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Abstract: The grain for which an observer conducts a study is an important determinant of its
outcome. Studies of ants have considered spatial grains spanning from single meters to entire forest
ecosystems and found patterns related to nutrient availability, leaf litter depth, disturbance, and
forest composition. Here, we examine a Bornean leaf litter ant community at small (1–4 m) and large
(50–250 m) spatial scales and consider the differences in community structure using structured 1 m2

quadrats sampled via leaf litter sifting and Berlese extraction. We found that small-scale patterns
in ant abundance and richness did not spatially autocorrelate within a plot until >1.5 m. Leaf litter
characteristics, forest stand characteristics and sampling season were homogenous among our sites,
suggesting that macro-scale stand variables are not largely regulating the small spatial scale ant
communities: These may be driven by microclimate, competition, niche space, nutrient available,
microclimatic conditions, or other localized effects. Further experimental work is needed to elicit
causal mechanisms.

Keywords: tropical conservation; biodiversity; semivariogram; Borneo; Sabah; Malaysia; UNESCO
man and biosphere reserve

1. Introduction

Environmental gradients and spatial dynamics influence species distributions and
community composition at multiple scales [1], and “ecological patterns and processes
are characteristically scale-dependent” [2]. Gradients in temperature and elevation [3],
climate [4], abundance of sympatric colonies [5], and disturbance [6] shape ant meta-
communities (metacommunity = set of interacting communities connected by dispersing
species [7]) at various scales. However, ant metacommunity dynamics are most commonly
examined at forest-stand or site scales and less commonly at small scales, despite known
high variation in abundance and species richness at the small scale, and despite the fact
that environmental heterogeneity at both the local and landscape scale structures local ant
communities [8]. Supporting this, Kaspari found that densities of litter ants vary 10–20-fold
at the 1-m2 scale in neotropical forests [9].

Ant species appear to distribute randomly across vertical environmental gradients in
tropical forests; however, abundant species segregate into patchy mosaics [10]. Ant mosaics
occur when competition between species results in patchworks of mutually exclusive
territories: Ant mosaics are documented in tropical forest canopies [11], but less evidence
exists for high interspecific competition in leaf litter ants [12]. Thus, resource availability, not
competition, is thought to be the likely driver of tropical leaf litter metacommunities [9,13].
Patchy distribution of ground-dwelling ants [13,14] may be explained by leaf litter physical
(e.g., moisture, leaf shape, temperature) or chemical (e.g., compounds present in leaf tissues,
state of decomposition) characteristics, local topography [15], resource availability [15,16],
and vegetation structure and composition [17]. Theunis and colleagues found that leaf
litter ant species distribution shows a periodic spatial structure related to interspecific
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competition at small scales (<10 m), but that at larger scales (>50 m), environmental factors
aggregated colonies of species that responded favorably to those factors [12]. The small-
scale patterns that drive ant diversity may have large implications for the larger ecosystem,
since leaf litter ants comprise 45–50% of all leaf litter macroinvertebrates [18] and engage
with their environment at multiple trophic levels [19].

The grain at which observations are made for an ecological study has the potential
to influence its outcome. While other studies [12,15] have considered spatial questions
of grain (the finest level of spatial detail observable [20]) and extent (maximum area
of consideration [20]), we found no literature that addressed the smallest spatial scales
(immediate adjacency) of variance, despite its importance for overall community structure
and dynamics. Herein, we examined patterns in spatial distribution and variance of ant
communities at the 1 m (small) and >50 m (large) scales. Specifically, we examined the
effect of distance on the composition, similarity, and richness of ant communities across
short (1–4 m) and long (50 m) distances.

2. Materials and Methods
2.1. Study Site

Sampling was conducted from June to July 2019 at the Crocker Range Biosphere
Reserve, Sabah, Malaysian Borneo (5◦51′23.9′′ N, 116◦08′15.9′′ E). The Crocker Range
Biosphere Reserve was designated an UNESCO Man and Biosphere (MAB) Reserve in
2014. MAB sites are characterized by three protection zones: core, buffer, and transition.
Core areas (144,492 hectares) are those in which very limited human activities are per-
mitted, ecotourism is restricted, and forest product harvesting is forbidden. Buffer areas
(60,313 hectares) are those areas that protect core forest reserves from encroachment by
transitional and agricultural sites. Buffer forests allow higher rates of ecotourism and
limited harvesting of forest products. Transition sites are agriculturally developed and
human-inhabited. The land use types in these areas do not support comparisons with core
and buffer forests for leaf litter arthropods; thus, they were excluded from this analysis.
The Crocker Range core and buffer forests are home to approximately 400 distinct eco-
logical communities. We restricted the spatial extent of our sites to minimize sampling
multiple forest communities. A complete description of the study area can be found in
Yoh et al., (2020) [21].

2.2. Field Methods

We sampled leaf litter ant communities at twelve forest plots (six core sites, six buffer
sites) in June and July 2019 (dry season). Each plot was characterized by percent canopy
cover, canopy height, size of largest local trees (cm, height, and circumference at breast
height, then converted to diameter at breast height), distance among trees, size of largest
rotting logs (cm, circumference), abundance and size class of lianas, and abundance and
size class of standing vegetation. Each plot was separated by >50 m and consisted of
16 (1 m × 1 m) quadrats (n = 192 quadrats). Quadrats were placed immediately adjacent
to one another such that all 16 quadrats were contained in a 4 m × 4 m grid (16 m2). Plot
locations were chosen randomly with consideration of sampling ease (Figure 1).

Ants were sampled within each plot between 10:00–16:00 h in fair weather using
Berlese extraction [22]. All quadrats within a plot were sampled a single time on a given
day for a total of 192 samples. Quadrat sampling order and sampler were haphazardly
selected. Leaf litter depth was measured to the nearest 1 cm by inserting a wire vertically
through the litter to mineral soil at four haphazardly selected locations within each quadrat.
Leaf litter depth was then averaged for each individual quadrat. We collected all leaf litter
and biological material within a plot down to mineral soil and separated the coarse material
from the fine leaf fragments and arthropods in a 1 cm mesh litter sifter [23]. Siftate was
stored in linen bags for <4 h, then placed in passive hanging Berlese funnels for 48 h.
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was stored in linen bags for <4 h, then placed in passive hanging Berlese funnels for 48 h. 
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to genus using published global and regional keys [24–26]. Identifying to genus served as 
the most efficient way to assess community composition and ecological patterns [27]. 
Voucher specimens were deposited in the entomological collection at the Institute for 
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squares model. We compared differences (the absolute value of the difference between 
values) in genus richness and ant abundance among quadrat distances within plots using 
a nested least squares model. We used a standard least squares model to test the effects of 
litter depth and its interaction with plots on ant genus richness and abundance (independ-
ent of one another). 

We applied uniformity tests to quadrats within plots to compare community metrics 
among quadrats within plots. We used mixed models to examine the effect of quadrat 
position within plots on leaf litter depth, ant abundance, and ant genus richness. We used 

Figure 1. Location of study site within the Crocker Range Biosphere Reserve, Sabah, Malaysia. The
study site encompasses both the core and buffer forest (green and blue respectively; center panel).
Within each of the core and buffer zones, six 16 m2 plots were established with 16−1 m2 quadrats
within for a total of 12 plots and 192 quadrats.

Collected ants were stored in 70% ethanol, sorted, counted, pointed, and identified
to genus using published global and regional keys [24–26]. Identifying to genus served
as the most efficient way to assess community composition and ecological patterns [27].
Voucher specimens were deposited in the entomological collection at the Institute for
Tropical Biology and Conservation at the Universiti Malaysia Sabah, Kota Kinabalu.

2.3. Data Analysis

We calculated Jaccard similarity coefficients among all quadrats and among quadrats
within plots as a measurement of evenness and measured quadrat distance as a continuous
variable representing linear distance between individual pairs of quadrat centers. We
compared evenness among quadrats nested within plots using a least squares model. We
compared evenness, genus richness, and abundance among plots using a standard least
squares model. We compared differences (the absolute value of the difference between
values) in genus richness and ant abundance among quadrat distances within plots using a
nested least squares model. We used a standard least squares model to test the effects of lit-
ter depth and its interaction with plots on ant genus richness and abundance (independent
of one another).

We applied uniformity tests to quadrats within plots to compare community metrics
among quadrats within plots. We used mixed models to examine the effect of quadrat
position within plots on leaf litter depth, ant abundance, and ant genus richness. We used
a spatial repeated structure and fit six spatial models (spherical, Gaussian, exponential,
power, and best fit with anisotropic and nugget effects) to our data. The best fit model was
selected comparing AICc among all plots and selecting the lowest values. We generated
semivariograms by plotting distance (x) against semivariance (y) for ant abundance and
ant genus richness for all quadrats within plots and averaged semivariance, sill, range,
and nugget among quadrats resulting in mean values with standard errors for each plot.
We visualized genus-level abundance and richness using a heat map where red represents
higher abundance and green represents lower abundance. Abundance categories are
consistent among genera to allow for inter-genus comparisons. Finally, we visualized
Shannon diversity across all local-scale plots using the same heat map.
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We regressed relevant community metrics against leaf litter depth and leaf litter surface
temperature independently and calculated linear fit using R2 values. We also regressed ant
abundance and genus richness and calculated fit using an R2 value. We calculated relative
abundance for all genera and subfamilies as the number of individuals counted in that
genus or subfamily divided by the total number of ants collected.

Forest plot characteristics were compared among plots using multivariate analyses of
variance (MANOVA, alpha = 0.05). Cumulative ant genus richness was compared between
core and buffer forest using incidence-based sample accumulation curves [28] generated by
the program EstimateS. The curves illustrate how the number of genera captured compares
to the number of genera that are likely present at a site based on the number of new genera
added per sample. All analyses were conducted in EstimateS [29], JMP 2019, SAS 2019, and
Excel (Microsoft Office 2019).

3. Results

We collected a total of 20,657 ants representing 61 genera and 9 subfamilies during
this study, representing approximately 95% of the genera present in the community based
on estimates from sample accumulation curves (asymptote Core = 53, Buffer = 58; Figure 2).
The number of ant genera found in a sample increased linearly with ant abundance across
all samples (n = 192, R2 = 0.65). Core forests housed 50 genera, and buffer forests were
home to 54 genera; 42 genera were found in both zones (Table 1). We found no relationship
between litter surface temperature and ant abundance (R2 < 0.01) or ant genera richness
(R2 = 0.03). Leaf litter depth correlated with ant genera richness (R2 = 0.16), but less with
ant abundance (R2 = 0.05). Ant genus richness and abundance correlated (R2 = 0.39).
Stand-level forest characteristics did not significantly vary among plots (p > 0.05 for all
characteristics measured).
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Table 1. Relative abundance of all genera collected across all plots. RA = relative abundance. Values
represented as proportions.

Subfamily Genus Total
Abundance

Genus
RA

Subfamily
RA

Genus Total
Abundance Buffer

Genus Total
Abundance Core

Amblyoponinae Mystrium 3 <0.001 0.002 3 0
Stigmatomma 41 <0.001 26 15

Dolichoderinae Dolichoderus 2 <0.001 0.063 0 2
Loweriella 454 0.022 409 45

Dorylinae Aenictus 69 0.003 0.006 35 34
Cerapachys 7 <0.001 7 0
Lioponera 18 <0.001 0 18
Parasycia 26 0.001 16 10

Ectatomminae Gnamptogenys 14 <0.001 <0.001 4 10
Formicinae Anaplolepis 2 <0.001 0.140 1 1

Camponotus 28 0.001 15 13
Colobopsis 2 <0.001 0 2
Echinopla 2 <0.001 2 0
Euprenolepis 2 <0.001 0 2
Myrmoteras 167 0.008 119 48
Nylanderia 2486 0.120 1939 547
Paraparatrachina 13 <0.001 2 11
Polyrachis 6 <0.001 1 5
Prenolepis 93 0.004 93 0
Pseudolasius 29 0.001 29 0

Leptanillinae Leptanilla 2 <0.001 <0.001 0 2
Myrmicinae Acanthomyrmex 60 0.003 0.695 25 35

Calyptomyrmex 58 0.003 29 29
Cardiocondyla 34 0.002 26 8
Carebara 3537 0.171 1683 1854
Cataulacus 2 <0.001 2 0
Crematogaster 50 0.002 2 48
Eurhopalothrix 12 <0.001 0 12
Lophomyrmex 2932 0.142 1347 1585
Lordomyrma 13 <0.001 7 6
Mayriella 322 0.016 233 89
Meranoplus 29 0.001 25 4
Monomorium 37 0.002 37 0
Myrmecina 114 0.006 35 79
Myrmicaria 309 0.015 0 309
Pheidole 4284 0.207 2374 1910
Pristomyrmex 65 0.003 31 34
Proatta 73 0.004 73 0
Solenopsis 77 0.004 4 73
Strumigenys 1154 0.056 970 184
Syllophopsis 81 0.004 40 41
Tetramorium 1018 0.049 537 481
Vollenhovia 92 0.004 40 52
Vombisidris 2 <0.001 0 2

Ponerinae Anochetus 28 0.001 0.096 21 7
Brachyponera 1235 0.060 765 470
Cryptopone 16 <0.001 12 4
Diacamma 1 <0.001 1 0
Ectomomyrmex 7 <0.001 3 4
Emeryopone 1 <0.001 1 0
Harpagnathos 2 <0.001 2 0
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Table 1. Cont.

Subfamily Genus Total
Abundance

Genus
RA

Subfamily
RA

Genus Total
Abundance Buffer

Genus Total
Abundance Core

Hypoponera 424 0.021 246 178
Leptogenys 64 0.003 44 20
Mesoponera 1 <0.001 1 0
Myopias 32 0.002 26 6
Odontomachus 51 0.002 7 44
Odontoponera 59 0.003 39 20
Ponera 52 0.003 19 33

Proceratiinae Discothyrea 11 <0.001 <0.001 5 6
Probolomyrmex 3 <0.001 1 2

We found no difference in genus richness between core and buffer forests (p = 0.21;
mean genus richness per quadrat: core = 9.27, buffer = 9.87). Among quadrats nested
within plots, we observed no difference in genus richness (p = 0.1030). We observed a
difference in total ant abundance between core and buffer forests (p = 0.008, MS = 39,016.5.
F = 7.1875. p = 0.008. Core mean = 93.3 ants per quadrat. Buffer mean = 123.18 ants per
quadrat). We also observed differences in ant abundance among quadrats nested within
plots (F = 2.08, DF = 36, p = 0.0013) and among plots (p < 0.0001, MS = 51,913.5. F = 18.7129.
p < 0.0001. Range: 23.44–240.44, Figure S1).

Small Scale Spatial Ecology

Taxonomic similarity was highly variable among plots and quadrat distances nested
within plots (p < 0.0001, F = 5.16, DF = 11) and showed no relationship to distance (R2 = 0.02).
Spatial spherical models showed best fit for distances between quadrats within plots.
At short distances, quadrats did show spatial autocorrelation (mean range among all
plots = 1.27 m, SE = 0.109; Table S1); however, for all plots, at distances greater than 1.5 m,
quadrats were not spatially autocorrelated. There was no observable pattern in distance-
decay of similarity within plots and no linear correlation between distance between plots
and the similarity of ant assemblages (Jaccard similarity coefficient, R2 = 0.0207).

4. Discussion

We found that ant genus richness was similar between core and buffer sites, and ant
abundance varied between the two, with the highest ant abundance in buffer sites. Addi-
tionally, we found that small-scale patterns in ant abundance did not spatially autocorrelate.
Thus, our results demonstrate that large-scale patterns in ant abundance may not mirror
those at smaller spatial scales; however, both are predictably patchy [17].

The effects of large-scale forest disturbances on ant communities have been well
characterized in tropical ecosystems [30–32]). Fewer studies have examined smaller-scale
persistent disturbances, such as low impact trail systems or long-term research plots such
as those present in the MAB buffer zones, and their impacts on ant communities. The small-
scale studies that do exist generally find negative associations (e.g., Mohamed et al., 2019,
hiking trails [33]; Barber 2015, hiking trails [34]) or no effect (Kwon 2015, roads [35]). Ant
abundance can respond positively to human presence [36], possibly because of novel or
more abundant resources, which may help explain the increase in ant abundance observed
in this study. Known drivers of semi-local (<10 m scale) ant distribution and abundance
patterns include land use patterns [37], leaf litter characteristics [38], seasonal trends [39],
forest stand characteristics, and resource availability [40].

Leaf litter characteristics, forest stand characteristics and sampling season were ho-
mogenous among our sites, suggesting that macro-scale stand variables are not largely
regulating the small spatial scale ant communities: These may be driven by microclimate,
competition, niche space, nutrient availability, microclimatic conditions, or other localized
effects. Very less is known about how communities function at this scale; however, work
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by Xing et al., (2022) [41] found that ant species turnover is higher in horizontal space than
in vertical space. While these effects can be species-specific [42], we observed that the total
ant abundance decayed rapidly with distance (Figures 3 and 4).
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Within a subfamily, we observed multiple genera that were often found in only core
and only buffer forests (Table 1). In particular, Strumigenys, Nylanderia, and Loweriella were
highly abundant in buffer forests as compared to core forests. The genus Nylanderia is
known from a single species in Borneo (N. kraepelini Forel, 1905) [43], but is a well-known
invader in other systems [44]. Likewise, Loweriella is a monotypic genus found only in
Borneo (L. boltoni Shattuck, 1992). A study by Rubiana et al., (2015) found that the genus
occurred in disturbed forests [45]. Borneo is the epicenter of Strumigenys diversity with
97 recorded species, and the genus has at least 24 species that are known to occur outside
their native range [46].

Locally rare genera were likely to be found in core forests than in buffer forests, and
locally abundant genera were more likely to be found in the buffer forests. Rare species
are the first to become locally extinct as a result of human disturbance [47]. We found
locally rare species that occurred exclusively in both core and buffer forests. Our results
may be a product of undersampling, high degrees of patchiness, or human disturbance in
both zones. From a conservation management perspective, our study provides support for
the continued application of zonation models in the Crocker Range MAB site. Given the
similarity of the buffer and core forests, the high degree of overlap in genus composition,
and the positive numerical response of ants to increased human presence, our study lends
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support to this model as an effective way to maintain biodiversity in ant communities
at MAB sites, and it provides support for the assertion that low impact human use of
forests can coexist with sustainable models of biodiversity conservation, though caution is
warranted in overextrapolation of this result. Our study is limited in its short sampling
time and small sample size. We sampled a relatively small spatial area of the entire MAB
reserve. Ant abundance has limitations in its usefulness as a metric of community diversity,
given that ants are central-place foragers, and abundance can be skewed by nest location [2].
Nonetheless, abundance may be interpreted as a surrogate for local ant activity and provide
important information about the site’s nutrient and microclimatic conditions.

We encourage future studies in the region that continue to examine ant and leaf litter
fauna in the Crocker Range, which is an understudied taxon in the region. Ecological, life
history behavioral, and basic science studies are lacking for many of the ants known from
the site. Future studies should also consider the impacts of large-scale forest management
strategies for the MAB site and sustainable economic activities that can be created in the
buffer zone.
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