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Abstract: The complete mitogenome of Doleschallia bisaltide was sequenced with a size of 16,389 bp.
Gene orientation and arrangement in the newly sequenced mitogenome are the same as other
mitogenomes in Lepidoptera. Except for trnS1(AGN), which lacks the dihydrouridine (DHC) arm,
the other 21 tRNA genes all contain a typical cloverleaf structure. Ka/Ks ratio analysis of 13 protein-
coding genes (PCGs) from 23 Nymphalinae species indicates that the evolutionary rate of COX1 was
slowest, while that of ATP8, ND5, and ND6 was substantially high. Phylogenetic analysis revealed
that Nymphalinae and Kallimini were nonmonophyletic. Trees constructed only from the nuclear
DNA (nDNA) dataset had lower support than mitochondrial or combined datasets. The addition
of RNA genes did not improve the phylogenetic signal, and nodal support decreased. These data
provide important information for future studies into the phylogeny of Nymphalinae.
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1. Introduction

The subfamily Nymphalinae (Lepidoptera, Nymphalidae) is distributed worldwide
and consists of 496 species in 56 genera [1]. Nymphalinae contributed to studies of spe-
ciation, plant-insect interactions, biogeography, community ecology, and climate change
and includes many model organisms and pest species [2–5]. The composition and tribal
classification of Nymphalinae has been controversial, with authors recognizing from two
to six tribes. Ackery [6] divided Nymphalinae into two tribes based on host plants: the
Nymphalini and Coloburini. Based on morphological characters, the Nymphalinae in
China were divided into three tribes: Nymphalini, Hypolimni, and Melitaeini [7,8]. Based
on the arrangement of filiform setae of larvae, the Nymphalinae was divided into three
tribes: Nymphalini, Melitaeini, and Kallimini [9]. This classification has been recognized
by other taxonomists, with Coeini later added [10–14]. Subsequently, Wahlberg et al. [1]
divided Nymphalinae into six tribes: Melitaeini, Nymphalini, Junoniini, Victorinini, Kalli-
mini, and Coeini based on DNA sequence data (COX1, EF-1α and wingless) although some
clades were not stable. Zhang et al. [15] divided Nymphalinae into 11 tribes: Nymphalini,
Junoniini, Victorinini, Kallimini, Melitaeini, Coeini, Pycinini, Rhinopalpini, Kallimoidini,
Vanessulini, and Doleschalliaini based on genomic data, with four genera Pycina, Rhinopalpa,
Kallimoides, and Vanessula unplaced to a tribe. Zhang et al. [15] placed Doleschallia in a new
tribe known as Doleschalliaini.

Previous phylogenetic studies sampled enough representatives of Nymphalidae to
test the monophyly and circumscription of the Nymphalinae [4,12,14,16–18]. However,
in these studies, there were only a few representatives of Nymphalinae, and some tribes
had unstable taxonomic status. Neither DNA sequences [11,12,19] nor morphological
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characters [14] recovered Kallimini as a monophyletic group. Based on a more taxon-rich
phylogenetic analysis of Nymphalinae using DNA sequences, Wahlberg et al. [1] proposed
that the tribe Coeini, as currently constituted, is untenable. Based on analysis of the genomic
data, Zhang et al. [15] proposed that Kallimoides rumia and Vanessula milca were placed in
the clade composed of Melitaeini, Junoniini, Victorinini, and Doleschallia, with their exact
phylogenetic position weakly supported.

Mitochondrial genomes and nuclear genes have been widely used in phylogenetic
studies of Lepidoptera [16,20–22]. In this study, we conducted a phylogenetic analysis
of Nymphalinae using ML and BI analyses of several different datasets assembled from
complete mitochondrial genome sequences and four nuclear genes. The impact of inclusion
vs. exclusion of RNA genes and nuclear genes on the phylogenetic resolution was tested.
Our aim was to test the monophyly of tribes and relationships among the major lineages of
this subfamily.

2. Materials and Methods
2.1. Taxon Sampling, Identification and DNA Extraction

We sampled 23 taxa representing 21 genera and 6 tribes within the Nymphalinae.
Three genera, Ariadne, Cyrestis, and Dichorragia, from the related subfamilies (Biblidinae,
Cyrestinae, and Pseudergolinae, respectively) were used as outgroups. The species sampled
are summarized in Table S1. Among these species, five species (Doleschallia bisaltide, Kallima
inachus, Junonia lemonias, Junonia iphita, and Stibochiona nicea) were collected in China
(collection details are shown in Table S2) and identified based on morphological descriptions
and illustrations [7,8,23]. Voucher specimens were deposited in the Entomological Museum
of Northwest A&F University in Yangling, Shaanxi Province, China. Genomic DNA was
extracted from the frozen legs of every single individual using EasyPure R Genomic DNA
Kit (TransGen Biotech, Beijing, China) according to the manufacturer’s instructions. The
DNA was stored at −20 ◦C until further use.

2.2. Nuclear DNA Amplification and Sequencing

Elongation factor 1 alpha (EF-1α), wingless (wgl), glyceraldehydes-3-phosphate dehydrogenase
(GAPDH), and Ribosomal Protein S5 (RpS5) of five collected species were amplified via
polymerase chain reaction (PCR) employing universal primers [16,24,25]. The cycling
profile was: an initial denaturation for 7 min at 95 ◦C, followed by 40 cycles of 95 ◦C for
30 s, 50 ◦C for 30 s, 72 ◦C for 15 s, and a final extension of 72 ◦C for 10 min. Amplification
products were detected by 1% (w/v) agarose gel electrophoresis and Sanger sequencing
(Tsingke Biotechnology Co., Ltd., Xi’an, China). Primers and PCR recipes are listed in
Tables S3 and S4. Sequencing chromatograms were checked using SeqMan 7.1.0 from
DNAStar (Lasergene, GATC Biotech, Konstanz, Germany). Sequences were corrected with
Geneious 8.1.3 (Biomatters, Auckland, New Zealand) or SeqMan 7.1.0. New sequences
were submitted to GenBank (accession numbers: Table S1). Sequences of five nuclear genes
for other taxa were downloaded from GenBank, and gene sequences of EF-1α, GAPDH,
and RpS5 were missing in some species (Table S1).

2.3. Mitogenome Sequencing, Annotation and Analyses

DNA samples were randomly sheared with an ultrasonic crusher (Covaris, Woburn,
MA, USA). Libraries were prepared by terminal repair, ligating adapters onto the 3′ end of
the sheared fragments, purification, and PCR amplification. Libraries were sequenced on
the Illumina HiseqTM Xten platform (Novogene Technologies, Beijing, China) for 150 bp
paired-end reads. FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc,
accessed on 5 September 2022) was used for read cleaning. Clean paired reads were used
to reconstruct mitogenomes in Geneious 8.1.3 [26] software with default parameters. The
mitogenome of Kallima inachus (GenBank accession number: NC_016196.1) was used as
reference.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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The mitogenome was annotated with the Geneious 8.1.3 software with default param-
eters. Protein-coding genes (PCGs) were annotated by alignment to homologous sequences
of Kallima inachus. The MITOS server (http://mitos.bioinf.uni-leipzig.de/index.py, ac-
cessed on 10 November 2022) [27] was used to identify tRNA genes. tRNA secondary
structures were drawn using MITOS predictions in Adobe Illustrator 2021. CGView server
(https://cgview.ca/, accessed on 12 November 2022) [28] was used to visualize a circular
mitogenomic map.

PhyloSuite 1.2.2 [29] was used to calculate base composition, the codon usage of PCGs,
and relative RSCU (synonymous codon usage) values. Nucleotide compositional bias was
calculated as AT-skew [(A − T)/(A + T)] and GC-skew [(G − C)/(G + C)] [30]. Sliding
window analysis (window = 200 bp, step size = 20 bp) was used to determine nucleotide
diversity (Pi value) of PCGs in DnaSP 6 [31]. The non-synonymous (Ka) and synonymous
substitution rates (Ks) for each PCG were determined in DnaSP 6. Genetic distances for
each PCG were calculated in MEGA X with the Kimura 2-parameter substitution model [32].
GraphPad Prism 8.0.1 (San Diego, CA, USA) was used to plot genetic distances and Ka/Ks
ratios (ω). The newly sequenced mitogenome has been submitted to GenBank (accession
number: OP748221).

2.4. Dataset Partitioning and Model Selection

Using codon alignment mode and the G-INS-I strategy, MAFFT 7.313 integrated into
PhyloSuite 1.2.2 was used to align each PCG and nuclear DNA (nDNA). The MAFFT 7 on-
line service (https://mafft.cbrc.jp/alignment/server/, accessed on 24 November 2022) [33]
was used to align all RNAs using Q-INS-I. Poorly aligned regions were removed by
Gblocks 0.91b [34] with default parameters. Xia’s [35] index of substitution saturation (Iss)
in DAMBE 7 [36,37] was used to analyze substitution saturation.

To assess the effect of data partitioning and incorporation of RNAs and nDNA on
phylogeny, seven datasets were used for phylogenetic inferences: the nuclear DNA dataset
(nDNA), PCG123 dataset (13 PCGs), the PCG123R dataset (13 PCGs and two rRNAs),
the PCG123RT dataset (13 PCGs, two rRNAs, and 22 tRNAs), the PCG123N dataset
(13 PCGs and nDNA), the PCG123RN dataset (13 PCGs, two rRNAs, and nDNA), and
the PCG123RTN dataset (13 PCGs, two rRNAs, 22 tRNAs, and nDNA). Datasets were
partitioned in PartitionFinder 2.1.1 [38] and integrated into PhyloSuite 1.2.2, using the
“greedy” search algorithm and Bayesian Information Criterion (BIC). Partitions and best-fit
models for each dataset are listed in Table S5.

2.5. Phylogenetic Inference

Under an edge-linked partition model, Maximum Likelihood (ML) analysis was
performed in IQ-TREE 2.2.0 [39]. A total of 5000 ultrafast bootstrap (UFB) replicates were
used to assess bootstrap support (BS) [40]. MrBayes 3.2.6 [41] implemented in the CIPRES
Science Gateway (www.phylo.org, accessed on 1 December 2022) was used for Bayesian
Inference (BI). BI analysis of each dataset was carried out with four chains and run for
5–10 million generations. Trees were sampled every 1000 generations, with the first 25%
discarded as burn-in. The convergence of the independent runs was indicated by a standard
deviation of split frequencies below 0.01 and an estimated sample size (ESS) greater than
200. Convergence between runs was examined with Tracer 1.7 software [42].

3. Results and Discussion
3.1. Basic Characteristics of the Mitochondrial Genome

The complete mitogenome of the Doleschallia bisaltide is 16,389 bp in length, contain-
ing 37 genes and a control region (CR) (Figure 1). A total of 23 genes (9 PCGs and 14
tRNAs) are located on the majority strand (J-strand), while the minority strand (N-strand)
encodes another 14 genes (4 PCGs, 2 rRNAs, and 8 tRNAs) (Table S6). As is typical for
Lepidoptera [43], a significant AT bias is present in the mitogenome of Doleschallia bisaltide
with a nucleotide composition of 79.2% A + T. The AT- and GC-skew are 0 and −0.22,

http://mitos.bioinf.uni-leipzig.de/index.py
https://cgview.ca/
https://mafft.cbrc.jp/alignment/server/
www.phylo.org


Diversity 2023, 15, 558 4 of 10

respectively. Ten gene overlaps, ranging in length from 1 bp to 8 bp, and twelve intergenic
spacers, ranging from 1 bp to 48 bp, were identified in the mitogenome (Table S6).

Diversity 2023, 15, x FOR PEER REVIEW 4 of 10 
 

 

encodes another 14 genes (4 PCGs, 2 rRNAs, and 8 tRNAs) (Table S6). As is typical for 
Lepidoptera [43], a significant AT bias is present in the mitogenome of Doleschallia bisaltide 
with a nucleotide composition of 79.2% A + T. The AT- and GC-skew are 0 and −0.22, re-
spectively. Ten gene overlaps, ranging in length from 1 bp to 8 bp, and twelve intergenic 
spacers, ranging from 1 bp to 48 bp, were identified in the mitogenome (Table S6). 

 
Figure 1. The mitogenome of Doleschallia bisaltide. 

3.2. Protein-coding Genes, tRNAs, rRNAs and Control Region 
The length of the 13 PCGs was 11,203 bp. AT content of the PCGs was 78.7%. Except 

for COX1 (with CGA as start codon), all other PCGs initiate strictly with ATT or ATG (Ta-
ble S6). It is common for Lepidoptera COX1 genes to use CGA as the start codon [44–48]. 
The stop codon of most PCGs was TAA; four PCGs (COX1, COX2, ND4, and ND5) termi-
nated with an incomplete T residue. Incomplete termination codons of PCGs are con-
verted into TAA by post-transcriptional polyadenylation [49]. RSCU of the PCGs (Figure 
S1) showed that the four most frequently utilized amino acids were Ile (AUU), Leu (UUA), 
Met (AUA), and Phe (UUU). Nucleotide diversity (Figure S2) showed that COX1 and ND1 
were the most conserved (Pi = 0.103), while ATP8 was the most variable (Pi = 0.163). Con-
gruent results were obtained from pairwise genetic distances (Figure S3). Ka/Ks (ω) ratios 
(Figure S3) were low (0 < ω < 1) for all 13 PCGs, suggesting that these genes experienced 

Figure 1. The mitogenome of Doleschallia bisaltide.

3.2. Protein-coding Genes, tRNAs, rRNAs and Control Region

The length of the 13 PCGs was 11,203 bp. AT content of the PCGs was 78.7%. Except for
COX1 (with CGA as start codon), all other PCGs initiate strictly with ATT or ATG (Table S6).
It is common for Lepidoptera COX1 genes to use CGA as the start codon [44–48]. The stop
codon of most PCGs was TAA; four PCGs (COX1, COX2, ND4, and ND5) terminated with
an incomplete T residue. Incomplete termination codons of PCGs are converted into TAA
by post-transcriptional polyadenylation [49]. RSCU of the PCGs (Figure S1) showed that
the four most frequently utilized amino acids were Ile (AUU), Leu (UUA), Met (AUA), and
Phe (UUU). Nucleotide diversity (Figure S2) showed that COX1 and ND1 were the most
conserved (Pi = 0.103), while ATP8 was the most variable (Pi = 0.163). Congruent results
were obtained from pairwise genetic distances (Figure S3). Ka/Ks (ω) ratios (Figure S3)
were low (0 < ω < 1) for all 13 PCGs, suggesting that these genes experienced purifying
selection. COX1 showed an extremely low evolutionary rate (ω = 0.049). By contrast, the
ATP8 (ω = 0.499) shows a relatively fast evolutionary rate, as dose ND6 (ω = 0.237) and
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ND5 (ω = 0.233). Overall, the evolutionary rates of NADH dehydrogenase genes are faster
than that of cytochrome oxidase genes.

Except for trnS1, which lacks the dihydrouridine (DHU) arm, all other tRNA genes
had canonical cloverleaf structures (Figure S4). The absence of the DHU arm in trnS1 is
common across metazoan mitogenomes [50,51]. The anticodon and amino acid acceptor
arms are highly conserved, while the pseudouridine (TΨC) and DHU arms are variable.
lrRNA (16S rRNA) is 1326 bp in length and is located between trnL1 and trnV. srRNA (12S
rRNA) is 775 bp in length and is located between trnV and the control region. AT content
of the rRNAs is 84.4%.

The control region (1542 bp) is located between srRNA and trnM. As in other lepi-
dopteran mitogenomes [48,52], the control region of the Doleschallia bisaltide mitogenome
contains the motif ATAGA between the 5′-end of the 12S rRNA and poly-T stretch, which
is proposed to be the replication origin for the minority strand.

3.3. Phylogenetic Analysis

Based on seven datasets, phylogenetic trees were generated by BI and ML (Figures 2–4).
Nymphalinae was not a monophyletic group in any dataset. Baeotus (Coeini) clusters
within the outgroup taxa (Biblidinae, Cyrestinae, and Pseudergolinae). These results are
in accordance with previous studies [19,53]. In all analyses, Nymphalini, Melitaeini, and
Junoniini form stable monophyletic groups with strong support. Our results show that
Kallimini is not monophyletic; Doleschallia bisaltide clusters with species of the Melitaeini,
consistent with Zhang et al. [15] and Su et al. [19], but contra the results of Wahlberg
et al. [1].
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The monophyly of Nymphalini was supported in six datasets (PCG123, PCG123R,
PCG123RT, PCG123N, PCG123RN, PCG123RTN) with strong support (BS = 100, PP = 1.0),
but only moderate support in nDNA datasets (BS = 93). Nymphalini was sister to the
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remaining Nymphalinae (except Coeini) in all phylogenetic analyses, with low support
(BS = 38, PP = 0.61) using nDNA dataset and high support (BS = 100, PP = 1.0) using
mitochondrial or combined datasets. These results are consistent with previous publica-
tions [1,19,53–55]. Smyrna blomfildia was a sister to the rest of Nymphalini with moderate to
strong support (BS = 93, PP = 1.0; BS = 100, PP = 1.0).

Victorinini contains four South American genera Siproeta, Anartia, Metamorpha, and
Napeocles. Only Anartia was included in this study. The nDNA dataset found Anartia and
Doleschallia to be sisters but with low branch support (BS = 49, PP = 0.62). The PCG123,
PCG123R, PCG123N, and PCG123RN datasets without tRNA genes, found Anartia to be
sister to the clade (Kallimini + (Melitaeini + Junoniini) across ML analyses. However,
Anartia was a sister to Kallimoides in BI analyses with lower support (PP = 0.56, 0.66, 0.59,
0.64) in these same datasets.

Due to superficial similarity, Doleschallia was previously placed in Kallimini. Currently,
there are four genera (Doleschallia, Kallima, Catacroptera, and Mallika) in Kallimini. Both ML
and BI analyses of six datasets (PCG123, PCG123R, PCG123RT, PCG123N, PCG123RN, and
PCG123RTN) found Doleschallia to be separated from the Kallimini and instead clusters with
the Melitaeini. Genomic data found Doleschallia to be sister to Melitaeini, which is consistent
with our results; thus, Doleschallia was assigned the status of a tribe [15]. Our analyses
based on the nDNA dataset found that the Melitaeini was sister to Doleschallia + Anartia.
Analyses of all datasets reveal that the remaining members of the Kallimini (Catacroptera,
Kallima, and Mallika) always form a monophyletic group with strong support (BS = 100,
PP = 1.0).

The monophyly of Melitaeini was confirmed. This tribe has five major clades, the
Gnathotriche-group, the Melitaea-group (Melitaeina), the Chlosyne-group, the Euphydryas-
group (Euphydryina), and the Phyciodes-group (Phyciodina) [1]. Mellicta has been syn-
onymized with Melitaea [56]; however, Lang [13] recognized both genera, Melitaea and
Mellicta, the former with a tegumen as a narrow transverse band and the latter with a small
canopy tegumen. In this study, only two Melitaeini genera (Melitaea and Mellicta) were
included and were monophyletic in all trees with strong support (BS = 100, PP = 1.0).

The Junoniini currently comprises six genera (Yoma, Hypolimnas, Junonia, Precis, Salamis,
and Protogoniomorpha) [1]. In this study, all six genera were monophyletic with high support
(BS = 98–100, PP = 1.0). Junonia and Precis, two genera that have been used interchangeably
for several hundred years, are not each a sister group; rather, Precis is sister to Hypolimnas.
In this study, both ML and BI analyses also confirm that Precis is a sister to Hypolimnas based
on all datasets. Strong branch support (BS = 100, PP = 1.0) was obtained from PCG123,
PCG123R, PCG123RT, PCG123N, PCG123RN, and PCG123RTN, while branch support in
the nDNA dataset was moderate (BS = 89, PP = 0.97), in line with previous research [1].

Based on a more taxon-rich analysis of Nymphalinae using three genes (COXI, EF-1α,
and wingless), Su et al. [19] proposed Kallimoides to belong to the Victorinini. However,
among the analyses in this study, the position of Kallimoides was not stable and showed
weak support. These results are consistent with previous publications [1,54]. However,
Zhang et al. [15] proposed Kallimoides to represent a monotypic tribe due to only moderate
support for its association with Victorinini.

4. Conclusions

In this study, we sequenced the mitochondrial genome of Doleschallia bisaltide. It has
the same gene orientation and arrangement as other mitogenomes from Lepidoptera. ATP8,
ND6, and ND5 could be potential DNA markers for species delimitation due to their higher
variance. By comparing trees constructed from different datasets, we found that trees con-
structed from the nDNA dataset had lower nodal support than other datasets, suggesting
that the mitochondrial genome provides more phylogenetic resolution compared to a single
nuclear gene or multiple genes [57,58]. Phylogenetic analysis of the PCG123N dataset
(13 PCGs and nDNA) had the highest support. Our results indicate that the addition of
RNA genes did not improve the phylogenetic signal, as nodal support decreased. In a
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future study, increasing the taxa sampling is necessary to test the monophyly of tribal
groups in the Nymphalinae.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/d15040558/s1. Figure S1: Relative synonymous codon usage
(RSCU) of the mitogenome of Doleschallia bisaltide; Figure S2: Nucleotide diversity on 13 PCGs in
Nymphalinae; Figure S3: Genetic distances and non-synonymous (Ka) to synonymous (Ks) substi-
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