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Abstract: Klebsiella pneumoniae can cause life-threatening pneumonia in humans. The bacterium is also
the causative agent of nosocomial infection diseases. In our recent research, we reported, for the first
time, the presence of K. pneumoniae in fourteen species of aquatic animals sampled in Shanghai, China.
Here, we further investigated the bacterial survival and genome evolution traits. The results revealed
that K. pneumoniae isolates (n = 7), recovered from 7 species of commonly consumed aquatic animals,
had multiple antibiotic and heavy metal resistance profiles. The isolates were capable of growing
vigorously at pH 4.5−7.5 and 0.5−1.0% NaCl in TSB medium at 37 ◦C. Draft genome sequences
of the K. pneumoniae isolates were determined (5,256,522−5,857,823 bp, 56.35–57.81% GC contents),
which carried many mobile genetic elements, including genomic islands (n = 87), prophages (n = 14),
integrons (n = 4), and insertion sequences (n = 22), indicating possible active horizontal gene transfer
during the genome evolution. Meanwhile, numerous strain-specific (n = 199−605) genes, antibiotic
resistance (n = 20−35, e.g., β-lactamase) genes, and virulence (n = 43−59, e.g., enterobactin)-related
genes, were also identified, demonstrating considerable genome variation in the K. pneumoniae
isolates. Overall, the results of this study fill prior gaps in understanding the K. pneumoniae genomes
derived from aquatic animals.

Keywords: Klebsiella pneumoniae; aquatic animal; genome; mobile genetic element; virulence;
antibiotic resistance; heavy metal resistance

1. Introduction

Klebsiella pneumoniae was first described by Carl Friedlander in 1882, which was
isolated from the lungs of patients who died from pneumonia [1]. Since then, the Gram-
negative bacterium has also been reported to cause bloodstream infections (BSIs), meningi-
tis, osteomyelitis, thrombophlebitis, urinary tract infections (UTIs), and invasive pyogenic
liver abscess syndrome [2–4]. To date, more than 79 capsular (K antigen) serotypes have
been reported in K. pneumoniae isolates, of which K1, K2, K5, K20, K54, and K57 serotypes
are strongly associated with the bacterial pathogenesis [5,6].

Antibiotics are widely used in clinics for prevention and therapy of bacterial in-
fections [3]. Nevertheless, the overuse and/or misuse of antibiotics have accelerated
the spread of antibiotic-resistant pathogens, particularly in developing countries [2,7,8].
For instance, in China, more than 40% (267/666) of clinical K. pneumoniae isolates, col-
lected from 30 medical centers across the country, were identified as carbapenem-resistant
K. pneumoniae (CRKP) in 2017 [7]. The mortality of patients with CRKP infection (main BSIs)
was up to 70% [8]. The rising incidence of multiple drug resistant (MDR) K. pneumoniae
creates serious threats to public health.
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K. pneumoniae are found growing in hospital wastewaters, urban rivers, and even
in shrimp farms [9–12]. Intensive farming in aquaculture drives indiscriminate use of
antibiotics, which results in antibiotic residues in aquatic products and MDR pathogens [13].
For example, recently, Luo et al. [14] detected chloramphenicol (CHL) residue in shrimp,
shellfish, and fish samples (n = 291) sampled in Shenzhen, China. They found that positive
detection rates of CHL were 13.6% (3/22), 37.2% (64/172), and 16.5% (16/97) in shrimp,
shellfish, and fish, respectively [14]. Xu et al. [15] recently reported K. pneumoniae isolates
(n = 94) present in 14 species of aquatic animals sampled in Shanghai, China, which showed
higher resistance rates to sulfamethoxazole–trimethoprim (SXT, 52.1%) and CHL (31.9%).
On the other hand, heavy metal concentrations in marine environments, rivers, and soils
have been increasing because of industrialization and environmental pollution, which has
given rise to heavy-metal-tolerant bacteria [16]. Moreover, heavy metals could trigger the
proliferation of antibiotic resistance by increasing mobile genetic element (MGE) abundance
or by influencing bacterial communities [17]. It has been reported that the majority of the
K. pneumoniae isolates were also tolerant to heavy metals e.g., Cr3+ (96.8%), Pb2+ (89.4%),
and Hg2+ (81.9%) [15]. The co-selection between antibiotics and heavy metals, leading to
MDR K. pneumoniae, threatens population health [18,19].

Aquatic environments, considered as a pool of antibiotic resistance genes (ARGs), con-
tain diverse microbial communities, where the dissemination of ARGs could partially be at-
tributed to horizontal gene transfer (HGT) mediated via MGEs in bacterial genomes [20,21].
To date, complete genome sequences of over 1757 K. pneumoniae isolates are available in
the GenBank database (https://www.ncbi.nlm.nih.gov/, accessed on 14 March 2023). Of
these, the majority of the K. pneumoniae strains (n = 1659) were isolated from humans,
followed by animals (n = 87), water environments (n = 4), and others (n = 7). To the best of
our knowledge, current literature on the genomes of K. pneumoniae isolates originating in
aquatic animals is rare.

In our recent research, we reported, for the first time, the presence of K. pneumoniae in
14 species of aquatic animals [15]. Based on the finding, in this study, we further investi-
gated the survival and genome evolution traits of the K. pneumoniae isolates recovered from
seven species of commonly consumed aquatic animals. The major objectives of this study
were (1) to examine phenotypes, genotypes, and growth traits of the K. pneumoniae isolates;
(2) to determine draft genome sequences of the K. pneumoniae isolates using the Illumina
Hiseq × Ten sequencing technique and to identify MGEs, such as genomic islands (GIs),
prophages, integrons (INs), and insertion sequences (ISs) in the K. pneumoniae genomes;
(3) to identify virulence- and resistance-related genes in the K. pneumoniae genomes; and
(4) to analyze phylogenetic relatedness of the K. pneumoniae isolates. The results of this
study will enrich genome data and fill prior gaps in understanding K. pneumoniae genomes
derived from aquatic animals.

2. Materials and Methods
2.1. K. pneumoniae Isolates and Cultural Conditions

K. pneumoniae strains (Table S1) were isolated from three species of shellfish: Maoctra
veneriformis, Cipangopaludina cahayensis and Tegillarca granosa; two species of crustaceans:
Eriocheir sinensis and Procambarus clarkii; and two species of fish: Epinephelus fuscoguttatus
and Misgurnus anguillicaudatus, which were sampled in Shanghai, China in July−September
of 2018−2019 [15]. The K. pneumoniae isolates were identified by biochemical and molecular
biological methods [15] and stored at −80 ◦C in a freezer in our laboratory at Shanghai
Ocean University, in Shanghai, China. The isolates were routinely incubated in Tryptic Soy
Broth (TSB) medium (pH 7.2, 0.5% NaCl) (Beijing Land Bridge Technology, Beijing, China)
at 37 ◦C aerobically, with shaking at 175 rpm [15]. K. pneumoniae ATCC13883 was used as a
positive control strain.

https://www.ncbi.nlm.nih.gov/
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2.2. Antibiotic Susceptibility and Heavy Metal Tolerance Assays

Antibiotic susceptibility of the K. pneumoniae isolates were tested according to the disc
diffusion method approved by the Clinical and Laboratory Standards Institute in the United
State (CLSI, M100-S28, 2018). The Mueller–Hinton (MH) medium and antibiotic discs were
purchased from OXOID, Basingstoke, UK, as described in our recent reports [15,22]. Heavy
metal tolerance of the K. pneumoniae isolates was performed according to the broth dilution
testing (microdilution, CLSI) [15,22]. The HgCl2, NiCl2, CrCl3, CdCl2, PbCl2, CuCl2, ZnCl2,
and MnCl2 (Analytical Reagent, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China)
were applied in the range from 3200 to 3.125 µg/mL. The results were interpreted by
minimal inhibitory concentrations (MICs) that completely inhibited the growth of the
bacteria. Escherichia coli ATCC25922 and K12 strains (Institute of Industrial Microbiology,
Shanghai, China) were used as quality control strains [15,22].

2.3. Growth Curve Assay

The TSB was adjusted to different pH (3.5, 4.5, 5.5, 6.5, and 7.5) and NaCl concentra-
tions (0.5%, 1%, 2%, 3%, and 4%) as described in our previous studies [23,24]. Growth
curves of the K. pneumoniae isolates under different pH (3.5–7.5) and NaCl (0.5–4%) condi-
tions were individually determined at 37 ◦C for 25 h using Multimode Microplate Reader
(BioTek Instruments, Winooski, VT, USA).

2.4. Polymerase Chain Reaction (PCR) Assay

The 16S rRNA gene, virulence-associated genes (aerobactin, magA, tarT, wcaG, iroN,
rmpA, entB, fimH, mrkD, and ybtA), and capsule serotypes (K1, K2, K5, K20, K54, and K57)
were detected using the PCR assay as described in our recent report [15]. The primers
(Table S2) were synthesized by the Sangon (Shanghai, China).

2.5. Genome Sequencing, Assembly, and Annotation

The K. pneumoniae isolates were individually incubated in the TSB (pH 7.2, 0.5% NaCl)
to logarithmic growth stage (LGS). Bacterial cells were harvested by centrifugation, and
genomic DNA was extracted using TIANamp Bacteria DNA Kit (Tiangen Biochemical
Technology Co., Ltd., Beijing, China) according to the manufacture’s instruction. Three
separately produced DNA samples were used for each of the K. pneumoniae isolates. DNA
samples were analyzed, as described in our previous report [21,24], and only high quality
samples were subjected to the genome sequencing.

Whole-genome sequencing of the K. pneumoniae isolates was conducted by Shanghai
Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China, using Illumina Hiseq × Ten
(Illumina, San Diego, CA, USA) platform [21]. High-quality sequence assembly was
performed using SOAPdenovo (version 2.04) software [25]. Coding sequences (CDSs),
rRNA genes, tRNA genes, and Clusters of Orthologous Groups (COG) of proteins were
predicted using the same software Glimmer (version 3.02) [26], Barrnap tool (https://
github.com/tseemann/barrnap, accessed on 31 July 2022), tRNAscan-SE (version 2.0) [27],
and Basic Local Alignment Search Tool (BLAST, http://www.ncbi.nlm.nih.gov/BLAST,
accessed on 31 July 2022) with default parameters as described in our recent report [18].
The virulence factor database (http://www.mgc.ac.cn/VFs, accessed on 31 July 2022) and
the ARGs database (http://arpcard.Mcmaster.ca, accessed on 31 July 2022) were used to
detect virulence- and antibiotic resistance-related genes, respectively [18].

2.6. Comparative Genome Analysis

GIs, prophages, INs, ISs, and CRISPR-Cas repeats in the K. pneumoniae genomes were
predicted using the same software IslandViewer (version 1.2) [28], Phage_Finder [29],
Integron_Finder (version 2.0) [30], ISEScan (version 1.7.2.1) [31], as well as Mined software
(version 3) and CRISPRtyper [32] with default parameters as described in our recent
report [21].

https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
http://www.ncbi.nlm.nih.gov/BLAST
http://www.mgc.ac.cn/VFs
http://arpcard.Mcmaster.ca
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Core genes were the set of genes encoding orthologous proteins in all the genomes
tested, while pan–genes were the set of all genes present in all the tested genomes. Only
proteins with ≥60% amino acid similarity and ≥80% sequence coverage were designated
as direct relatives, while those with ≤30% or no hits were assigned as strain-specific genes
at E ≤ 1 × 10−5 [21].

A phylogenetic tree was constructed on the basis of amino acid data sets of single-copy
orthologs that were present in all the analyzed genomes of 72 K. pneumoniae isolates, of
which complete genome sequences of 65 K. pneumoniae isolates were downloaded from the
GenBank database (Table S3). The maximum likelihood method was used to build a tree by
RAxML (version 8) software [33], with 1000 bootstrap replications and a cut-off threshold
of ≥50% bootstrap values.

2.7. Statistical Analysis

The SPSS statistical analysis software (version 17.0, SPSS Inc., Chicago, IL, USA) was
used to analyze the data. All tests were conducted in triplicate.

3. Results
3.1. Phenotypes and Genotypes of the K. pneumoniae Isolates

K. pneumoniae 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, and 8-2-10-5 strains
(Table S1) were isolated from 7 species of aquatic animals, including M. anguillicaudatus,
M. veneriformis, E. sinensis, C. cahayensis, P. clarkii, T. granosa, and E. fuscoguttatus, respec-
tively [15]. The isolates were confirmed by 16S rRNA gene sequencing and analysis, and
the obtained 16S rDNA sequences were deposited in the National Center for Biotechnology
Information (NCBI) database under the accession numbers shown in Table S1.

The K. pneumoniae isolates had different antibiotic resistance profiles (Table S1). For ex-
ample, K. pneumoniae 7-5-4 from M. anguillicaudatus displayed resistance to CHL, ciprofloxacin
(CIP), kanamycin (KAN), norfloxacin (NOR), SXT, and tetracycline (TET), while K. pneu-
moniae 7-10-14 from M. veneriformis was resistant to ampicillin (AMP), CHL, gentamicin
(GEN), KAN, SXT, and TET. Conversely, K. pneumoniae 7-13-2, 7-17-8, and 8-1-12-1 isolates
were solely resistant to AMP.

Meanwhile, the K. pneumoniae isolates tolerated 3−7 heavy metals, showing different
tolerance patterns. For example, K. pneumoniae 8-1-12-1 from P. clarkii was tolerant to
Zn2+/Pb2+/Mn2+/Hg2+/Cu2+/Cr3+/Cd2+, while K. pneumoniae 8-2-10-5 from E. fuscogut-
tatus was tolerant to Zn2+/Pb2+/Hg2+/Cu2+/Cr3+/Cd2+. Conversely, K. pneumoniae 7-17-8
from C. cahayensis tolerated the minimum number of heavy metals (Zn2+/Cu2+/Cr3+) tested.

In addition, all the K. pneumoniae isolates tested negative for the virulence-related
genes, including the aerobactin, magA, tarT, wcaG, iroN, and rmpA. However, some virulence-
related genes tested positive in the K. pneumoniae isolates. For instance, K. pneumoniae
7-10-14 carried the entB gene; K. pneumoniae 7-5-4, 7-13-2, 8-2-5-4, and 8-2-10-5 isolates
tested positive for the entB/fimH/mrkD genes; and K. pneumoniae 7-17-8, and 8-1-12-1 isolates
had the entB/fimH/mrkD/ybtA gene profile.

3.2. Survival of the K. pneumoniae Isolates at Different pH and NaCl Conditions

The pH of the human stomach normally ranges pH 1−3, but can rise above 6.0 after
food consumption [23]. Therefore, we examined survival of the K. pneumoniae isolates at
different pH conditions (pH 3.5–7.5) when incubated in the TSB (0.5% NaCl) at 37 ◦C. As
shown in Figure 1A–G, the growth of all K. pneumoniae isolates was severely inhibited at
the acidic pH 3.5. However, notably, the acidic pH 4.5 condition strongly promoted the
bacterial growth, and all the isolates were capable of growing vigorously at pH 4.5−7.5. The
highest biomass was observed at pH 7.5, with the maximum OD600 at stationary growth
phase (SGP) in the range of 1.37−1.51 (Figure 1).
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Figure 1. Growth of the K. pneumoniae isolates under different pH conditions. The isolates were
incubated in the TSB (0.5% NaCl) at 37 ◦C. (A–G): K. pneumoniae 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1,
8-2-5-4, and 8-2-10-5, respectively.

Given that the K. pneumoniae isolates were recovered from different aquatic animals in
water environments, we further determined growth curves of the K. pneumoniae isolates
at different salinity concentrations (0.5−4% NaCl) when incubated in the TSB (pH 7.5) at
37 ◦C. As shown in Figure 2A−G, the growth of all K. pneumoniae isolates was severely
inhibited at 4% NaCl. The biomass of the K. pneumoniae isolates gradually increased with
the decreased NaCl concentrations (3–0.5%), and the highest biomass was observed at 0.5%
NaCl, showing the maximum OD600 values ranging from 1.26 to 1.44 at SGP.
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were incubated in the TSB (pH 7.5) at 37 ◦C. (A–G): K. pneumoniae 7-5-4, 7-10-14, 7-13-2, 7-17-8,
8-1-12-1, 8-2-5-4, and 8-2-10-5, respectively.
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For example, K. pneumoniae 7-5-4 from M. anguillicaudatus appeared the most suscepti-
ble to the higher salinity concentrations, as this isolate was strongly repressed at 3% NaCl
as well. Conversely, this condition stimulated the growth of the other 6 isolates, but showed
a longer retarded growth phase (RGP) (11−19 h) with lower biomass (OD600 = 0.68−0.97).
The decreased NaCl concentration (2%) promoted the growth of K. pneumoniae 7-5-4, al-
though it had an RGP for 8 h. K. pneumoniae 7-5-4 was able to grow vigorously at 1.0−0.5%,
the same case as the other isolates.

Taken together, the results demonstrated that the K. pneumoniae isolates of aquatic
animal origins were able to grow vigorously at pH 4.5−7.5, 0.5−1.0% NaCl in the TSB
at 37 ◦C. K. pneumoniae 7-5-4 was the most susceptible to higher salinity concentrations
(4−3 NaCl) among the isolates tested in this study.

3.3. Genome Features of the K. pneumoniae Isolates of Aquatic Animal Origins

Based on the obtained results, we further determined draft genome sequences of
the 7 K. pneumoniae isolates using the Illumina Hiseq × Ten sequencing platform, which
generated approximately 76,382−107,851 clean single reads. The final assembly yielded
45−113 scaffolds with sequencing depth (on average) of 188.3–fold to 271.9−fold. The ob-
tained genome sizes ranged from 5,256,522 to 5,857,823 bp with GC contents of 56.35–57.81%
(Table 1, Figure S2). A total of 4885–5558 protein-coding genes were predicted, of which
approximately 4639–4986 genes were classified into 22 functional catalogs in the COG
database. Remarkably, the K. pneumoniae genomes carried many MGEs, including GIs
(n = 87), prophages (n = 14), INs (n = 4), and ISs (n = 22), suggesting the HGT during the
K. pneumoniae genome evolution via these MGEs.

Table 1. Genome features of the K. pneumoniae isolates of aquatic animal origins.

Genome Feature
K. pneumoniae Isolate

7-5-4 7-10-14 7-13-2 7-17-8 8-1-12-1 8-2-5-4 8-2-10-5

Genome size (bp) 5,857,823 5,376,532 5,412,275 5,438,640 5,593,530 5,432,731 5,256,522
G + C (%) 56.35 57.28 57.29 57.12 57.21 57.32 57.81

DNA Scaffold 81 113 79 50 74 64 45
Total predicted gene 5662 5142 5165 5189 5369 5143 4986
Protein-coding gene 5558 5044 5060 5089 5260 5042 4885

RNA gene 240 231 238 234 249 224 235
Genes assigned to COG 4986 4761 4757 4770 4916 4777 4639
Genes with unknown

function 1363 1230 1288 1271 1357 1230 1188

GI 17 8 8 15 16 11 12
Prophage 2 2 2 2 3 1 2

IN 1 2 0 0 0 0 1
IS 2 2 6 2 4 4 2

CRISPR-Cas repeat 14 9 6 2 6 6 11
Source This study This study This study This study This study [15] This study

The draft genomes of the K. pneumoniae 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-
5-4 and 8-2-10-5 isolates were deposited in the GenBank database under the accession
numbers JALJQY000000000, JALJQX000000000, JALJQW000000000, JALJQV000000000,
JALJQT000000000, JALJQQ000000000, and JALJQR00000000, respectively.

3.4. MGEs in the K. pneumoniae Genomes of Aquatic Animal Origins
3.4.1. GIs

GIs can carry large foreign DNA fragments (~200 Kb) and endorse the host’s diverse
biological functions [21]. In this study, remarkably, a total of 87 GIs were identified in
the 7 K. pneumoniae genomes (Table S4), each of which contained 8−17 GIs, ranging from
3228 to 44,595 bp and encoding 5−47 genes (Figure 3). Interestingly, various functions
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carried by the GIs were found, e.g., virulence, resistance, substrate hydrolysis, transporting
and utilization, restriction and modification, as well as phage and stress regulation.
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The K. pneumoniae 7-5-4 genome contained the maximum number of the GIs (n = 17,
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virulence-related genes were found in 10 GIs in the 7 K. pneumoniae genomes (Table S5). For
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the T6SS in Acinetobacter baumannii, causing respiratory tract infection [34]. Antibiotic
resistance and heavy-metal-tolerance-related genes were identified in some GIs, e.g., the
GI 3 (17,350 bp) and GI 8 (6626 bp) in the K. pneumoniae 7-13-2 genome, respectively.
Interestingly, the conjugative transfer-related genes were found in the GI 11 in K. pneumoniae
7-17-8. Additionally, there were some identified GIs carrying phage regulator genes in
the K. pneumoniae genomes. For example, the GI 5 in K. pneumoniae 7-5-4, and the GI 11
in K. pneumoniae 8-1-12-1 contained the gene (Kp 7-5-4_1988; Kp 8-1-12-1_3134) encoding a
lysB family phage lysis regulatory protein.

3.4.2. Prophages

Prophages are viruses that infect bacteria. They can transfer important biological
characteristics to their bacterial hosts [35]. In this study, a total of 14 prophage gene
clusters were identified in the 7 K. pneumoniae genomes (Table S6), each of which carried
1−3 prophages, ranging from 21,338 to 108,967 bp and encoding 34−115 genes (Figure 4).

The K. pneumoniae 8-1-12-1 genome contained the maximum number of prophage
gene clusters (n = 3), which had sequence similarity to Ralstonia_phage_RSA1 (38,760 bp,
NCBI accession number: NC_009382), Enterobacteria_phage_186 (30,624 bp, NCBI accession
number: NC_001317), and Klebsiella_phage_phiKO2 (51,601 bp, NCBI accession number:
NC_005857). Conversely, K. pneumoniae 8-2-5-4 carried only 1 prophage gene cluster similar
to Enterobacteria_phage_HK022 (15,456 bp, NCBI accession number: NC_002161).

The identified 14 prophages in the 7 K. pneumoniae genomes were derived from
4 different genera, including Enterobacteria, Klebsiella, Pseudomonas, and Ralstonia, indicating
extensive phage transmission across the genera boundaries. Moreover, the Enterobacte-
ria_phage_186 homologue was present in the K. pneumoniae 7-5-4 and 8-1-12-1 genomes,
but in different lengths, encoding different numbers of genes. The same was the case for
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the Pseudomonas_phage_D3 homologue, which was present in the K. pneumoniae 7-5-4 and
7-10-14 genomes. Likewise, the Klebsiella_phage_phiKO2 homologue was found in the
K. pneumonia 7-17-8, 8-1-12-1 and 8-2-10-5 genomes carrying a similar set of phage structure
genes but different accessory genes. These results also provided evidence of extensive
genome rearrangement during the K. pneumoniae genome evolution.
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3.4.3. INs

INs are considered as determinants in acquisition and evolution of virulence and
antibiotic resistance [36]. They are classified into type I, type II, type III, and super integrons
based on integrase genes (intI1, intI2, intI3, and intI4) [21]. In this study, INs were identified
in the K. pneumoniae 7-5-4 (n = 1), 7-10-14 (n = 2), and 8-2-10-5 (n = 1) genomes, but absent
from K. pneumoniae 7-13-2, 7-17-8, 8-1-12-1, and 8-2-5-4 genomes (Figure 5, Table S7).
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The K. pneumoniae 7-5-4 genome contained only 1 complete IN (2737 bp), encoding a
NAD (+)-rifampin ADP-ribosyltransferase Arr-2 (Kp 7_5_4_5567), an ANT(3”)-Ia family
aminoglycoside nucleotidyltransferase AadA3 (Kp 7_5_4_5566), an Orf3/QacEdelta1 fusion
protein (Kp 7_5_4_5565), and an intl1 (Kp 7_5_4_5568). The type 1 INs are strongly associated
with the dissemination of antibiotic resistance in bacteria [37].

The K. pneumoniae 7-10-14 genome contained 2 incomplete INs (INs 1−2) with gene
cassettes. The IN 1 encoded an aac(6′)-Ib family aminoglycoside 6′-N-acetyltransferase
(Kp 7_10_14_5082), a NAD(+)-rifampin ADP-ribosyltransferase (Kp 7_10_14_5083), and a
dihydrofolate reductase type 15 (Kp 7_10_14_5084), while the IN 2 encoded a quaternary
ammonium compound efflux SMR (Kp 7_10_14_5103) and an aminoglycoside resistance
protein (Kp 7_10_14_5104).

The K. pneumoniae 8-2-10-5 genome contained 1 incomplete IN, encoding a gly-
coside hydrolase family 31 protein (Kp 8_2_10_5_0283) and an ABC-F family ATPase
(Kp 8_2_10_5_0284).

3.4.4. ISs

ISs are short discrete DNA fragments that can move themselves to a new position in
DNA almost randomly in a single cell [38]. In this study, all the 7 K. pneumoniae genomes
contained ISs (n = 2 to 6), ranging from 741 to 1588 bp (Table S8).

For instance, the K. pneumoniae 7-13-2 genome contained the maximum numbers of ISs
(n = 6, IS001−IS006). The IS001 (807 bp) coded for a tyrosine-type recombinase/integrase
(Kp 7_13_2_0367); IS002 (1265 bp) for a transposase IS116/IS110/IS902 family (Kp 7_13_2_4341);
IS003 (1161 bp) for transposases (Kp 7_13_2_4675, Kp 7_13_2_4676); IS004 (1173 bp) for
a IS5 family transposase (Kp 7_13_2_4820); IS005 (1257 bp) for a IS3 family transposase
(Kp 7_13_2_5141, Kp 7_13_2_5142); and IS006 (819 bp) for a IS6-like element IS26 family
transposase (Kp 7_13_2_5153).

3.5. CRISPR-Cas Repeats

The CRISPR-Cas systems provide adaptive immunity to prokaryotes from invasion by
foreign nucleic acids in their hosts [39]. The systems are associated with drug resistance
in K. pneumoniae [40,41]. In this study, a number of CRISPR-Cas repeats (n = 54) were
identified in the 7 K. pneumoniae genomes, each of which contained 2−14 such gene clusters,
ranging from 75 to 2649 bp. However, none of these systems contained the Cas protein,
suggesting partial or inactive CRISPR-Cas systems in the K. pneumoniae isolates (Figure 6).

For instance, the K. pneumoniae 7-5-4 genome contained the maximum number of the
CRISPR-Cas repeats (n = 14, CRISPRs 1−14), ranging from 77 to 2649 bp. The CRISPR
4 was the longest in size (2649 bp), with the maximum number of repetitive sequences
(n = 44), whereas the CRISPR 3 was the shortest (77 bp), with the fewest repeats (n = 2).
Conversely, the K. pneumoniae 7-17-8 genome had the fewest CRISPR-Cas repeats (n = 2,
CRISPRs 1−2). The CRISPR 1 (201 bp) had 4 repeats, while the CRISPR 2 (188 bp) had
3 repeats.

3.6. Putative Virulence-Associated Genes in the K. pneumoniae Genomes

Many putative virulence-related genes (n = 43−59) were identified in the 7 K. pneu-
moniae genomes (Table 2). K. pneumoniae 8-1-12-1 form P. clarkii contained the maximum
number of such genes (n = 59), whereas K. pneumoniae 7-10-14 from M. veneriformis carried
relatively fewer (n = 43).

For instance, the entABCDEFS and fepABCDG gene clusters were identified in all the
K. pneumoniae genomes, both of which are related to enterobactin in K. pneumoniae. The
former is responsible for enterobactin biosynthesis, while the latter mediates enterobactin
transport. Specifically, the fepA gene encodes a receptor for enterobactin uptake [3]. Of note,
the iucABCD gene cluster was found in the K. pneumoniae 8-2-5-4 genome, which is involved
in the biosynthesis of aerobactin, commonly detected in hypervirulent K. pneumoniae [42].
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The other virulence-related genes involved in the bacterial persistence in the host were
also identified in the seven K. pneumoniae genomes. For example, the fimH gene encoding a
fimbrial protein was found in the K. pneumoniae 7-5-4, 7-17-8, 8-1-12-1, 8-2-5-4, and 8-2-10-5
genomes, which can bind to highly mannosylated UPIa to ensure stable adhesion of bacteria
to tissues in the host [43].

Table 2. The putative virulence-related genes identified in the K. pneumoniae genomes.

Virulence-Related
Gene K. pneumoniae Genome Reference

ecpABCDER 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [44]
entABCDEFS 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [45]

fepABCDG 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [46]
fes 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [46]

gnd 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [47]
kdsA 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [48]
rcsAB 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [45]

tuf 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [49]
wza 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [50]
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Table 2. Cont.

Virulence-Related
Gene K. pneumoniae Genome Reference

galU 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [51]
hcp 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4 [52]

impBCGHJKL 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4 [52,53]
vasDG 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4 [53]
yhjH 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [54]

fimABCDEFGI 7-5-4, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [55]
fimH 7-5-4, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [43]

manBC 7-5-4, 7-10-14, 7-17-8, 8-1-12-1, 8-2-5-4 [56]
vgrG 7-5-4, 7-10-14, 7-13-2, 8-1-12-1, 8-2-5-4 [57]
iroE 7-13-2, 7-17-8, 8-2-5-4, 8-2-10-5 [46]
glf 7-10-14, 7-13-2, 8-2-5-4 [58]

vasJ 7-10-14, 8-2-5-4 [59]
fyuA 7-17-8, 8-1-12-1 [60]

irp12345 7-17-8, 8-1-12-1 [55,61]
mbtI 7-17-8, 8-1-12-1 [62]

ybtAX 7-17-8, 8-1-12-1 [63,64]
allABCDRS 8-2-10-5 [65]
iucABCD 8-2-5-4 [45]

3.7. Antibiotic and Heavy Metal Resistance-Associated Genes in the K. pneumoniae Genomes

Antimicrobial resistance-related genes (n = 20−35) were also identified in the 7 K. pneumoniae
genomes (Table 3). K. pneumoniae 7-5-4 from M. anguillicaudatus contained the maximum
number of such genes (n = 35), whereas K. pneumoniae 7-13-2, 7-17-8, and 8-1-12-1 isolates
had the least (n = 20).

All the K. pneumoniae genomes contained the genes for MDR, e.g., a multidrug efflux
SMR transporter subunit (KpnE), a spermidine export protein mdtJ (KpnF), a multidrug
efflux MFS transporter periplasmic adaptor subunit emrA (KpnG), a multidrug resistance
protein (KpnH), a multidrug efflux MFS transporter (mdtG), a multidrug efflux RND trans-
porter permease subunit (acrB), a multidrug efflux RND transporter periplasmic adaptor
subunit (oqxA), a multidrug efflux RND transporter permease subunit (oqxB), and a mul-
tidrug ABC transporter permease/ATP-binding protein (yojI).

The qnrs1 gene, encoding a quinolone resistance pentapeptide repeat protein, was
present in the K. pneumoniae 7-5-4 and 8-2-10-5 genomes, while the floR, mphA, and sul1
genes were found in the K. pneumoniae 7-5-4, 7-10-14, and 8-2-10-5 genomes, which encoded
a chloramphenicol/florfenicol efflux MFS transporter (floR), a mph(A) family macrolide
2-phosphotransferase (mphA), and a sulfonamide-resistant dihydropteroate synthase (sul1),
respectively. Additionally, the genes involved in the resistance to β-lactam antibiotics
(penicillins, cephalosporins, carbapenems, and monobactams) and aminoglycosides were
also found in some of the K. pneumoniae genomes (Table 3). These results provided genome-
wide evidence for antibiotic resistance phenotypes of the seven K. pneumoniae isolates.

Several genes involved in heavy metal tolerance were identified in the K. pneumoniae
genomes as well (Table 3). For example, the copA gene, which plays a key role in the
export of excess copper [66], was present in the seven K. pneumoniae genomes. Moreover,
the cusARS genes, which are involved in the heavy metal efflux RND transporter [66,67],
were also found in the seven K. pneumoniae genomes. Additionally, the K. pneumoniae 7-10-
14 genome carried the zntA gene as well, which encodes a Zn/Cd/Hg/Pb-transporting
ATPase, while K. pneumoniae 7-13-2 had the arsABCR genes, which are essential for heavy
metal As resistance [68].
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Table 3. The antibiotic and heavy metal resistance-related genes identified in the K. pneumoniae genomes.

Antibiotic/Heavy Metal Gene K. pneumoniae Genome Reference

Cephalosporin acrB 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [69]
Fluoroquinolone hns 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [70]

emrR 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [71]
marA 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [72]
ramA 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [72]

crp 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [73]
qnrS1 7-5-4, 8-2-10-5 [74]
qnrB2 7-10-14, 8-2-10-5 [75]

Tetracycline oqxAB 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [44]
tet(A) 7-5-4, 7-10-14, 8-2-10-5, 8-2-5-4 [44]

Aminoglycoside KpnEFGH 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [76,77]
ompK37 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [78]

aph(3′)-Ia 7-5-4, 7-10-14, 8-2-10-5 [79]
aph(3”)-Ib 7-5-4, 7-10-14, 8-2-10-5 [79]
aph(6)-Id 7-5-4, 7-10-14, 8-2-10-5 [79]
aac(3)-IId 7-10-14, 8-2-10-5 [79]

aac(6′)-Ib-cr 7-10-14, 8-2-10-5 [80]
aadA16 7-10-14, 8-2-10-5 [79]
aadA8 7-5-4 [81]

Diaminopyrimidine dfrA27 7-10-14, 8-2-10-5 [82]
Beta-lactam SHV-11 7-5-4, 7-17-8 [83]

SHV-1 7-10-14, 7-13-2 [84]
SHV-38 8-1-12-1, 8-2-5-4 [85]
TEM-1 7-5-4 [85]

OKP-B-7 8-2-10-5 [86]
TEM-116 8-2-5-4 [85]

Macrolide mphA 7-5-4, 7-10-14, 8-2-10-5 [44]
ermB 7-5-4 [44]
mphE 7-5-4 [87]
msrE 7-5-4 [87]

Nitroimidazole msbA 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [88]
Phenicol floR 7-5-4, 7-10-14, 8-2-10-5 [89]
Peptide pmrF 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [90]

ugd 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [91]
yojI 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [92]

Sulfonamide sul1 7-5-4, 7-10-14, 8-2-10-5 [44]
sul2 7-5-4, 8-2-10-5 [44]

Rifamycin arr-2 7-5-4 [80]
arr-3 7-10-14 [46]

Fosfomycin FosA5 7-5-4, 7-10-14 [80]
FosA6 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [80]
mdtG 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [93]

Heavy metal cusARS 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [66,67]
Heavy metal copA 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, 8-2-5-4, 8-2-10-5 [66]
Heavy metal zntA 7-10-14 [94]
Heavy metal arsABCR 7-13-2 [68]

3.8. Strain-Specific Genes of the K. pneumoniae Isolates of Aquatic Animal Origins

Comparative genomic analyses revealed approximately 4111 core genes shared by the
K. pneumoniae genomes, which accounted for 65.7% of pan genes (n = 6255). Meanwhile,
many strain-specific genes (n = 199−605) were found in the K. pneumoniae isolates (Figure 7).
Interestingly, K. pneumoniae 7-5-4 from M. anguillicaudatus contained the highest number of
strain-specific genes (n = 605), whereas K. pneumoniae 7-10-14 from T. veneriformis had the
fewest (n = 199). Remarkably, higher percentages of the strain-specific genes (30.2−54.4%)
encoded unknown proteins. These results also provided the evidence of the considerable
genome variation in the K. pneumoniae isolates of aquatic animal origins.
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3.9. Phylogenetic Relatedness of the K. pneumoniae Isolates of Aquatic Animal Origins

To address phylogenetic relatedness of the K. pneumoniae isolates of aquatic animal
origins, we constructed a phylogenetic tree on the basis of 72 K. pneumoniae genomes.
Of these, complete genomes of 65 K. pneumoniae strains were derived from the GenBank
database, the majority of which (n = 57) were isolated from human samples, followed by
animals (n = 5, bovine, cat, chicken, dog, pig, and rabbit), and water environment (n = 3)
in 1999−2021. The 7 K. pneumoniae isolates of aquatic animal origins tested negative for
the toxic K1, K2, K5, K20, K54, and K57 serotypes, except K. pneumoniae 8-2-5-4 of serotype
K2 [15]. The phylogenetic tree analysis revealed seven distinct clusters, designated as
Clusters A−F (Figure 8).

K. pneumoniae 8-1-12-1 from P. clarkii fell into Cluster B, together with K. pneumoniae
JX-CR-hvKP (GenBank accession no. NZ_CP064208), which was isolated from human
blood in 2019 in China.

Both K. pneumoniae 7-10-14 from M. Veneriformis and K. pneumoniae 7-17-8 from
C. cahayensis were classified into Cluster F, together with K. pneumoniae 49,210 (GenBank
accession no. NZ_CP089024) isolated from humans in 2016 in China.

Both K. pneumoniae 7-5-4 from M. anguillicaudatus and K. pneumoniae 8-2-10-5 from
E. fuscoguttatus were grouped into Cluster E, together with K. pneumoniae SWHE3 (GenBank
accession no. NZ_CP055061) isolated from humans in 2018 in China, and K. pneumoniae
SB617 (GenBank accession no. NZ_CP084825), which was isolated from water in 2000 in
the Netherlands.

K. pneumoniae 7-13-2 from E. sinensis was classified into a single Cluster A, phylogenet-
ically distant from all the other genomes tested, suggesting its unique genome trait.

K. pneumoniae 8-2-5-4 of serotype K2 from T. granosa was classified into Cluster D, show-
ing the closest phylogenetic distance with K. pneumoniae BcKp067 (GenBank accession no.
NZ_CP084829), which was isolated from the water environment in 1999 in the Netherlands.

In addition, 8 K. pneumoniae isolates belonging to the capsule serotypes K1, K2, K5,
K54 and K57 were classified into Clusters D−F.

Taken together, these results demonstrated the genome diversity of the K. pneumoniae
isolates of the clinical and environmental origins.

3.10. Sequence Types (ST) of the K. pneumoniae Isolates of Aquatic Animal Origins

Based on the 7 conserved core genes (gapA, infB, mdh, pgi, phoE, rpoB, and tonB) in
K. pneumoniae [15], the multilocus sequence typing (MLST) analysis against the MLST
database (https://cge.food.dtu.dk/services/MLST/ (accessed on 23 November 2022))
revealed that K. pneumoniae 7-5-4, 7-10-14, 7-13-2, 7-17-8, 8-1-12-1, and 8-2-5-4 isolates
belonged to the ST-273, ST-1310, ST-101, ST-353, ST-6289, and ST-2026, respectively, whereas
the K. pneumoniae 8-2-10-5 isolate was not classified into any known STs.

https://cge.food.dtu.dk/services/MLST/
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accession numbers shown in the tree. The seven K. pneumoniae genomes determined in this study were
marked with red dots. The maximum likelihood method was used to build a tree, with 1000 bootstrap
replications and a cut-off threshold of ≥50% bootstrap values.

4. Discussion

The inappropriate use of antibiotics may result in increasing levels of bacterial re-
sistance [8,95]. For example, Fatima et al. [96] examined the resistance of K. pneumoniae
isolates from urine (n = 72) and sputum (n = 35) isolated in Balochistan to 17 antimicrobial
agents. They found that the majority of the K. pneumoniae isolates were resistant to GEN
(76.2%), followed by SXT (66.7%), and NOR (42.9%) [96]. Marques et al. [97] determined
the resistance of K. pneumoniae isolates from companion animals (n = 27) and humans
(n = 77), isolated in Lisbon during 2002 to 2015, to 29 antimicrobial agents. Their results
showed that most K. pneumoniae isolates were resistant to AMP (95.2%), followed by CHL
(31.7%), KAN (27.9%), TET (28.8%), and CIP (25%) [97]. In this study, the K. pneumoniae
isolates had different antibiotic resistance profiles. For example, K. pneumoniae 7-5-4 from
M. anguillicaudatus and K. pneumoniae 7-10-14 from M. veneriformis displayed resistance to
CHL/CIP/KAN/NOR/SXT/TET and AMP/CHL/GEN/KAN/SXT/TET, respectively.
K. pneumoniae 8-2-10-5 from E. fuscoguttatus was resistant to CHL/CIP/KAN/SXT/TET,
while K. pneumoniae 8-2-5-4 from T. granosa was resistant to AMP/CHL/TET, suggesting
different antibiotic exposure levels or pollution sources of aquaculture environments.

Previous studies have reported heavy metal residues in various aquatic environments
and aquatic products sampled around the world, especially in developing countries [98,99].
For example, Varol and Sunbul et al. [98] examined the residues of five heavy metals in
biota samples, including one species of mussel, crayfish, and farmed fish, respectively, and
six species of wild fish, collected from the Euphrates River in Turkey. The highest concen-
trations of As, Cd, and Pb were detected in mussels, while the highest concentrations of Cu
and Zn were detected in crayfish [98]. Recently, Ni et al. [99] reported Cu, Hg, Pb, and Cd
residues in 41 species of aquatic animals, sampled in Shanghai, China in July−September
of 2018−2019, with positive sample rates of 100%, 100%, 77.4%, and 34.0%, respectively, but
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none of which exceeded their maximum residue limits [99]. In this study, the K. pneumoniae
isolates had different heavy metal tolerance patterns. For example, K. pneumoniae 8-1-12-1
from P. clarkii was tolerant to Cu2+/Cd2+/Cr3+/Hg2+/Mn2+/Pb2+/Zn2+, while K. pneu-
moniae 8-2-10-5 from E. fuscoguttatus was tolerant to Zn2+/Pb2+/Hg2+/Cu2+/Cr3+/Cd2+.
These results suggested a potential risk of consuming these aquatic animals.

The human acidic stomach environment challenges survival and infection of K. pneu-
moniae. Therefore, we examined survival of the K. pneumoniae isolates at pH 3.5–7.5 when
incubated in the TSB (0.5% NaCl) at 37 ◦C. Unexpectedly, all the isolates were capable of
growing vigorously at pH 4.5–7.5, although the highest biomass was observed at pH 7.5.
These results provided evidence of the acidic tolerance of the K. pneumoniae isolates of
animal origins, which may have been attributed to the bacterial survival across the acidic
stomach boundary in the host.

The K. pneumoniae isolates were recovered from different aquatic animals in water
environments. M. anguillicaudatus, E. sinensis, C. cahayensis, and P. clarkii were derived
from freshwater, while M. Veneriformis, T. granosa, and E. fuscoguttatus from seawater.
Therefore, we determined growth curves of the K. pneumoniae isolates at different salinity
concentrations (0.5−4% NaCl) when incubated in the TSB (pH 7.5) at 37 ◦C. Our results
indicated that all the K. pneumoniae isolates were able to grow vigorously at 0.5−1.0% NaCl
in the TSB (pH 7.5) at 37 ◦C. Of these, K. pneumoniae 7-5-4 from M. anguillicaudatus was
the most susceptible to higher salinity concentrations (4−3% NaCl), consistent with its
freshwater culture environment.

Draft genomes of the seven K. pneumoniae isolates were determined using the Illumina
Hiseq × Ten sequencing platform. The typical Poisson distribution, with a clear single
peak at the only 17–mers frequency, was observed in the sequencing data, indicating
less repetitive DNA in the K. pneumoniae genomes (Figure S1, Table S9). The assembled
genomes were 5,256,522−5,857,823 bp with GC contents of 56.35−57.81%, similar to the
other K. pneumoniae genomes [42,100]. For example, Yu et al. [100] used MiSeq short-read
sequencing and Oxford nanopore long-read sequencing to determine whole genomes of
7 CRKP strains, and obtained genome sizes ranging from 5.4 to 5.8 Mb with an average
GC content of 57.2% [100]. Du et al. [42] sequenced and de novo assembled the genomes
of 6 hvKP strains, which ranged 5.34−5.58 Mb and GC percentages ranging from 57.22 to
57.46% [42]. The genome sizes of 1757 K. pneumoniae strains, which were available in the
GenBank database (accessed on 14 March, 2023), ranged from 4.76 Mb to 6.37 Mb, most
of which contained 3107 to 5973 predicted genes. In this study, interestingly, a total of
4885–5558 protein-coding genes were predicted, of which 1188−1363 protein-coding genes
encoded unknown proteins. Moreover, about 7.1−41.0% of the strain-specific (n = 199−605)
genes encoded unknown proteins as well. These results highlighted specific genome traits
of the K. pneumoniae isolates of aquatic animal origins, which may result from the high
numbers of identified MGEs.

Remarkably, the K. pneumoniae genomes carried many MGEs, including GIs (n = 87),
prophages (n = 14), INs (n = 4), and ISs (n = 22). The identified MGEs carrying a large
number of genes may constitute an important driving force in K. pneumoniae genome
evolution and speciation. For instance, the identified 87 GIs endowed the bacterium with a
variety of biological functions for fitness into niches, such as virulence, resistance, substrate
hydrolysis, transporting and utilization, and restriction and modification, as well as phage
and stress regulation.

There are approximately 1031 bacteriophages on earth, which play a critical role in vir-
ulence and evolution of bacterial genomes [101]. Bleriot et al. [102] reported 40 prophages
(11.454−84.199 kb) in 16 clinical CRKP strains, 27 of which belonged to the family My-
oviridae, 10 to Siphoviridae, and 3 to Podoviridae [102]. In this study, we found 14 prophages
(12,633−109,928 bp) in the 7 K. pneumoniae genomes, which were derived from different
genera, including Enterobacteria, Klebsiella, Pseudomonas, and Ralstonia. The results in this
study, coupled with previous report [102], indicated extensive phage transmission between
Klebsiella and the other bacterial genera. In this study, the identified prophage homologues,
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e.g., Enterobacteria_phage_186, Klebsiella_phage_phiKO2, and Pseudomonas_phage_D3, were
present in different K. pneumoniae genomes, but in different lengths encoding different
numbers of genes, which provided evidence of extensive genome rearrangement during
the K. pneumoniae evolution.

It has been reported that the Type 1 IN is the most prevalent and common in clinical
bacteria [103]. For example, Firoozeh et al. [104] isolated K. pneumoniae strains (n = 181) from
clinical specimens and found 82.9% (n = 150) of the isolates with MDR phenotypes. Of the
MDR isolates, 100% (n = 150) and 36.7% (n = 55) carried intI1 and intI2 genes, respectively,
but none had the intI3 gene by PCR amplification [104]. In this study, 4 INs (1229−4332 bp)
were identified in the K. pneumoniae 7-5-4, 7-10-14, and 8-2-10-5 genomes. Of these, K.
pneumoniae 7-5-4 carried the Type 1 IN. Moreover, this IN contained ARGs, encoding a
NAD(+)-rifampin ADP-ribosyltransferase arr-2 (Kp 7_5_4_5567) and an ANT(3”)-Ia fam-
ily aminoglycoside nucleotidyltransferase aadA3 (Kp 7_5_4_5566), suggesting possible
transmission of ARGs mediated by the IN.

ISs consist of two inverted repeat sequences and one or two genes encoding trans-
posases [105]. In this study, all the 7 K. pneumoniae genomes contained ISs (n = 2 to 6),
ranging from 741 to 1588 bp. They belonged to the IS3 family, IS5 family, IS6 family, IS91
family, and IS110 family.

The CRISPR-Cas systems defend the prokaryotes from invasion by MGEs [106]. In
this study, 54 CRISPR-Cas gene clusters (75−2649 bp) were identified in the 7 K. pneumo-
niae genomes. However, all the predicted clusters lacked the Cas protein, which plays
an essential role in the function of the CRISPR-Cas systems [107]. These results pro-
vided indirect evidence for inactive CRISPR-Cas repeats and possible active HGT in the
7 K. pneumoniae isolates.

Many virulence-related genes have been identified in K. pneumoniae isolates [108,109].
For example, Remya et al. [108] detected 9 virulence genes in K. pneumoniae isolates (n = 370)
by PCR amplification, including the magA, allS, kfu, K2A, rmpA, entB, ybtS, fimH, and uge
genes. They found that 93.2% (345/370) of the isolates carried multiple virulence genes,
4.0% (15/370) carried 1, and 2.7% (10/370) had none [108]. Kuş et al. [109] detected
16 virulence genes in K. pneumoniae strains (n = 53) isolated from nosocomial infections
in Turkey by PCR amplification, including the fimH-1, mrkD, kpn, iutA, ycfM, entB, irp-1,
irp-2, ybtS, fyuA, iroN, rmpA, magA, traT, hlyA, and cnf-1 genes. Their results showed that
the entB gene was the most predominant (96.2%), followed by the ycfM (86.8%), mrkD
(83.0%), fimH-1 (64.2%), fyuA (54.7%), and kpn (49.1%). The detection rates of the ybtS, irp-1,
irp-2, traT, and iutA genes ranged from 41.5 to 5.7%, whereas the other genes (iroN, rmpA,
magA, hlyA, and cnf-1) tested negative in the isolates [109]. In this study, based on the
obtained genome sequences, we also identified many virulence-related genes (n = 43−59)
in the 7 K. pneumoniae isolates of aquatic animal origins, e.g., ecpABCDE, entABCDEF,
fimABCDEFGHI, iucABCD, fepABCDG, fyuA, vgrG, galU, gnd, vgrG, fimH, entB, mrkd, ybta,
and T6SS-associated genes, which were involved in adhesion, antiphagocytosis, secretion
system, and gene regulation of K. pneumoniae. Of note, K. pneumoniae 8-1-12-1 from P. clarkii
contained the maximum number of the virulence-associated genes (n = 59), whereas
K. pneumoniae 7-10-14 from M. veneriformis had relatively fewer (n = 43). These virulence-
related genes may be candidate targets for the development of new diagnostics, vaccines,
and treatments to control K. pneumoniae infection.

The emergence and spread of MDR pathogens poses a serious threat to public safety [110].
For example, Marques et al. [97] reported 15 antibiotic resistance-related genes in K. pneumo-
niae isolates, causing UTIs from companion animals (n = 27) and humans (n = 77), e.g., qnrB,
qnrS, sul1, sul2, sul3, dfrA12, dfrIa, tet(A), tet(B), and floR [97]. In this study, many antibi-
otic resistance-related genes (n = 20−35) were identified in the 7 K. pneumoniae genomes,
e.g., tetA, acrB, hns, oqxA, aac (6′)-Ib-cr, ermB, msbA, floR, pmrF, sul1, arr-2, and fosA5, which
are involved in the resistance to cephalosporin, fluoroquinolone, tetracycline, aminoglyco-
side, macrolide, phenicol, sulfonamide, rifamycin, and fosfomycin. Moreover, several genes
in heavy metal tolerance were also identified in the seven K. pneumoniae genomes, such as
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the cusASR, copA, zntA, and arsABCR genes. These results provided genome-wide evidence
for the resistance phenotypes of the K. pneumoniae isolates of aquatic animal origins.

5. Conclusions

The K. pneumoniae 7-10-14, 7-17-8, 8-2-5-4, 7-13-2, 8-1-12-1, 8-2-10-5, and 7-5-4 strains of
aquatic animal origins had multiple antibiotic resistance and heavy metal tolerance profiles,
and were capable of growing vigorously at pH 4.5−7.5 and 0.5−1.0% NaCl in the TSB
medium at 37 ◦C.

Remarkably, the K. pneumoniae genomes carried many MGEs, including GIs (n = 87),
prophages (n = 14), INs (n = 4), and ISs (n = 22), as well as partial or inactive CRISPR-Cas
systems (n = 54), indicating possible active HGT during the K. pneumoniae genome evolution.
Many antibiotic resistance (n = 20−35) and virulence (n = 43−59)-related genes were found
in the K. pneumoniae genomes. K. pneumoniae 7-5-4 from M. anguillicaudatus contained
the maximum number of ARGs (n = 35), while K. pneumoniae 8-1-12-1 from P. clarkii
carried the most virulence-related genes (n = 59). Additionally, numerous strain-specific
(n = 199−605) genes were present in the K. pneumoniae isolates, approximately 30.2−54.4%
of which encoded unknown proteins. These results, coupled with the phylogenetic tree
analysis, demonstrated considerable genome variation and high genome plasticity of the
K. pneumoniae isolates.

Overall, the results of this study enrich genome data and fill prior gaps in understand-
ing the K. pneumoniae genomes derived from aquatic animals.
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