eigenvalue converged at year 14. However, the total population was lower
than the optimum carrying capacity (Figure 4). This means that the ideal distribution
for every age class and sex to guarantee the sustainability and stability of the population
and to minimise the impact on animal communities and biodiversity corresponds to the
distribution at year 17 [59].

The estimated annual culling (see Figure 3) maintains the density after the reproductive
season according to the carrying capacity of the preserve. This result helps managers to
make decisions regarding culling for the coming years if the vital rates remain the same,
and it gives managers strict control over the population dynamics [60]. This type of
management also reduces the impact of hunting on population dynamics [23] when the
selection of individuals by sex or age class improves the population structure of ages and
sexes [61,62]. It also helps minimise both the economic damage to forestry and collisions
with vehicles [63]. The dominant eigenvalue, like the finite population growth rate, is a
helpful tool for developing endangered species management policies [64]. In addition to
using density-dependent phenomena to determine the OCC, it could also be established
based on problematic social phenomena, such as traffic accidents, damage to crops, or
interactions that are harmful to biodiversity.

The development of matrix A requires the knowledge of the biological parameters by
the manager for the mathematical purpose of quantifying the population status for each
period and population composition because the dominant eigenvalue, λ1, depends on the
parameters that are selected for matrix A. This matrix lets managers simulate different
production rates and estimate the economic benefits of the exploitation. This means that the
proposed methodology cannot be applied in open preserves with different management
strategies, due to the interactions with neighbouring preserves that share the same red deer
populations, which causes the population composition to vary constantly. In addition, the
ecological characteristics of the preserves may vary between preserves, which also changes
the carrying capacity.

Classifying the deer population into one-year age classes with the least possible bias
and the highest precision is only possible by capturing the individuals, but even the
methods based on tooth wear that have achieved the best results depend on the eye of the
practitioner, and on environmental conditions that can change spatially and across time [65].
Some authors propose grouping by age classes, such as Martinez and Martin [51], who
describe a deer management model that groups the population into three age classes for
females and five for males in order to facilitate management, or Forsyth et al., who, in their
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study on population dynamics, group the population into three age classes per sex [66].
However, any simplification to obtain management classes by grouping age classes into
quality classes would facilitate the mathematical calculation system. Nevertheless, the
new parameters of fecundity and the probability of moving to the next group, F and P, are
obtained by statistically integrating the age and sex class parameters Pij, and F1j, which
makes them less accurate.

The main limitations of the method are that the parameters of matrix A should be
checked every year. It is very difficult to practically determine birth and mortality rates
by age class (i.e., in the field), but they are critical for applying these models. Managers
often take this data from studies in other areas. Another limitation of the study is that it
is only applicable to fenced preserves where hunting and management are independent
from neighbouring preserves [67]. Lastly, it is a deterministic method, so the error of λ
and of other parameters depend on the precision of the data and the factors of the model
considered [68,69]. Stochastic models can estimate these errors, but the survey intensity
and the frequency are higher [69,70].

5. Conclusions

This paper describes a simple method based on the convergence of the Leslie matrix
that models how a deer population, in this case, a theoretical population of 100 individuals,
can be managed to achieve a stable population size and to determine the annual cull rate,
16% in this case, needed to maintain this population in these conditions. The input data was
taken from the Quintos de Mora reserve in the province of Toledo. Because the optimum
carrying capacity (1407 individuals) was considered rather than the maximum carrying
capacity, the parameters of the Leslie matrix do not need to be revised annually to detect
changes due to density dependence problems. However, practical application in actual
populations requires periodic reviews of management plans to update the input data of the
model. It is also important to note that this model can only be applied to fenced estates,
where variables are more controlled than in open estates.
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Appendix A

Calculation of the Carrying Capacity

The method of the Andalusian hunting regulations (Junta de Andalucía Decree
126/2017, 25th of July) for the calculation of carrying capacity was used.

Table A1 shows the food units for each vegetation unit with hunting exploitation
considered by this regulation.



Diversity 2023, 15, 612 13 of 16

Table A1. Food units of the different vegetation units, the surface of each vegetation unit in Quitos
de Mora, and total food units.

Vegetation Types

Minimum
Production of Dry
Matter per ha and

Year in kg

Maximum
Production of Dry
Matter per ha and

Year in kg

Food Units per
1 kg of Dry

Matter

Surface
in ha

Total Food
Units

0.-Unproductive areas
Built-up areas, coastlines, bodies of
water, waterlogged areas, rocky areas,
sandy areas, and recently logged areas.

0 0 0 71.4 0.0

1.-SCRUB:
1.1.-Dense Scrub 300 400 0.6 2069.6 434,609.7

2.-CROPS:
2.1.-Dry Crop 200 800 0.48 1037.6 249,028.8

4.-FOREST:
4.1.-Dense Conifer Forest 50 100 0.1 21.9 164.0

5.-DENSE SCRUB AND FOREST:
5.1.-Dense Scrub and Conifer Forest 150 300 0.33 1137.9 84,489.1
5.2.-Dense Scrub and Quercus and
Conifer Forest 250 275 0.6 104.2 16,416.2

5.3.-Dense Scrub and other
Deciduous Forest 250 300 0.52 392.0 56,060.3

6.-SPARSE SCRUB AND WOODLAND
6.1.-Sparse Scrub and Quercus and
Conifer Woodland. 200 300 0.48 60.2 7224.0

6.2.-Sparse Scrub and Sparse Woodland 250 300 0.6 600.5 99,082.5

7.-PASTURE AND WOODLAND:
7.1.-Dense Pasture and Dense
Conifer Forest 75 300 0.2 22.1 829.9

8.-PASTURE AND OTHER
VEGETATION 150 200 0.33 1105.9 63,864.6

TOTALS 6623.4 1,011,769.1

The carrying capacity is calculated based on this data.

1. Equation (A1) calculates the total food units for a vegetation type i:

FUi = ADMI×fui×Si (A1)

ADMi is the average production of dry matter per ha and year in kg of type of
vegetation i. fui is the number of food units per 1 kg of dry matter of the type of
vegetation i. Si is the area in ha of type of vegetation i in Quintos de Mora preserve.

2. The total food units in the study area are the following:

TFU =∑10
i=1 FUi (A2)

Considering that 1 unit of large livestock needs 2876 food units per year, and that
1 unit of large livestock equals 4 deer, the carrying capacity on the Quintos de Mora estate
would be 1407 deer.



Diversity 2023, 15, 612 14 of 16

References
1. Mysterud, A. Still walking on the wild side? Management actions as steps towards ‘semi-domestication’ of hunted ungulates. J.

Appl. Ecol. 2010, 47, 920–925. [CrossRef]
2. Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management

recommendations. Mamm. Rev. 2020, 51, 95–108. [CrossRef]
3. Laguna, E.; Carpio, A.J.; Vicente, J.; Barasona, J.A.; Triguero-Ocaña, R.; Jiménez-Ruiz, S.; Gómez-Manzaneque, A.; Acevedo, P.

The spatial ecology of red deer under different land use and management scenarios: Protected areas, mixed farms and fenced
hunting preserves. Sci. Total Environ. 2021, 786, 47124. [CrossRef]

4. Hard, J.J.; Mills, L.S.; Peek, J.M. Genetic implications of reduced survival of male red deer Cervus elaphus under harvest. Wildl.
Biol. 2006, 12, 427–441. [CrossRef]

5. Webb, S.L.; DeYoung, R.W.; Demarais, S.; Strickland, B.K.; Gee, K.L. Testing a Local Inbreeding Hypothesis as a Cause of Observed
Antler Characteristics in Managed Populations of White-Tailed Deer. Diversity 2021, 13, 116. [CrossRef]

6. Apollonio, M.; Andersen, R.; Putman, R. European Ungulates and their Management in the 21st Century; Cambridge University Press:
Cambridge, UK, 2010.

7. Valente, A.M.; Acevedo, P.; Tableueiredo, A.M.; Fonseca, C.; Torres, R.T. Overabundant wild ungulate populations in Europe:
Management with consideration of socio-ecological consequences. Mamm. Rev. 2020, 50, 353–366. [CrossRef]

8. Ebert, C.; Sandrini, J.; Welter, B.; Thiele, B.; Hohmann, U. Estimating red deer (Cervus elaphus) population size based on
non-invasive genetic sampling. Eur. J. Wildl. Res. 2021, 67, 27. [CrossRef]

9. Austin, Z.; Raffaelli, D.; White, P. Interactions between ecological and social drivers in determining and managing biodiversity
impacts of deer. Biol. Conserv. 2013, 158, 214–222. [CrossRef]
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