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Abstract: Understanding invasion mechanisms or identifying their potential outcomes has been a
longstanding objective of invasion. Many recent empirical and theoretical works tend to frame a
perspective of invasion biology within the field of coexistence theory. With increasing emphasis on
indirect competitions, more researches hold that niche departure, intransitive loop structure or the
integration of these two would be the potential mechanisms to promote native coexistence. But how
invasion dynamics rely on these key properties of native competitive network is seldom investigated.
Here, we introduce one alien species to a three-species competition system. By setting the structure of
coexistence coefficient matrix, we consider three native coexistence mechanisms. After analyzing the
equilibrium consequences of alien species invasion under these three mechanisms, we have found that
(1) in the native communities supported by strong niche differentiation, alien species can certainly
establish their population but would not pose great destruction to native species. (2) Invasion
exclusion would happen in the community maintained by intransitive competition loop. However,
whether alien species coexist with or exclude resident populations depends on both intraspecific
and interspecific competition of invader. (3) The community assembled by the combination of these
two mechanisms are most resistant to invasion, and where invasion consequences are more diverse.
(4) Finally, the species long-term steady state and short-term respond always keep consistent. We
have explicitly situated invasion process within the recent coexistence framework. Our results would
broaden the understanding of invasion mechanisms and provide insights into the combination of
invasion and coexistence theory.

Keywords: biological invasion; competitive networks; niche differentiation; intransitivity; species
coexistence

1. Introduction

Since biological invasions pose serious threats to ecological communities, includ-
ing the erosion of species diversity and the destruction of ecosystem functions, they
have attracted extensive attentions from the governments and international community
(van Kleunen et al., 2015 [1]; McGeoch and Latombe 2016 [2]; Coates 2016 [3]). Understand-
ing invasion mechanisms or identifying their potential outcomes has been a longstanding
objective of invasion (Kolar and Lodge 2001 [4]; Keane 2002 [5]). However, the pro-
cess of invasion is often too complex to be explained by a single theory or hypothesis
(Hierro et al., 2005 [6]; Diez et al., 2010 [7]). The successful establishment of alien species
is not only due to its own competitive advantage, but also frequently related to the char-
acteristics of local community (Pyšek and Richardson 2007 [8]; Ortega et al., 2014 [9]).
When alien species arrive the novel region, they should colonize, survival and spread to
successfully establish their population (Hobbs 1989 [10]). During these stages, introduced
species will inevitably interact with a subset of native species (Colautti et al., 2004 [11];
Mitchell et al., 2006 [12]) and so that they might encounter potential competitors, mutualists
(Traveset and Richardson 2014 [13]; Minoarivelo and Hui 2016 [14]) and novel enemies
(Keane 2002 [5]). One perspective of the invading researches has considered this dynamic
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within a single trophic level (Mitchell et al., 2006 [12]; Godoy and Thompson 2019 [15]),
especially for those species directly competing for limiting factors (e.g., light, nutrient
or food) or indirectly through interaction chains (Romanuk et al., 2009 [16]; Hui et al.,
2016 [17]). Classical niche theory suggested that species can survive under several limited
conditions (Hutchinson 1959 [18]). Great niche overlap under one single environmen-
tal limiting factor would present species extinction in communities (Diamond 1975 [19];
MacArthur and Wilson 2016 [20]). Therefore, the invaders which occupying different niche
space than native species could successfully establish their populations (Fargione et al.,
2003 [21]; Fridley et al., 2007 [22]). By possessing novel phytochemicals, alien species more
easily invade those less functionally diverse communities (Mack 2003 [23]; Stachowicz and
Tilman 2005 [24]). MacDougall et al. (2009) [25] reviewed the question of how species
differences influence the establishment and impact of invaders in light of the recent work
of coexistence theory, which shows how niche and fitness differences between native
species and invaders co-determine the outcome of invasions. Nevertheless, there were
also studies that suggest trait differences between alien and resident species might actu-
ally presenting limited power to predict invasion success (Leffler et al., 2014 [26]). The
functional properties of invader and resident plants were found to be strikingly similar
in some empirical researches (Bruno et al., 2005 [27]). Additionally, niche hypothesis also
poorly predicts those invasions with great damage (MacDougall et al., 2009 [25]) and has
shown contradictory results. Their shortcomings when being applied to invasion are that
most of them have provided little guidance for how alien species establish populations
without niche departures (MacDougall et al., 2009 [25]). The non-hierarchical competition
structure, such as intransitive competition which being similar to a rock-paper-scissors
game, is also expected to promote coexistence (Laird and Schamp 2006 [28]; Allesina and
Levine 2011 [29]). Among this kind of native community, species population densities
are maintained stable under dynamical constrains, namely there is no universal strong or
weak competitor (Lankau and Strauss 2007 [30]). Since the type of scenario could be rather
uncommon in nature (Soliveres et al., 2018 [31]), this study view was recently updated
a little. Some investigations have demonstrated that intransitive competition structures
alone are not able to determine coexistence (Gallien et al., 2017 [32]; Godoy et al., 2017 [33]).
Competition should be viewed in a more continuous way (Godoy et al., 2017 [33]; Yang and
Hui 2021 [34]), such as when combined with the pairwise niche differentiation. In modern
coexistence theory, species would be maintained when intraspecific competition intensity
are stronger more than interspecific competition the intensity of intraspecific competition
exceeds that of interspecific competition (Chesson 2000 [35]).

All advances in coexistence theory inspire us that native community features, espe-
cially for competitive networks, can produce diverse outcomes and effects of invasion
(Godoy et al., 2017 [33]). A structure of non-hierarchical interaction might be predicted
to resistant to alien species but also conversely be crumbled by invader with particular
features, like priority effects (Uricchio et al., 2019 [36]). If resident species are compet-
ing for multiple limited factors, exotic species would be expected to successfully coexist
with resident species through niche departure rather than competitive exclusion (Levine
1976 [37]; Mitchell and Power 2003 [38]; Bulleri et al., 2008 [39]). This trend could be also
modified by another species differences that drive the competitive dominance of invader
(Adler et al., 2007 [40]; MacDougall et al., 2009 [25]). In short, different configuration of
competing networks, variance in niche differences, in competitive asymmetries, and even
match with specific properties of invaders, would result in diverse resistance outcomes
when facing invasion (Godoy and Thompson 2019 [15]). Literature should explicitly con-
sider the effect of competitive networks on invasion establishment (Godoy et al., 2017 [33];
Hui and Richardson 2019 [41]; Latombe et al., 2021 [42]) and further explore which com-
petitive networks are more resistant to invasion in natural communities. Here, we focus
on simplest competition networks, a three-species dynamic system. We have established a
Lotka-Volterra competition model and extended it to the invasion scenario. As we know,
the competition matrix of system equations has played vital roles for the dynamical regimes
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of the community (Hofbauer and Sigmund 1998 [43]; Laird and Schamp 2006 [28]; Schreiber
and Killingback 2013 [44]). Based on the relationship between niche overlap and intraspe-
cific or interspecific competition factors (Chesson 2000 [35]), we construct a competition
coefficient matrix controlled by two parameters. The matrix can continuously change
the relative intensity of intransitive competition mechanisms and niche differentiation
mechanisms under parameter values setting. After stable coexistence of native species was
achieved, we select three groups of community parameters with different attributes through
the branching results of stability analysis, and added alien species invasion process to these
three native communities. After exploring the equilibrium densities of resident species and
invaders versus parameter value ranges, and analyzing the dynamic response to the inva-
sion, we want to investigate the following questions: (1) what is the invasion consequence
respectively in communities supported by niche departure, strong intransitive competition
loop or combinations of the two extremes; (2) how competitive asymmetries moderate
these processes; and further (3) whether there is a difference between the predicted results
of stable state and species short-term dynamic response trend.

2. Methods
2.1. Native Dynamic Model
2.1.1. Model Construction

The three-species competition system is given by the classical Lotka-Volterra model
framework (Leung 2013 [45]; Pao 2012 [46]; Takeuchi 1996 [47]). As an ecological model
representing the interaction between competing species, it has been widely used in the field
of ecology (Waltman 1983 [48]). The coexistence theory based on this model framework
emphasizes that the degree of differences between intraspecific and interspecific competi-
tion determines species stable coexistence or exclusion (Lotka 1925 [49]; Volterra 1928 [50]).
Specifically, population dynamics are expressed by a series of ordinary differential equa-
tions. Consider three variables N1, N2, N3, which respectively conveys the population
density of species 1, species 2 and species 3. The dynamic variation of the system is
as follows:

dNi
dt

= ri Ni

(
1−

S

∑
i=1

αijNj

)
, i = 1, 2, 3, (1)

where ri is the intrinsic growth rate of species i, S = 3 represents the number of species in
community, αij are the competition strength from species j to i. When αij are being assigned
with different magnitudes, we would gain different population dynamic characteristics
and species coexistence results. Next, we set up the competition matrix accordingly.

2.1.2. Competition Matrix

In this paper, we mainly consider two kinds of coexistence mechanisms, namely
intransitive competition coexistence and niche differentiation coexistence (i.e., intraspecific
competition intensity is much higher than interspecific competition intensity). Usually in
natural communities, species coexistence may be caused by either of the two mechanisms,
or the combination of them. In order to quantitatively describe the species coexistence mode
in native community, we utilize the method proposed by Yang and Hui (2021) [34] to set
the elements of competition matrix. Such as α21 − α12 = α32 − α23 = 1− θ and α31 − α13 =
1 − θ3, where θ ∈ [0, 1]. If θ = 0, the competition between species 1, 2, and 2, 3 are
asymmetrical and competitiveness show the largest difference. When θ = 1, since 1− θ = 0,
species 1, 2, and 2, 3 present symmetrical competitions. In this case, competition effects are
cancelled each other and there is no difference in competitiveness.

In our model, we fix the value of θ and change θ3 to continuously modify the intran-
sitive degree of competing system (Figure 1). For example, 1− θ3 = 0 represents chain
competition, that is, species 1 is more competitive than species 2, and species 2 is more
competitive than species 3, so that species 1 is the dominant competitor in the system.
When 1− θ3 increases and beyond 0, the competition difference between species 1 and
3 is positive, resulting in intransitive competition. 1− θ3 = 1− θ means the highest in-
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transitive competition, which is the cyclic competition in the normal sense. Therefore,
0 ≤ 1− θ3 ≤ 1− θ and then the range of θ3 here is θ ≤ θ3 ≤ 1.

Figure 1. The spectrum of transitive–intransitive continuum in the three-species system. Arrows
represent the net competition direction between two species, which point from the stronger to
weaker competitor. Double lines represent equal net competition. From left to right, intransitivity
1− θ3 increases from 0 to 1− θ, shifting a transitive network to an intransitive loop.

In addition to the intransitive competitive coexistence, our paper also considers the
niche differentiation mechanism. According to theoretical frameworks from Chesson
et al. (2000) [35], the degree of niche overlap between species i and j can be expressed as√
(αijαji)/(αiiαjj). In the three-species competition matrix, in order to fix the niche overlap

degree
√
(αijαji)/(αiiαjj) ≡ k and control the niche differentiation level of the system

(1− k) from low to high (the range of k is [0, 0.9]), we set the coefficient of intraspecific
competition as α11 =

√
θ3/k, α22 = θ/(k

√
θ3), α33 =

√
θ3/k. The interspecific competition

matrix is as follow:

M =


√

θ3
k θ 1

1 θ
k
√

θ3
θ

θ3 1
√

θ3
k

.

In summary, if the intrinsic growth rates of the three species are set as r1 = r2 = r3 = r,
with the value of competition intensity θ fixed in the model, the competition system can be
controlled by only two parameters: intransitive degree 1− θ3 and niche overlap degree k.
We can explore the effect of intransitivity and niche differentiation mechanisms on species
coexistence through the three parameter values.

2.1.3. Coexistence Mechanisms Analysis

The positive equilibrium point N∗i > 0 represents native species have positive popula-
tion density in the steady state. We first find the positive equilibrium point N∗i (i = 1, 2, 3)
by setting the right-hand formula of system (1) as 0. They are the function of parameters θ,
k and θ3. Since θ is fixed, the value of N∗i (i = 1, 2, 3) is determined only by k and θ3. Then
the existence conditions for positive equilibrium point are obtained by solving inequalities
N∗i > 0. Besides, in order to guarantee the steady state do not move away from steady state
by small perturbations, we still need to do local stability analysis.

Local stability analysis is an effective method to judge whether species can coexist
stably in competitive networks. The principle of local stability analysis is based on Lya-
punov stability (Lyapunov 1992 [51]). When the equilibrium state of the system satisfies
Lyapunov stability, the system will never leave the stable state and can approach or return
to the original equilibrium state no matter what disturbance it is subjected to. Then we
apply the Lyapunov stability analysis to our system. Lyapunov’s condition for the local
asymptotic stability of N∗ is:

Reλi(J) < 0, i = 1, 2, . . . , n (2)
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where Reλi(J) is the real part of the eigenvalue of the system Jacobian matrix λi. Inequation
(2) can be calculated using Routh-Hurwitz criterion (Gantmacher 1959 [52]). It is also
the function of intransitive degree 1− θ3 and niche overlap degree k, and competitive
asymmetry θ. Our final coexisting conditions are obtained by the intersection of area where
N∗i > 0 and Reλi(J) < 0. See for more details in Appendix A.

2.2. Invasion of Alien Species

Here we introduce one alien species to the competition. The extended model system
is as follows:

dNi
dt

= ri Ni

(
1−

S

∑
i=1

αijNj

)
, i = 1, 2, 3, 4; s = 4 (3)

the competition matrix MI is set as:

MI =


√

θ3
k θ 1 α14

1 θ
k
√

θ3
θ α24

θ3 1
√

θ3
k α34

1 1 1 α44

,

In this competition matrix, the competition between native species and invasive
species are fixed as α41 = α42 = α43 = 1 while αi4 (i = 1, 2, 3) determine the difference of
competition intensity between invasive and native species. αi4 > 1 indicates that invasive
species has a competitive advantage over resident species i, whereas αi4 ≤ 1 suggests
invader is at a competitive disadvantage compared to natives.

As we known, species coexistence happens under equalizing (similar fitness abilities)
and stabilizing (unique niche requirements) mechanisms (Chesson 2000 [35]). If introduced
alien species equipping with either a fitness advantage or a distinct niche requirement
(more intraspecific competition), they may destabilize coexistence. Therefore, here we
mainly explored the parameter value of competitive ability of invasive against native
species αi4, i = 1, 2, 3 and the intraspecific competitive ability of invader α44. They jointly
determine the invasion consequences.

We get the equilibrium point N∗i (i = 1, 2, 3, 4) by setting the right-hand formula of
system (3) as zero. The final invasion consequence are divided into three categories for
discussion: (1) N∗i > 0 (i = 1, 2, 3, 4), all population densities, including both invasive and
native species, are positive, which indicates invasive species have successfully established
their population, and there is invasion coexistence between native and invasive species;
(2) N∗4 > 0∩

(
N∗1 ≤ 0∪ N∗2 ≤ 0∪ N∗3 ≤ 0

)
,where invasive population density at equilib-

rium state is positive, but native community has extinctions. In this case, the alien species
successfully invade and has a certain degree of harmful effect on native community, which
here considered as invasion exclusion; (3) N∗4 ≤ 0. If the invasive population density at
equilibrium state is zero or negative, then the invasion fails.

Based on the analysis method, we have explored three invasion scenarios on the
whole: We respectively examined the results when alien species compete with one (e.g.,
αi4 > 1, αj4 = 1, αk4 = 1), two (e.g., αi4 > 1, αj4 > 1, αk4 = 1) and three native species
(e.g., αi4 > 1, αj4 > 1, αk4 > 1), where i, j, k = 1, 2, 3 & i 6= j 6= k.

2.3. Metrics for Species Short-Term Response to Invasion

As we know, during interactions between alien and native species, native community
system may tend to be destabilized. The usual question would be whether alien species
can establish and invade. At this point, there should be a particular estimator to forecast
species-level invasion performance and response. In fact, some researches have been
proposed feasible estimators to quantify the short-term dynamic response of native species
to invasion (Hui and Richardson 2019 [41]). By calculating the estimator, we can know how
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the native system deviates from the current stable state when facing the invasion process,
and thus reveal the dynamic trajectory of various groups.

Specifically, we first standardized Ni by ni = Ni − N0, where N0 is the initial popula-
tion density at the beginning of invasion (here the value of N0 was uniformly set). Then
ni can be regarded as the modification of population densities after invasion processes.
By considering the dynamical system ṅi = F(ni) = F(Ni − N0), we transform original
network Equation (3) into the follow new one:

dni
dt

= ri(ni + N0)

(
1−

S

∑
i=1

αij
(
nj + N0

))
, i = 1, 2, 3, 4; s = 4 (4)

The linearized approximation of (4) is ~̇n = J′~n, ~n = (n1, n2, n3, n4)
T . Jacobian matrix J′

here transforms the abundance vector~n into a new vector space. We have JV = VΛ, where
V = v1, v2, . . . is eigenvector matrix composed of vertical eigenvectors vi of eigenvalues λi
(λi satisfy Jvi = viλi). Λ is an eigenvalue matrix with diagonal elements of λi and other
elements of zero. After solving the linearized equations ~̇n = J′~n (details of this derivation
are in Appendix B), we have each ni(t) = ∑j vjicje

λjt = eλmt ∑j vjicje
(λj−λm)t, i = 1, 2, 3, 4,

where vji is the i th element of the eigenvector vj and λm is the leading eigenvalue (largest
eigenvalue) of the Jacobian matrix J.

As time t going to infinity, we can see ni −→ vmicmeλmt. Since term cmeλmt are the
same for all species, the species level dynamic difference would only result from the term
vmi. As such, the short-term response of species i (how species i changes), both in direction
and magnitude, depends entirely on vmi. If vmi > 0, the species i would increase; When
vmi < 0, the population density of species i tend to decrease. vmi = 0 means less sensitive
of species i to invasion disturbance. Here, we compare the short-term reaction between
each resident and alien species.

3. Results
3.1. Native Coexistence Mechanisms

We uniformly set the intrinsic growth rate of three species in the model as
r1 = r2 = r3 = 0.02. To explore the robustness of results under different levels of compe-
tition asymmetry which is proportional to 1− θ, we repeated the analyses of our system
at different levels of θ = 0.3, 0.5, 0.7 (Figure 2). Figure 2a shows the bifurcation con-
ditions for local stability of nonzero equilibrium while Figure 2b is the result combined
with the existence area of coexistence equilibrium points (N∗1 > 0, N∗2 > 0, N∗3 > 0).
From Figure 2b we know, the parameter axis is divided into two parts, species coexistence
(yellow color range) and extinction (blue areas). Native species cannot stably coexist when
no intransitivity and extremely high niche overlaps. The parameter zone for extinction
(yellow area) steadily enlarged when moving from a neutral community (no competition
asymmetry with θ close to 1) to a community dominated by asymmetric competition (θ
close to 0).

If competition asymmetry θ is fixed, the coexistence of native species was mainly deter-
mined by competitive transitivity (θ3) and niche overlap (k). We note that for communities
with enough niche differentiation (k < 0.3 in the first panel of Figure 2b), species can coexist
regardless of the presence or absence of intransitive competition. This is consistent with the
niche theory that niche differentiation promotes species coexistence (Chesson 2000 [35]).
When high niche overlap (k = 0.8), there are strong competitions among species so that on
the system will quickly appear competing exclusion. However, if species has intransitive
interacting structure, there is no absolutely dominant species. No one species will exclude
the others. When strong intransitive competition force, all species could coexist stably.
Finally, native species can also coexist under the combined effect of niche differentiation
and intransitive competition.

From the above division of parameter area, we chose three different coexisting scenar-
ios as the native community to introduce invasion process: (1) strong niche differentiation;
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(2) combination of niche differentiation and intransitive competition; and (3) intransitive
competition. We want to know how invasion effect differ in the communities obtained
under these three mechanisms.

Figure 2. Coexistence area at different levels of competitive symmetry (θ = 0.3, 0.5, 0.7). (a) Stability
analysis results of three species system at nonzero equilibrium point. In the parameter range of
Reλi < 0, nonzero equilibrium point N∗i would be locally stable. There were two kinds of ranges:
blue and green colors (stable coexistence at N∗i ), yellow colors (unstable at N∗i ). (b) Final coexistence
condition, which derived by the intersection of local stability conditions and existence conditions
for nonzero equilibrium point N∗i . The final entire parameter space was still divided into two areas:
coexistence (nonzero equilibrium point N∗i exist and stable) and extinction (not exist or locally
unstable). Intransitivity 1− θ3 was from [0, 1− θ]. r1 = r2 = r3 = 0.02.

3.2. Invasion Consequences
3.2.1. Three Coexistence Mechanisms

The influence of invading events varies with the attribute of native communities.
We investigated the consequences after spreading of alien species under three different
kinds of native coexistence scenarios (see Table 1). By calculating the values of equilibrium
N∗i (i = 1, 2, 3, 4), the consequences were divided into three types of invasion outcomes
(referred in Method part). We first considered the invasion where alien species only compete
with one native. Then, the other scenarios, like invaders with competitive advantages over
two or three native species, were included as well.

Table 1. Three coexistence mechanisms.

Scenario The Meaning of Different
Scenarios Parameter Range

Case1 Strong niche differentiation (k, 1− θ3) = (0.05, 0.1)

Case2
Combination of niche

differentiation and
intransitive competition

(k, 1− θ3) =
(

0.4, 1−θ
2

)
Case3 Intransitive competition (k, 1− θ3) = (0.75, 1− θ)

3.2.2. Invasion When Only Competing with One Native Species

Our alien species is species 4 and we take the invasive competition with species
1 as example (Figure 3). As it shown, the invasion outcomes in three types of native
communities (case 1–3) were indeed different. For the coexistence under niche departure
(case 1 and Figure 3a), there are only two kinds of invasion results, invasion coexistence
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(blue area) and invasion exclusion (green area), which of these two occur mainly depends
on the intraspecific competition of invader α44 rather than interspecific competing force
α14. In this case, alien species could successfully establish their populations but would
not harm native individuals and cause extinctions. On the other hand, for intransitivity-
maintained coexistence (case 3 and Figure 3c), there were still two kinds of invasion
results. However, how invasion influence native community is the consequence of both
intraspecific competition α44 and interspecific competition α14. In particular, when the
competitiveness of alien species was greater than that of native species (α14 > 1), the
stronger the competing force was, the more harmful the alien species was. Finally, if native
community was constructed by the combination of these two coexistence mechanisms
(case 2 and Figure 3b), a new invasion outcome, invasion failure (yellow area in axis)
occurs. How the three consequences distribute among the parameter axis dramatically
depend on intraspecific competition of invader α44. Invasion extinctions would be caused
by the alien species with medium intraspecific population competition. We could see
alien species may not be able to successfully established their population under the same
intraspecific competition when the level of native competitive asymmetry θ change. For
example, invader arrived in a highly competitive community, (big competitive asymmetry
θ = 0.3), invaders with weaker intraspecific competition (α44 < 1) were more likely to
invade. Whereas when the competition asymmetry was small (θ = 0.5 or 0.7), relatively
strong competing force within alien population (α44 > 1) would be more possible to make
successful establishments.

Figure 3. Parameter ranges for different invasive consequences (assuming alien species can only com-
pete with species 1). Different figure rows correspond to three different native communities, which
supported by (a) strong niche departure (case 1), (b) the combination of niche differentiation and
intransitive competition (case 2), and (c) intransitive competition (case 3). Each columns exhibit three
levels of competitive symmetry 1− θ = 0.7, 0.5, 0.3. X axis represents the interspecific competition
intensity between alien species and native species 1, α14. Y axis is intraspecific competition intensity
of alien species α44. The parameter space is divided into several parts. Blue color area represents
successful establishment of invader. Green color region suggests the conditions when alien species
pose destructive effect and cause native extinctions; yellow color area identify the invasion failure.
r1 = r2 = r3 = 0.02.

3.2.3. Long-Term Population Evolution and Short-Term Response

To present the invasion long-tern evolution in detail, we numerically solved our
Equations (1) and (3). Taking the case 1, case 2 and θ = 0.3, 0.7 as the example, each
population density over time was presented in Figures 4 and 5. Besides, we also used
the estimator provided by Hui and Richardson (2019) [41] namely the lead eigenvalue for
the joint matrix of linearized approximation of system (4), to indicate species short-term
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response when facing initial invasion. This index value for each species was shown in the
last column of Figure 4.

Figure 4. The long-term evolution dynamics and short-term response of all species in case 1 and
θ = 0.3. We respectively choose parameter values from obtained two invasion consequences,
(a) invasion coexistence and (b) invasion exclusion of this scenario. The first two columns respectively
show long-term population evolution before and after invasion. The last column corresponds to
the major axis (i.e., the eigenvector of the lead eigenvalue) of the joint matrix, revealing how each
species dynamically responds to the invasion (species 1–3 are the original resident species; species
4 is the newly introduced species). r1 = r2 = r3 = 0.02. α14 and α44 are randomly selected in the
corresponding invasion result area.

Figure 5. The long-term evolution dynamics and short-term response of all species in case 2 and
θ = 0.7. There are three kinds of consequence in this scenario. We choose the parameter values
from (a) invasion coexistence (b) invasion exclusion and (c) failed invasion. The first two columns
show long-term population evolution before and after invasion. The last column suggests the major
axis (i.e., the eigenvector of the lead eigenvalue) of the joint matrix, revealing how each species
dynamically responds to the invasion. Other parameters are same with Figure 4.

When parameter values are chosen from the blue area of Figure 3a, small invader
population has finally maintained their density (Figure 4a). As for short-term responses,
we find most native species are insensitive to initial invasion process. Since alien species
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has more negative dynamic direction force, they were not greatly invasive and coexistent
with native populations at equilibrium state. For parameter values in green area of case 1
(Figure 4b), alien species had positive direction while resident species responded negatively
to invasion. Therefore, native extinction happened in the end. As for case 2 and θ = 0.7
(Figure 5), we know in the previous analysis there would be three kinds of invasion results,
invasion coexistence, invasion exclusion and invasion failure. If respectively fixing the
parameter values under these different equilibrium condition areas, species long-term
evolution trends all fit the equilibriums results perfectly. And short-term reactions for each
species also be consistent with their long-term tendencies. Therefore, during the process
from initial invasion to system equilibrium state, the direction and magnitude of population
density change can be predicted and judged by the results of dynamic response.

3.2.4. Invasion Consequence for the Other Scenarios

For those more universal invaders, like species which have competing advance over
all native species, the invasion consequences are different and mostly differ in case 2 and
case 3 (Figure 6). In case 2, unlike the distinct invader (Figure 3), the invasion results for
more universal invader were affected not only by intraspecific competition among alien
species α44, but also by interspecific competition between alien species and native species
αi4, i = 1, 2, 3. Bigger interspecific and small intraspecific competition ability of invader
was likely to establish their population (θ = 0.3 in Figure 6). But counterintuitively, when
invading a community with weak competition asymmetry (θ = 0.5 or 0.7), extremely strong
competing invader would fail to spread. Additional difference for case3 is that, there is no
exclusion occur and alien species generally coexist with native species in this occasion.

Figure 6. Parameter ranges for different invasive consequences (assuming alien species compete
with all three native species). Different figure rows represent native communities which supported
by (a) strong niche departure (case 1), (b) the combination of niche differentiation and intransitive
competition (case 2), and (c) intransitive competition (case 3). Each columns exhibit three levels of
competitive symmetry 1− θ = 0.7, 0.5, 0.3. X axis represents the interspecific competition intensity
between alien species and native species i, αi4 i = 1, 2, 3. Here we assume α14 = α24 = α34. Y axis is
intraspecific competition intensity of alien species α44. The parameter space is divided into several
parts. Blue color area represents successful establishment of invader. Green color region suggests the
conditions when alien species pose destructive effect and cause native extinctions; yellow color area
identify the invasion failure. Other parameters are set the same with Figure 3.

Then we have also investigated other scenarios, such as when invader competing only
with one species but with species 2 or 3 (Figure 7a) and when invaders threaten any two
of native species (Figure 7b). Since in niche differentiated (case 1) or intransitive loops
(case 3) communities, species would either be highly restricted by intraspecific competition
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or all species are at the same competitive hierarchy, the type of target competing species
become less important to the outcome of invasion in these both cases. Therefore, here we
mainly focus on the analysis for case 2. Specifically, we quantified the image difference for
region of each invasion consequence. From Figure 7a, we knew that if native species exist
more competition asymmetries (θ = 0.3), the invasion results for scenarios when invader
competing with species 1, species 2 or species 3 would differ mostly. As for the invaders
that threaten two native species, there existed similar results (Figure 7b). This might be due
to that high competition asymmetry 1− θ has enhanced the heterogeneous of competition
hierarchies, which made the invasion outcomes fluctuated greatly. Therefore, we should
pay more attentions to the original species competition hierarchies when native community
has more competition asymmetries.

Figure 7. Comparison of competitive invasion results in case 2. (a) suggests the mean difference
of each type of invasion consequence across the scenarios when invaders only competing with one
resident species. (b) represents the mean gap of each invasion consequence over the scenarios when
invaders competing with two of native species. We quantify the comparison by image difference
of invasion consequence regions (region details as shown in Supplementary information). It is
calculated by counting the number of pixels at the same competitive asymmetry level and calculating
the difference and average value of the pixel number. We assume competing force α14 = α24

or α14 = α34 or α24 = α34. Bars with different colors are for different invasion consequences.
Competitive asymmetry 1− θ = 1− 0.3 or 1− 0.5 or 1− 0.7. Other parameter values are the same
with Figures 5 and 6.

4. Discussion

In order to explore the invasion to the competitive network, we here take the simple
three-species interaction dynamics as an example. By setting the structures of coexistence
coefficient matrix, we have obtained three kinds of native coexistence mechanisms: strong
niche differentiation, intransitive competition, and interplays of the two. After exotic
species introduction, the equilibrium consequences of invasion under above three mech-
anism cases are investigated. Our study emphasizes that the properties of competitive
networks may produce opposing effects on the invasion outcomes and impacts. Where
the type of invasion consequence appears in parameter space mainly depends on the de-
gree of intra and inter specific competition. Additionally, we find that invasion long-term
steady-state and species short-term reaction trend also fit well.

For resident community, we first obtained the conditions when species stably coex-
istence through pairwise features, like niche departures. High niche differentiation can
maintain all native species with a positive population density at equilibrium state regardless
of how interaction network structured. This agrees with the “modern coexistence theory”,
which suggests if species limits themselves much more than they limit the other (e.g., niche
differentiation occurs), species has the possibility to coexist (Chesson 2000 [35]). When the
other extreme, species niche departure being extremely small, hierarchical interaction could
have caused competitive exclusion (Miller 1994 [53]). But if species competing network are
cyclic structured (e.g., occurs when species utilizing multiple limited factors), any decrease
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in the abundance of competitors in the loop causes a feedback pattern to propagate through
the network that is conducive to disturbing the species recovery (Levine et al., 2017 [54]).
Similar to previous studies, native populations can be maintained positive by intransitivity
(Lankau and Strauss 2007 [30]). We find strong enough competitive intransitivity of system
has the ability to keep biodiversity and competitive asymmetry also plays quite important
roles for this effecting process. Although there are theoretical conclusions, those commu-
nities sustained only by intransitive competition might be rather uncommon in nature
(Soliveres et al., 2018 [55]). Recent works proposed that the species diversity still depends
on pairwise features of community, so that intransitive competition should be considered
together with the pairwise features (Gallien et al., 2017 [32]; Godoy et al., 2017 [33]; Yang
and Hui 2021 [34]). Therefore, we finally view our system in a more continuous way and
obtained the parameter range for merged mechanism.

Based on the obtained three cases of bifurcation results, we respectively introduce alien
species into these communities. Our equilibrium findings show that no matter for universal
or distinct invader (e.g., only compete with one native species), if species of native commu-
nity are maintained by niche differentiation (case 1) or intransitive competition loop (case 3),
the invasion process that happen in such communities would similarly have two kinds of
consequence: invasive coexistence which only causes native abundance change rather than
extinction (Gallardo et al., 2016 [56]) and invasion exclusion. Unlike the case 3, for niche dif-
ferentiation dominant community (case 1), native species limit themselves more than others
(Barabas et al., 2016 [57]). As such, structure of interspecific interaction network does not
matter for population dynamics. And this principle has increased species’ per capita growth
rates at low relative abundance (Adler et al., 2007 [40]; MacDougall et al., 2009 [25]). There-
fore, most alien species would establish their populations but cause no resident extinction
in case 1, even though they might be highly competitive. Whereas for only intransitivity
(namely rock–paper–scissors competition structure) supported community, none of the
species could be a permanent strong or weak competitor (Lankau and Strauss 2007 [30]).
Species are dynamically kept under their interspecific interacting loops. If introducing
alien species, we find those invaders being with particular competitive features, like higher
intra and interspecific competitive ability, crumbles the stable state of resident community.
From MacDougall et al. (2009) [25], we know that niche differentiation factor (like in-
vaders limiting themselves more here) allows the invader to establish, and fitness difference
factors (such as invader being with a higher competitive ability) favors the dominance
of the invader. Thus, alien species successfully spread and drives competitive exclusion
in this scenario. Since intransitive community more likely occurs in heterogeneous and
unproductive conditions (Soliveres et al., 2018 [31]), invasion introduction in this type of
communities would become more harmful.

As for communities maintained by interplay of the two mechanisms (or partial in-
transitivity), there are more diverse invasion consequences. Except for invasion coex-
istence and native extinctions, the consequence of invasion failure occurred for certain
parameter ranges. Some recent investigations have also indirectly suggested the facil-
itating effect on invasion when increasing the number of resource and native species
(Northfield et al., 2018 [58]). But since the literature about competitive networks effect on
invasion are seldom (Godoy and Thompson 2019 [15]), people did not explicitly explore
the influence of niche departure and intransitive competition or even their interplay. Here,
we further show that the phase of repelling invasion occurs depends dramatically on the
extent to which they limit themselves and competitive asymmetries. Community contain-
ing big competition asymmetries favors invaders of lower intraspecific competition while
the opposite is true for small competing asymmetry communities. We may explain this
from how competition asymmetries modulate levels of the two coexistence mechanisms
in our system. For example, small competition asymmetry (1− θ) promotes system tend
to have more homogeneous fitness differences and so that enhancing intraspecific density
regulation (the degree of niche difference). Alien species without enough intra-group
competition would not be able to establish their populations. Whereas greater competition
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heterogeneous (bigger value of 1− θ) tend species densities to be more balanced under
partial intransitive loop. If invasion happens and invader limit more themselves, this
balance would not be disrupted, leading to strong resistance to invasion. This invasion
which is failed by less intraspecific limitation could happen in certain community sites.
Warren et al. (2019) [59] once found, in their observational and experimental researches,
that the decrease of intraspecific competition invader (e.g., caused by ‘friendly release’)
would allow ant invader Myrica rubra successfully established. Additionally, universal or
distinct invader may propose significant different parameter range of invasions. Invasion
outcomes in this scenario, especially when interplay of the two mechanisms and high
competition asymmetry occurs, are found more sensitive to features of invader.

The index λm and ~Vm, our estimator to quantify the short-term response of each species,
make us possible to compare species long-term evolution dynamics to their dynamic
response when facing invasion. Our findings indicate the species short-term response to
invasion would be consistent with the long-term stable state of population density. In fact,
there have existed studies focusing on the estimation of λm and its potential role in system
resilience (Allesina and Tang 2012 [60]; Suweis et al., 2015 [61]; Villa Martin et al., 2015 [62]).
λm determines the magnitude of trajectory change for species (native or alien) while certain
element of ~Vm represent both directions and speed of population change. Villa Martin et al.
(2015) [62] believe ~Vm indicates the effective potential of dynamic system in the direction
of steepest descent. For more extend, we do not need to calculate the adjacency matrix
for the full recipient species (Hui and Richardson 2019 [41]), but just consider an optional
small matrix which depicting a focal species-centric network in more complex intransitive
loop. Finally, for future application, this matrix ~Vm can also be equivalent to the major axis
from a principal component analysis (PCA) of the adjacency matrix. As we know, PCA is
a statistical tool that reduces multicollinearity by converting multiple vectors into spaces
with orthogonal unrelated axes (Jolliffe 2002 [63]). From the perspective of ecology, the
first principal component ~Vm of the Jacobian matrix can intuitively show how dynamic
system deviate from the long-term survival point in the face of invasion. Once the Jacobian
matrix is quantified, we can use principal component analysis to treat the first principal
component as the dynamic response trajectory of the invasive ecological network.

Here, we explicitly evaluate the invasion to competition network with two proper-
ties, niche differentiation and intransitivity. The intransitive dynamic results mainly arise
from changes in the density of a third species that interacts with both species of the focal
pair. However, as increasing emphasis on diverse competitive networks (Levine et al.,
2017 [54]) in coexistence theory, the other trait-mediated indirect interactions among net-
works, like higher-order interactions (Billick and Case 1994 [64]; Grilli et al., 2017 [65])
also should be linked with invasion performance (Godoy and Thompson 2019 [15]).
Given lack of the knowledge about invasion to above systems (Valentin et al., 2017 [66];
Latombe et al., 2021 [42]), future studies necessarily pay more attentions to this issue.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d15040554/s1, Figure S1: Assuming alien species can only compete
with species 2, there are various invasive consequences. Figure S2: Assuming alien species can only
compete with species 3, there are various invasive consequences. Figure S3: Assuming alien species
can compete with species 1 and 2, there are various invasive consequences. Figure S4: Assuming
alien species can compete with species 1 and 3, there are various invasive consequences. Figure S5:
Assuming alien species can compete with species 2 and 3, there are various invasive consequences.
Figure S6: Under the circumstance involving the combination of niche differentiation and intransitive
competition, invasive species exhibit a competitive advantage over only single species, resulting in
various invasive consequences. Figure S7: Under the circumstance involving the combination of
niche differentiation and intransitive competition, invasive species exhibit a competitive advantage
over two species, resulting in various invasive consequences.
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Appendix A. Calculation of Native Coexistence Conditions

Appendix A.1. The Existence of Positive Equilibrium Point

We get the equilibrium point N∗i (i = 1, 2, 3) by setting the right-hand formula of
system (1) in the main text as zero. N∗i (i = 1, 2, 3) are functions of parameters θ, k and θ3.
Since θ is fixed, the value of N∗i (i = 1, 2, 3) is determined only by k and θ3. The existence
region of each positive equilibrium points under different levels of competitive asymmetry
(1− θ = 0.7, 0.5, 0.3) is shown in the Figure A1a–c. The positive equilibrium point N∗i > 0
represents native species have positive population density in the steady state. But in order
to guarantee the steady state do not change too much under small perturbations, we still
need to do local stability analysis (refers to the next following part). Our coexistence area is
obtained by the intersection of these two kinds of regions.

Figure A1. Detail parameter ranges for positive equilibrium states (a–c) and for locally asymp-
totic stable analysis (d). Different figure rows correspond to three levels of competitive symmetry
1− θ = 0.7, 0.5, 0.3. There were two kinds of ranges: blue colors (N∗1 > 0, N∗2 > 0, N∗3 > 0
and Re(λi) < 0), yellow colors (N∗1 < 0, N∗2 < 0, N∗3 < 0 and Re(λi) > 0). We select the intersection
of all figures in each row to represent the final coexistence area for each competitive symmetry 1− θ

(Figure 2b of main text). Other parameters are r1 = r2 = r3 = 0.02.

The Locally Asymptotic Stable Analysis

We linearize system (1) of main text to get Ṅ = JN, where J is the Jacobian matrix.
Then, we analyze the stable state of the system at equilibrium point N∗ = (N1

∗, N2
∗, N3

∗),
and the following characteristic equation can be obtained by |λI − J| = 0:

λ3 + Aλ2 + Bλ + C = 0, (A1)
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where λ = (λ1, λ2, λ3) is the eigenvalue for Jacobian matrix J. By transforming the equation
above, we can get:

A = α11N1
∗ + α22N2

∗ + α33N3
∗, (A2)

B = (α 11α22 − α12α21)N1
∗N2

∗ + (α 11α33 − α13α31)N1
∗N3

∗ + (α 22α33 − α23α32)N2
∗N3

∗, (A3)

C = (α 11α22α33 + α12α23α31 + α13α21α32 − α11α23α32 − α12α21α33 − α13α22α31)N1
∗N2

∗N3
∗, (A4)

where αij are the elements of the competition matrix M. They represent the competition
strength from species j to i. After substituting the above equation with specific setting
values in main text, we can get the following equation:

A =
(√

θ3/k
)

N1
∗ +

(
θ/k

√
θ3 )N2

∗ +
(√

θ3/k
)

N3
∗, (A5)

B =
((

θ/k2
)
− θ
)

N1
∗N2

∗ +
((

θ3/k2
)
− θ3

)
N1
∗N3

∗ +
((

θ/k2
)
− θ
)

N2
∗N3

∗, (A6)

C =
((

θ
√

θ3/k3
)
+ θ2θ3 + 1− 3

(
θ
√

θ3/k
))

N1
∗N2

∗N3
∗, (A7)

where k ∈ [0, 0.9] is the degree of niche overlap, θ ∈ [0, 1] is the intensity of interspecific
competition and θ3 ∈ [0, 1]. And let us express Ni

∗(i = 1, 2, 3) the same way:

N1
∗ =

(
kθ − k3θ + k3 + k3θ2 −

(
k2θ
)

/
√

θ3 − k2θ
√

θ3

)
/(θ
√

θ3 + k3 + k3θ2θ3 − 3k2θ
√

θ3

)
, (A8)

N2
∗ =

(
k
(

θ3 − k2θ3 − k
√

θ3 + k2 + k2θθ3 − kθ
√

θ3

))
/(θ
√

θ3 + k3 + k3θ2θ3 − 3k2θ
√

θ3

)
, (A9)

N3
∗ =

(
k
(

θ − k
√

θ3 − k2θ + k2 + k2θθ3 − kθ
√

θ3

))
/(θ
√

θ3 + k3 + k3θ2θ3 − 3k2θ
√

θ3

)
, (A10)

the system is locally asymptotically stable at the equilibrium point if satisfying:

Reλi(J) < 0, i = 1, 2, 3 (A11)

That is λ1 < 0, λ2 < and λ3 < 0, which are three roots corresponding to the charac-
teristic Equation (5). We get λi(i = 1, 2, 3) by taking the roots of the cubic Equation (5),
and λi(i = 1, 2, 3) are functions of parameters θ, k and θ3. Since θ is fixed, the value of
λi(i = 1, 2, 3) is determined only by k and θ3. The regions where native species reach Lya-
punov stability (Reλi(J) < 0) under different competitive asymmetries (1− θ = 0.7, 0.5, 0.3)
is shown in the Figure A1d.

Appendix B. Calculation of Matrix for Species Short-Term Response

Specifically, we first define ni = Ni − N0 and transform original network system
(3) of main text into a new system (4) of main text, where N0 is the initial population
density at the beginning of the invasion (the initial population density of invasive species is
uniformly set), So ni is standardization of Ni and can be regarded as the difference between
the population density of the new system at any time after the invasion and the initial
population density at the beginning of the invasion, namely the change of population
density of each species after invasion. Then, let us consider the dynamical system of the
ecological network ṅi = F(ni) = F(Ni − N0) and its linearization ~̇n = J′~n. In mathematics,
the matrix J is an operator that transforms the abundance vector n into a new vector space,
also known as a Jacobian matrix. According to the definition, we have J′V = VΛ, where
V = v1, v2, . . . is eigenvector matrices composed of vertical eigenvectors vi of eigenvalues
λi (λi satisfy J′vi = viλi). Λ is an eigenvalue matrix with diagonal elements of λi and other
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elements of zero, after the equation transformation, V−1 J′ = ΛV−1 can be obtained. Let
n = Vε, where ε is the new vector space whose derivative is:

ε̇ = V−1ṅ = V−1 J
′
n = ΛV−1n = Λε , (A12)

therefore:
εi = cieλit , (A13)

where ci = εi(0) is a constant, indicating the initial value of the system disturbance. Then,
we can obtain the dynamics of species i:

ni(t) = ∑
j

Vjicje
λjt , (A14)

where Vji is the ith element of the eigenvector Vj. We can expand and analyze the
above formula:

ni (t) = V1ic1eλ1t + V2ic2eλ2t + . . . + Vmicmeλmt + . . . , (A15)

ni(t) = eλmt
(

V1ic1e(λ1−λm)t + V2ic2e(λ2−λm)t + . . . + Vmicm + . . .
)

, (A16)

where λm is the leading eigenvalue (the largest eigenvalue of the real part) of the Jacobian
matrix J′ of the system. As time t goes to infinity, we can see that ni −→ Vmicmeλmt, namely
∆Ni ∼ Vmieλmt (∆Ni is the change in population density of species i). Thus, the short-term
response of species i (how species i changes), both in direction and magnitude, depends
entirely on Vmi. If Vmi > 0, the species i will increase; If Vmi < 0, the species i will decrease;
If Vmi = 0, the species i is less sensitive to disturbance.
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