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Abstract: Climate change has a significant impact on winter wheat (Triticum aestivum L.) cultivation
due to the occurrence of various environmental stress parameters. It destabilizes wheat production
mainly through abiotic stresses (heat waves, drought, floods, frost, salinity, and nutrient deficiency)
and improved conditions for pest and disease development and infestation as biotic parameters.
The impact of these parameters can be reduced by timely and appropriate management measures
such as irrigation, fertilization, or pesticide application. However, this requires the early diagnosis
and quantification of the various stressors. Since they induce specific physiological responses in
plant cells, structures, and tissues, environmental stress parameters can be monitored by different
sensing methods, taking into account that these responses affect the signal in different regions of
the electromagnetic spectrum (EM), especially visible (VIS), near infrared (NIR), and shortwave
infrared (SWIR). This study reviews recent findings in the application of remote and proximal sensing
methods for early detection and evaluation of abiotic and biotic stress parameters in crops, with
an emphasis on winter wheat. The study first provides an overview of climate-change-induced
stress parameters in winter wheat and their physiological responses. Second, the most promising
non-invasive remote sensing methods are presented, such as airborne and satellite multispectral
(VIS and NIR) and hyperspectral imaging, as well as proximal sensing methods using VNIR-SWIR
spectroscopy. Third, data analysis methods using vegetation indices (VI), chemometrics, and various
machine learning techniques are presented, as well as the main application areas of sensor-based
analysis, namely, decision-making processes in precision agriculture.

Keywords: climate change; environmental stress; winter wheat; remote sensing; proximal sensing

1. Introduction

Wheat (Triticum aestivum, L.) is one of the most important crops and the essential source
of calories and protein in the world [1]. Global wheat production averages 750 million
tons per year [2] and was harvested from more than 218.5 million hectares in 2017. It
is the largest cultivated area in the world [3]. Its importance for human nutrition and
animal feed consumption makes it a critical factor for food security [1,2]. Food security
depends on agricultural production providing the world’s growing population with certain
food that satisfies a growing number of consumers and has a composition that supports
a healthy human population [4]. The stability of entire food systems may be threatened
by climate change due to short-term fluctuations in supply [4,5]. However, at the regional
scale, the potential impacts are less clear, but it is likely that climate change will exacerbate
food insecurity in areas currently at risk of hunger and malnutrition [5]. In addition to
climate change issues, we are currently experiencing the Russian invasion of Ukraine, a
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major wheat producer (accounting for about 12% of global wheat exports [6]). This has
implications for agriculture and the food supply chain, especially for countries dependent
on key food commodities such as wheat, sunflower oil, and corn. Food and fuel prices
have also increased, as have the prices of agricultural inputs such as fertilizer [7], which
can have immense consequences for crop yields and food security in general.

Modern scientific research and agricultural science focus on climate change in terms of
increases in global temperature and atmospheric carbon dioxide (CO2) concentrations, heat
waves, floods, storms, droughts, and other extreme weather conditions [5,8]. Therefore,
the above abiotic factors are receiving more attention in agricultural science because they
negatively affect the development, morphological, cellular, and molecular processes of
crops [8] and cause environmental stress that leads to yield losses of more than 50% on
average for most crops [9]. Therefore, due to their long life span, crops are highly vulnerable
to climate change, which makes it difficult for them to adapt to changing environmental
conditions [10]. Predicted temperature changes over the next 40 to 70 years are expected to
be in the range of 2–3 ◦C in different regions [11]. The intensity and duration of warming
trends and heat wave events are projected to become more extreme in the future [11]. The
climate changes exacerbate environmental stress in many crops, including wheat. A study
by Warrick [12] for Western Europe, the United Kingdom, and the United States on the
effects of global warming on wheat productivity shows catastrophic effects in terms of yield
loss as higher temperatures accelerate the evapotranspiration process and cause drought
stress. Recent analyses of cereal productivity in Europe confirm stagnation in yields due
to the effects of climate change compared with the 1990s [13,14]. The temperature is the
most important environmental variable affecting the growth and development, and thus
the ultimate productivity, of agricultural grain crops [13]. Not only is a general increase in
temperature expected, but short periods of extreme heat are also expected to occur more
frequently, exacerbating heat stress in plants [15]. Precipitation patterns can be predicted
with less certainty than temperature, although it is likely that the frequency of heavy
precipitation (i.e., the proportion of heavy precipitation to total precipitation) will increase
in many regions, leading to runoff and thus reducing water availability to crops [16].
At the same time, the frequency of drought stress is likely to increase in many regions.
The combination of heat and drought stress is generally more damaging than any single
stress [16,17]. Freshwater shortages are becoming a limiting factor for wheat production
in many parts of the world [18], forcing farmers to use saline water for irrigation, which,
combined with high soil salinity, can lead to salinity stress in wheat [19].

Climate change affects crop production mainly through abiotic stress factors but also
by improving conditions for the development of biotic stress factors: diseases, weeds, and
pests [20]. Changing climatic conditions are known to affect the occurrence, prevalence,
and severity of plant diseases, playing a role in 44% of new disease emergence due to
altered distribution and population size of plant pathogens [21]. The higher mean winter
temperatures and decrease in number of frost days observed in many parts of the world,
the shift in precipitation patterns, and the trend toward heavier rainfall favor infection
by various pathogen species responsible for the increase in plant diseases [21]. Given the
importance of temperature on the population dynamics of insect pests, global warming
is expected to favor the expansion of their geographic range, increase the proportion
of overwintering individuals, increase the number of generations, increase the risk of
introducing invasive pests and vector-borne plant diseases, and alter interactions with
host plants and natural enemies [20]. This leads to more crop damage and yield loss [20].
Climate change favors the emergence of weeds and the introduction of non-native species,
which has significant ecological and agronomic implications [22]. If the incidence of insect
pest, disease, and weed populations increases as a result of the climate change, this could
lead to more frequent use of plant protection products [23].

Regarding the European Green Deal [24], whose main objective is to reduce the use
of pesticides by 50% and the use of fertilizers by 20%, and the problem of non-existent
irrigation systems in most wheat-producing European countries, the only solution is digital
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and precise agriculture [16]. It is necessary to monitor the occurrence of environmental
stress in plants to detect it at an early stage so that timely and precise agricultural measures
such as fertilization, irrigation, and pest management can be implemented. Remote and
proximal sensing techniques can be used to identify hot spots in fields with stressed plants
and focus interventions on that specific area.

The objective of this review was to understand the main physiological responses of
winter wheat to environmental stress factors and to show how the combination of remote
and proximal sensing techniques can help in the detection and evaluation of stress factors
in winter wheat. Based on these techniques and data analysis using vegetation indices,
chemometrics, and various machine learning techniques, decision-making processes in
precision agriculture can be supported.

2. Physiological Response of Winter Wheat to Abiotic Stress Factors

Plants are very often exposed to stressful conditions, whether in nature or in agricul-
tural production. Stress can occur within minutes (e.g., frost or heat) or over a period of
several days, weeks (e.g., drought stress or waterlogging), or even months (e.g., nutrient
deficiency or the presence of substances in toxic concentrations (e.g., salinity stress) [25,26].
Environmental stress factors severely limit agricultural production worldwide, cause large
yield losses, and largely determine the distribution of certain plant species. Therefore,
knowledge of the physiological mechanisms that occur under the influence of stress is
crucial for agricultural production [25]. At the whole plant level, all abiotic stress factors
trigger physiological and molecular conditions that in some cases lead to similar responses.
Drought, salinity, and low-temperature stress can all be represented as physiological des-
iccation at the cellular level [26,27] (Figure 1). Wheat is subjected to a range of climatic
and seasonal variations in the different phenophases, but it appears that stress has a more
detrimental effect in the reproductive phenophases than in the vegetative [28]. The effects
of stress on reproductive phenophases have a direct impact on grain formation, size, dry
weight, and number of seeds [28]. More specifically, about 50% of all crop yield losses are
due to abiotic factors such as high temperature (20%), low temperature (7%), salinity (10%),
drought (9%), and other forms of stress (4%) [29].
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2.1. Drought Stress

Approximately 80–95% of the plant’s fresh biomass is water, which plays a criti-
cal role in different physiological processes, including plant growth, development, and
metabolism [30]. Therefore, many authors consider drought as the most important en-
vironmental stress for various plants, especially in drought-prone regions [30,31]. The
extent of damage caused by drought cannot be accurately predicted because it depends on
a number of factors, including rainfall patterns, the soil’s ability to retain moisture, and
crop water losses through evapotranspiration [32]. Drought results from an insufficient
amount of precipitation and water in the soil during the growing season [33] and is the
most limiting factor for wheat production worldwide [34]. The effects of drought stress on
final wheat yield depend on the severity and duration of the stress, and the response varies
depending on the phenophase of the crop [35,36]. Winter wheat crops are generally very
resilient to mild and moderate drought stress prior jointing phenophase, and many adverse
effects can be reversed after rewatering [37,38]. Furthermore, drought stress just before
anthesis and during the grain filling phenophases is causing reduced number and weight of
grains [39,40]. In addition, drought stress affected leaf area expansion, dry matter distribu-
tion, photosynthetic rate, and root growth [36]. Many plant functions and growth variables
are affected by drought stress [41]. Under such conditions, CO2 uptake is reduced due to
stomatal closure, which affects respiration, photosynthesis, and overall plant development.
As a result, the production of cell components such as carbohydrates, nucleic acids, lipids,
and proteins is reduced [42]. Severe drought stress in wheat crops also significantly reduces
the chlorophyll content in leaves and consequently leaf photosynthesis [39]. Drought stress
can reduce the water potential of wheat leaves due to solute accumulation, resulting in
a decrease in turgor [43,44]. The determination of leaf water potential is an efficient and
reliable method to measure the response of plants to water deficits, which also affect various
gas exchange traits such as stomatal conductance, net photosynthetic and transpiration
rates, etc. Stomatal conductance and transpiration rates generally decrease when the water
potential is reduced [42]. Drought-tolerant wheat genotypes maintain high turgor potential
and relative water content, and the maintenance of leaf turgor is an important adaptive
mechanism that plays an important role in regulating stomatal and photosynthetic activities
under drought stress conditions [42,45]. Drought stress significantly impairs the efficiency
of nutrient uptake and utilization by plants. Many important nutrients such as nitrogen,
magnesium, calcium, etc. are taken up by roots along with water; drought restricts the
movement of these nutrients by diffusion and mass, resulting in delayed plant growth [46].
Some of the adaptive mechanisms to water deficit in wheat are morphological in nature,
such as avoidance of water deficit through deep rooting, reducing leaf area, early flowering,
and alternation of leaf waxiness and trichome density [47,48]. These adaptive mechanisms
can reduce water loss and protect against drought stress over longer periods [47,48].

2.2. Heat Stress

Drought and heat are two related but different constraints to grain production [49].
Temperatures that exceed the limit of adaptability result in heat stress, which significantly
affects metabolism, plant viability, and possibly the ability of plants to resist attack by
pathogens [50]. Temperature is an important factor affecting all phenophases of wheat
plants, such as germination, tillering, stem elongation, booting, anthesis, and ripening [51].
Extreme heat has many influences, such as the typical acceleration of plant development
at higher temperatures and the direct physiological effects of high temperatures on plant
growth, reproduction, and final yield [36]. Considering global warming, Asseng et al. [52]
estimated that global wheat production decreases by 6% for every 1 ◦C increase in temper-
ature. Unusually high winter temperatures cause rapid plant growth and accelerate the
growth rate [53]. Heat stress during the vegetative phenophases in winter wheat sown in
November resulted in an earlier onset of stem elongation and a shortened tillering time [54].
During reproductive phenophases, the optimum temperature for wheat growth and de-
velopment is 15–20 ◦C [55], and wheat is more sensitive during this period than during
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vegetative phenophases [56,57]. Heat stress during sensitive phenophases, such as anthesis,
where heat has the most negative consequences and leads to the loss of pollen viability,
causes significant yield losses due to the disturbance of the reproductive physiology [53,57].
Frequent short episodes of high-temperature stress can negatively affect seed number [58].
During grain filling (ripening), extreme heat can accelerate leaf senescence and affect final
grain weight by shortening grain filling duration [50,59,60]. Hot periods during repro-
ductive phenophases are often dry, so plants often suffer from heat and drought stress
simultaneously [36,61], so it is important to consider both stressors together because their
combined effect is greater than when considered separately [27]. Heat stress leads to a
change in the water balance of plants [62]. In general, water loss under heat stress is higher
during the day, mainly due to increased transpiration rate, which ultimately affects essential
physiological processes in plants [32]. It also reduces the number, mass, and extension of
roots, which limits the supply of water and nutrients to aboveground plant parts [63]. The
relative water content and the amount of chlorophyll in leaves decrease rapidly, and the
green parts turn yellow and reach harvest maturity much earlier [50,64]. It is well known
that photosynthesis is an extremely heat-sensitive process [65]. It can be completely inhib-
ited by high temperature, and a decrease in photosynthesis may be due to the inhibition of
the activity of the photosystem II (PSII), which is the most temperature-unstable element of
the photosynthetic electron transport chain [65,66]. In addition, high temperature damages
the processes responsible for light collection and light energy conversion and increases the
rate of photorespiration [50]. Kumar et al. [67] also found negative effects on soil microbial
activity as a result of heat stress.

2.3. Salinity Stress

Among abiotic stresses, salinity stress has emerged as one of the most important
threats to the sustainability of wheat production, especially in arid and semiarid regions of
the world [68]. Globally, more than 800 million hectares of agricultural land are affected
by salinity (including saline and sodic soils), representing more than 6% of the world’s
total land area [69]. Salinity stress produces many symptoms similar to those of drought
stress [70]. The occurrence of salt in the soil reduces the plant’s ability to absorb water,
resulting in a reduction in growth rate. This is called the osmotic effect or water deficit due
to salinity [70,71]. When excessive amounts of salt enter the plant through the transpiration
stream, the cells of the transpiring leaves are damaged, which can lead to a further growth
reduction, referred to as the salt-specific or ion-excessive effect of salt [71]. Including the
effect of water deficit, salinity stress affects all major developmental processes of winter
wheat such as germination, growth rates, photosynthesis and pigments, nutrient deficiency,
and oxidative stress [72]. During seed germination, the plant responds most strongly to soil
salinity by either exerting osmotic stress that impedes water uptake or causing ion toxicity.
These consequences ultimately reduce the utilization of seed reserves [73]. It accelerates
all phenophases of wheat; reduces the leaf number, leaf expansion rate, root–shoot ratio,
number of fertile tillers, biomass production, spikelet number, and grain weight; and
negatively affects the grain yield [74–78]. For example, yield losses of up to 45% have been
observed in wheat grown under saline conditions [79]. The spatial variation in salinity
arises from interactions between different edaphic factors (permeability, pH response, bulk
density, geohydrology, topography, and groundwater depth and their salinity) [68,80].
Geographic factors, such as elevation, slope, and aspect, and agronomic practices, such
as fertilization, irrigation, drainage, crop rotation, and tillage type, have immense effects
on soil salinity [80]. Climatic parameters and the effects of global warming also affect the
increase in soil salinity [68,80].

2.4. Nutrient Deficiency Stress

Although not directly related to climate change and environmental factors, nutrient
deficiency is one of the most common stressors in wheat production. As sessile organisms,
higher plants must cope with a spatially and temporally constantly fluctuating availability
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of soil nutrients [81]. The supply of all macronutrients (N, P, S, K, Mg, and Ca) can influence
the distribution of dry matter between tillers and roots of higher plants.

Nitrogen (N) fertilization is critical for wheat plant growth and development [82].
Nitrogen is a limiting factor for plant growth, as evidenced by lower plant productivity
following N reduction [83]. Plants quickly perceive the stress of nitrogen deficiency and
respond with a variety of physiological and metabolic processes. These include the degra-
dation of proteins, the reduction of the corresponding enzyme activities, the accumulation
of carbohydrates, especially starch, the initiation of oxidative stress through the formation
of H2O2, and the causation of lipid peroxidation [84]. Among these events, the reduction of
the photosynthetic capacity is one of the most important damages caused by N deficiency,
which inhibits plant growth and development [84]. Under low-nitrogen conditions, the
photosynthetic rate and the content of chlorophyll a and other pigments decreased after
plants suffered from N deficiency [85]. The chlorophyll content of wheat leaves is closely
related to leaf nitrogen since more than half of the nitrogen in a leaf is accounted for by the
photosynthetic machinery, and it is already known that leaf chlorophyll content increases
with nitrogen supply and is low under nitrogen deficiency [85–87]. Stem elongation is the
most rapid stage of vegetative growth, during which the plant establishes a structure for
the production of carbohydrates to fill the grain—the flag leaf accounts for about 75% of
the effective leaf area contributing to grain filling [88]. This stage is also very sensitive
to nitrogen deficiency and therefore provides a good basis for distinguishing plants with
different nitrogen statuses using hyperspectral sensing in the field [88,89].

Potassium (K+) is a highly mobile element in the plant and is translocated from the
older to the younger tissue. In the case of potassium deficiency, symptoms usually occur
first on the lower leaves of the plant and progress toward the top as the severity of the
deficiency increases [90]. Potassium deficiency in wheat causes discoloration of the leaf
tips and margins, which turn yellow and brown during the rapid growth phase of the
shoot [91]. As with other cereals, potassium deficiency in wheat often results in weakening
of the straw, which can lead to lodging [91].

Phosphorus (P2O5) is present in the wheat plant in lower concentrations than nitrogen
and potassium. However, as a component of adenosine di- (ADP) and tri-phosphates
(ATP), phosphorus directly affects almost all energy-consuming biological processes in the
plant, such as photosynthesis, respiration, synthesis of cellular components, and membrane
transport [92]. In younger plants, phosphorus deficiency causes leaves and stems to turn
blue-green and take on a strong purple color, while older leaves decline early. In the
reproductive phenophases, the leaves turn purple bronze tones, and ears do not develop
properly [91].

2.5. Frost Stress

Cold temperatures or frost cause tremendous losses in agriculture, especially in cereal
crops in subtropical and temperate regions [93]. Wheat can be damaged by frost at all
phenophases. Sensitivity to frost, however, increases as the crop develops. In contrast, the
risk of frost damage decreases as spring advances [94,95], so it is important not to seed
winter wheat too early or use rapidly developing varieties that carry a high risk of frost
damage [95]. A short interval of freezing air has a devastating effect on the vegetative and
reproductive growth of plants [96]. The freezing environment disrupts water uptake by the
roots, and a lack of water in the stem leads to drought stress [97]. This drought stress due
to the disturbed water ratio also reduces the root ion absorption rate and nutrient transport
to other parts of the plant and ultimately leads to plant underdevelopment [40,98]. Wheat
is reported to be the most susceptible to frost damage when the spike is emerged as ice
crystals can form directly on the reproductive tissue when the spike is no longer protected
by the stem and leaf sheath [95]. In addition, frost causes flower abortion, infertility,
fertilization breakdown, and impaired seed filling, resulting in low grain set and ultimately
low grain yield [93]. In the study by Fuller et al. [99], two wheat cultivars were placed in a
freezing chamber for 2 h with various frost stress treatments. As a result, severe damage to
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flag leaves and spikes was observed, increasing with decreasing temperature. Partial to
complete loss of grain yield was also observed in the wheat plants studied [99].

2.6. Waterlogging Stress

Inadequate soil aeration combined with excessive moisture usually has a negative
effect on plant growth and leads to waterlogging. This phenomenon is becoming an
obvious obstacle to agricultural production due to the increasing frequency of extremely
heavy rainfall [100]. In addition to heavy rainfall, soil erosion and poor soil drainage can
also be the cause. Waterlogging causes a number of physical, chemical, and biological
changes in the soil that ultimately inhibit the growth of plants that cannot tolerate these
conditions [101]. Thus, plants growing in waterlogged soils are exposed to unfavorable
growth and negative development conditions, such as hypoxia (O2 deficiency) or anoxia (O2
deprivation), disruption of aerobic respiration, energy deficiency, and oxidative stress [102].
In waterlogged soils, CO2, ethylene, manganese, and iron can accumulate to concentrations
that can be lethal to plants [103]. The roots face the effects of waterlogging first, while
the upper parts of the plant suffer. Many authors concluded decline of seminal roots in
wheat [104]. Conversely, waterlogging stimulates aerial root development in wheat [101].
Poor soil aeration leads to chlorosis and early leaf senescence and also reduces grain
weight and yield [103]. The extent of stress to wheat in waterlogged soils depends on the
phenophase of the crop, duration of waterlogging, soil type, and growing conditions [103].
Wheat plants flooded with water for six days resulted in 39% and 47% reductions in grain
yield on alkaline and sodic soils, respectively [105].

3. Physiological Response of Winter Wheat to Biotic Stress Factors

Biotic stress is an unfavorable condition in which the plant cannot maintain its nor-
mal growth due to interaction with harmful organisms such as plant pathogens (fungi,
bacteria, and viruses), herbivorous insects, and undesirable plant species or weeds [106].
Economically, insects, weeds, and diseases regularly affect crop quality and yield and
reduce agricultural profitability [107]. The consequences of biotic stress are poorly under-
stood because physiological effects vary widely [108] (Figure 2). Pathogen inoculation and
multiplication, herbivore detection and defoliation, and competition from weed species are
highly variable and interact with the abiotic stress factors mentioned earlier [108]. Biotic
factors cause environmental stress in plants, such as a reduction in net photosynthesis,
which can be caused by insect feeding, foliar pathogens, or shading by weeds [107]. The
occurrence and harmfulness of insect pests, weeds, and pathogens can be affected by
changes in climate [20]. For example, rising temperatures are known to promote the spread
of pathogens [109,110]. Climate change impacts may affect population dynamics of insect
pests, with temperature increases favoring higher metabolic and developmental rates,
reproduction, and survival [20]. Weeds are becoming more common in some cropping
systems [22] and are likely to have greater resilience and better adaptability to changes
in CO2 concentration and rising temperatures due to their diverse gene pool and higher
physiological plasticity when competing with crops [111]. Major crops growing in our
future fields are therefore likely to be exposed to a wider range and number of abiotic and
biotic conditions, as well as their combination. For example, both cold and heat stress have
been found to reduce plant resistance to biotic stresses [112].
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3.1. Weeds

Weeds directly affect wheat productivity, including the cost of labor, machinery, herbi-
cides, and other inputs. They also indirectly affect wheat production by competing with
crops for resources, providing shelter for pests and pathogens, affecting water management,
reducing grain yield and quality, and increasing processing costs [113,114]. Weeds not only
reduce yield but also complicate harvesting operations [115]. Most importantly, weeds com-
pete with crops for resources such as moisture, nutrients, light, and space, which puts crops
at a disadvantage in obtaining these resources and can cause abiotic stress due to the lack of
abiotic elements. In addition, weeds can grow much taller than many wheat varieties and
partially shade wheat plants, causing them to droop due to their weak stems, which can
result in severe yield losses [113–115]. Yield losses can range from 10% to 80%, depending
on the occurrence of the weed and the phenophase in which the weed occurs [115].

3.2. Insect Pests

During the growing season, winter wheat crops are exposed to pests that can signifi-
cantly reduce yields. According to Oerke [116], losses in total small grain production due
to pest infestations are about 9% worldwide. Cereal leaf beetles, aphids, and sunn pest are
the most important herbivores in European wheat production [117].

Cereal leaf beetles (Oulema melanopus, L., and Oulema lichenis, Voet.) are the main
pests of winter wheat. They feed by chewing leaves, resulting in peeling of the epidermis
and loss of tissue. The typical symptoms of both adults and larvae on the host plant are
thin and long lines where the larvae peel away the epidermis of the leaf, while the adults
chew completely through the leaf, resulting in narrow slits [117,118]. Under uncontrolled
circumstances, this damage can worsen in several cases, although most photosynthetic
surfaces can be affected [117,118]. In wheat, the reduction in grain yield per plant by one
larva of the cereal leaf beetle was 9%, and the reduction by two larvae was 18% [119].
In their study, Lukasz et al. [120] indicated that tissue loss from O. melanopus chewing
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manifests itself in the decline of chlorophyll content, and the extent of photosynthetic tissue
loss can be so pronounced that photosynthetic efficiency decreases.

While chewing insects cause extensive damage to plant tissue, aphids feed on the
phloem sap of host plants by penetrating their spines and damage crops by depriving
them of photoassimilates and transmitting numerous plant viruses [121]. The most wheat-
damaging aphid species are the Russian wheat aphid (Diuraphis noxia, Mordvilko), the
grain aphid (Sitobion avenae, Fabricius), and the bird cherry-oat aphid (Rhopalosiphum padi,
L.) [122]. The persistent interactions of aphid stylet with plant cells result in plant responses
to aphid infestations [121,123,124]. Probing by aphids can be affected by changes in the
chemical content of the sieve sap or by physiological changes induced by the aphid saliva,
which can trigger plant defense signals [121], as well as many of the stress symptoms,
whose most characteristic symptom is white or purple longitudinal stripes on leaves and
sometimes on the stem [125,126]. Leaf rolling can also be caused by feeding damage by
aphids. For example, D. noxia feeds mainly on the upper leaf surface and causes leaf
rolling in cereals resulting in a drastic reduction in chlorophyll content and decreased
photosynthetic capacity, which combined with leaf curling resulted in a significant loss of
effective leaf area in susceptible wheat plants [127]. In response to herbivore attacks, plants
defend themselves with a range of defense strategies that include chemical and mechanical
defense mechanisms, including the production of plant secondary metabolites [128,129]
such as insecticidal phloem components, including toxic or growth-inhibiting alkaloids,
proteins, and phenolics [121,130].

The sunn pest belongs to the genera Eurygaster and Aelia [131]. When overwinter-
ing adults invade wheat fields in spring, they damage wheat plants in the vegetative
phenophases by sucking on the leaves and stems. The nymphs and the new generation of
adult pests damage the spikes and grains of wheat plants in the reproductive phenophases.
By sucking on the grains, the adults and the nymphs insert proteolytic and amylolytic
enzymes that cause the destruction of gluten, which affects the favorable baking properties
of the flour [132,133]. The infestation of as little as 2-3% of the grain may render the entire
batch of grain unsuitable for baking due to poor flour quality [132,133]. It also causes lower
starch content and grain weight [134,135], resulting in lower yield and seed viability [136].

Wheat crops are attacked by many pests, but not always with the same intensity.
The decision to apply chemical pest control measures is based on data on the infestation
intensity [117]. Integrated pest management is based on predicting the occurrence and
spread of pests and involves the use of insecticides only when there are no other options to
reduce the number of pests [137,138]. Many herbivorous pests are distributed in patches
across fields, and because of this spatial heterogeneity, the appropriate scale of detection
must be applied to determine the distribution pattern of pests within the field [139]. All of
the above pests occur in heterogeneous areas of the field, which is important for monitoring
and precise pest management.

3.3. Diseases

Pathogenic fungi, along with viruses and bacteria, represent a significant obstacle to
wheat production [140]. An outbreak of these diseases can spread rapidly under favorable
environmental conditions and result in significant yield and quality losses. Therefore, the
development of technologies to accurately monitor and identify disease incidence is ex-
tremely important for agricultural management [141]. The most important diseases in win-
ter wheat production are blotch diseases (Septoria sp.), powdery mildew (Blumeria graminis
f. sp. tritici, Marchal), rust species (Puccinia sp.), and Fusarium head blight disease [140,142].

Septoria diseases of wheat include two important diseases, namely, Septoria nodorum,
Berk., and Septoria tritici, Roberge in Desmaz. They are currently two of the most devas-
tating foliar diseases of wheat worldwide and especially in northwestern Europe, causing
yield losses every year [143,144]. The pathogen causes a decrease in chlorophyll content in
leaf tissue. The destruction of the chloroplasts and shrinkage of the assimilative surface of
the leaf lead to a decrease in photosynthetic activity and respiratory activity [144]. After
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a latent period, the pathogen enters the necrotrophic phase, and infected leaves become
chlorotic and change to necrotic, irregularly shaped blotches in which asexual, fruiting
sporulation forms (pycnidia) develop [145,146]. Yield losses occur mainly due to a decrease
in grain content within individual spikes and a decrease in grain weight in general [147].

Powdery mildew is a well-known wheat disease that occurs worldwide [148]. Yield
losses can be as high as 40%, and early infection can lead to seedling death. The character-
istic symptoms of the disease are the appearance of white cotton-wool-like mycelia with
spores that sometimes cover almost the entire leaf surface. The affected plants look weak
and form shriveled grains [142]. Infection with wheat powdery mildew at the seedling
stage can affect the growth and development of wheat plants and lead to a decline in grain
filling and grain weight at the adult stage [149].

Rust diseases (Puccinia sp.) are the most widespread diseases in the world [148]. It is
estimated that annual losses due to wheat rust pathogens are USD 4.3 to USD 5.0 billion
worldwide [140]. There are three wheat rust diseases: stem rust (P. graminis subsp. graminis
Pers.), stripe rust (P. striiformis, Westend.), and leaf rust (P. triticina, Eriks.) [150]. Symptoms
of infection with stem rust typically appear as masses of red uredinospores on leaves,
stems, glumes, and awns of susceptible cereals. Yield losses are associated with reduced
grain size and stem lodging [142]. P. striiformis causes necrotic stripes or elongated spots
that infect the green tissue of wheat plants, and chlorosis or necrosis occurs to varying
degrees depending on plant resistance levels and temperature. The pathogen deprives the
host plants of water and nutrients, which weakens the plants [151]. Leaf rust occurs more
regularly and in more regions of the world than stem or stripe rust of wheat. Yield losses in
wheat due to P. triticina infection are usually the result of a reduced number of kernels per
head and lower kernel weight, preceded by foliar symptoms manifested by small uredinia
surrounded by chlorosis or necrosis [152].

Fusarium head blight (known as scab) is an economically destructive wheat disease
caused by Fusarium graminearum, Schwabe [153]. These fungal pathogens produce sev-
eral mycotoxins, particularly deoxynivalenol (DON) and zearalenone (ZEA), which are
poisonous to humans and animals [154]. Symptoms are detected at the time of spike
emergence. The pathogen infects individual spikelets or the entire spike, which turns pale
and almost white, and under moist conditions, pink spore masses are seen on or between
spikelets. In early infections, the grains look pink and shriveled, while at harvest, black,
hard structures (perithecia) are often seen on the infected spikes [142].

To determine the occurrence and spread of plant diseases and to assess the damage
caused in a field, it is important to use crop monitoring programs to help with crop
protection decision making to minimize crop losses. They are especially important for crops
with large geographic distributions or for diseases that can quickly cause large economic
losses [155].

4. Application of Remote and Proximal Sensing Techniques for Environmental Stress
Detection in Winter Wheat

Increasing understanding of how plants respond to abiotic and biotic stresses has
led to the development of innovative sensing technologies that can estimate plant vari-
ables. Remote sensing technology allows for the non-contact acquisition of information
and has been widely used in geoscience and engineering, shedding new light on plant
phenotyping [156–158]. Remote sensing of vegetation is a non-destructive method suitable
for rapid and accurate assessment of a plant’s physiological status and objective evaluation
of the plant’s response to natural and anthropogenic environmental factors [159]. There
are several types of remote sensing systems used in agriculture. Most of them are based
on the information provided by visible and near-infrared radiation (VIS-NIR) reflected (or
transmitted) from the plant [160]. The radiation reflected from the object (plant) is one of
the most important properties in the field of remote sensing. It is measured as a function
of wavelength and referred to as the spectral reflectance [161]. Therefore, the most useful
wavelengths for remote sensing of vegetation changes include the visible (VIS; 400–700 nm),
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near-infrared (NIR; 700–1300 nm), and shortwave infrared (SWIR; 1300–2500 nm) regions
of the electromagnetic spectrum [162]. Because solar energy is the largest component in
the VIS, NIR, and SWIR bands, sensors using these bands can typically acquire data with a
relatively high signal-to-noise ratio [162,163]. As a current and cost-effective technology,
VIS-NIR-SWIR sensors are available on a variety of remote sensing platforms, including
ground-based, airborne, and satellite-based systems [163]. Crop data that are sensed or col-
lected “near” the crop are referred to as proximal sensing [160]. Proximal (remote) sensing
methods include several approaches, the first of which is VIS-NIR-SWIR spectroradiometry
(i.e., multispectral or hyperspectral sensor) (Figure 3), the second is infrared thermometry,
and the third is RGB imaging cameras [160]. The quality of proximal and remote sensing
data lies in their temporal, spatial, spectral, and radiometric resolution, which accounts for
their advantages for plant phenotyping [156,158]. Since near and remote sensors differ in
their sensitivities to different wavelengths and sizes of objects that can be detected, these
differences are referred to as the spectral and spatial resolution. The spatial resolution
defines the size of the pixels that cover the Earth’s surface and refers to the dimensions of
the smallest object that can be detected on the ground [162]. The spectral resolution is the
sensitivity of the sensor to different electromagnetic wavelengths of the spectrum, i.e., the
number and width of wavelengths detected by the sensor (VIS-NIR-SWIR), distinguish-
ing between multispectral, hyperspectral, and RGB sensors [164]. In recent decades, the
number of studies on plant spectral reflectance has increased significantly as multispectral
and hyperspectral cameras and field spectroradiometers have become increasingly capable
of accurately measuring the entire electromagnetic spectrum (350–2500 nm), from which
information for a range of plant traits can be obtained [165–167]. Multispectral and hyper-
spectral sensors measure the spectral reflectance of plants and enable the calculation of
vegetation indices (VIs) as indicators of plant stress and yield predictions [168]. The VIs can
be used for site-specific management in precision agriculture [169] and in in situ screening
for a broad array of plant breeding objectives such as yield potential, adaptability to abiotic
and biotic stresses, and plant quality [160].
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4.1. Detection and Evaluation of Drought Stress in Winter Wheat

In wheat research, particular attention has been paid to drought stress because of its
extremely negative effects on the growth, development, and final grain yield [170,171].
In addition to irrigation management, a rapid assessment of the water content in wheat
plants would allow effective screening and identification of resistant cultivars in breeding
programs [172]. Measuring the spectral characteristics of wheat plants represents a simple,
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rapid, practical, and economical technique for assessing various phenotyping criteria
related to the drought resistance of plants, and high-throughput phenotyping data can be
used for genomic selection to assess optimal wheat varieties under drought stress [158,173].
Several spectral ranges are considered useful for assessing drought stress. Based on the
vegetation indices calculated from the ratios and differences between the reflectances of
plant material in VIS, NIR, and SWIR, various agronomic plant traits related to drought can
be estimated [174]. There is increasing evidence that the water content can be estimated
remotely by using water absorption bands in the NIR to SWIR where there are strong water-
absorbing features (970 nm, 1200 nm, 1450 nm, 1930 nm, and 2500 nm) [175]. Numerous
spectral indices have been proposed to remotely estimate the water content of plant tissues
to provide a measure of the water deficit stress [176,177], mostly based on these spectral
bands [178]. To improve the extraction of the spectral information on water metrics in
vegetation and soil, scientists have proposed several hyperspectral vegetation indices,
including the water index (WI), normalized difference vegetation index (NDVI), simple ratio
(SR), photochemical reflectance index (PRI), normalized difference water index (NDWI),
water band index (WBI), brown pigment index (BPI), normalized difference infrared index
(NDII), simple ratio water index (SRWI), moisture stress index (MSI), spectral ratio index
in the NIR shoulder region (NSRI), soil adjusted index (SAVI), optimized soil adjusted
vegetation index (OSAVI), deep water index (DWI), and red edge normalized difference
vegetation index (Red edge NDVI) [18,60,179–185]. Besides the VIS-NIR-SWIR sensors,
the most advanced proximal and remote sensing techniques to estimate plant water stress
are thermal infrared (TIR) and solar-induced fluorescence (SIF) [186]. Many authors have
related spectral characteristics of vegetation (along with derived VIs) and physiological
parameters to assess the response to a water deficit in crops, including relative water
content (RWC), canopy water content (CWC), leaf water content (LWC), and soil water
content (SWC) [175,179,187]. The soil water content (SWC) or soil moisture (SM) is an
important indicator of the photosynthetic rate and growth status of plants. Generally,
the level of drought stress in winter wheat is evaluated by the soil water status [188,189].
Conventional methods for measuring the SWC rely on site-specific surveys, but these
are often laborious and slow [185]. Some related parameters, such as red edge (the area
where vegetation reflectance changes rapidly from the red component in VIS to the NIR
region of EM) and spectral VIs have been used to determine the soil moisture of winter
wheat [180,190]. In their study, Ren et al. [185] concluded that the spectral index based on
the optimized index NSRI has good abilities to determine the SWC in the jointing, anthesis,
and grain filling phenophases of winter wheat. The RWC can be determined with high
accuracy by spectral remote sensing systems that analyze spectral data and provide simple
and useful information [187,191]. Tian et al. [191] measured wheat leaves radiometrically to
spectrally characterize water deficiency symptoms. The reflectance spectra of wheat leaves
indicated that the water content dominated in the range of 1650–1850 nm, from which they
concluded that with a decrease in the RWC of wheat leaves, the spectral absorption features
at 1650–1850 nm were gradually more expressed. Liu et al. [192] found significant positive
correlation coefficients between the plant water content (PWC) and spectral reflectance in
the range of 740–930 nm at different growth stages of winter wheat, suggesting that spectral
reflectance increases in the NIR and red edge region (680–740 nm) due to the effects of the
PWC on the internal structure of the leaf. Peng et al. [190] investigated the relationship
between the CWC and spectral reflectance under different water treatments during winter
wheat vegetation and concluded that the CWC of winter wheat generally decreased as the
growth and development progressed. Under the various water treatments in this study,
CWC increased with increasing irrigation volume. In the VIS range, canopy reflectance
decreased with irrigation volume. In contrast, the canopy reflectance in the NIR range
increased with increasing irrigation amount. Using different VI, Sun et al. [179] accurately
estimated the water status of winter wheat expressed as water metrics (LWC, PWC, and
CWC) and observed a significant correlation between VIs (WI, WBI, MSI, NDWI, NDII,
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OSAVI, PRI, and Red Edge NDVI) and the water metrics, with Red Edge NDVI having the
highest correlation coefficients with them.

Based on numerous studies of water stress in plants and applications of remote sensing,
there are a large number of accurate, reproducible methods that can be applied under a
wide range of climatic, soil, and growing conditions. Future improvements in water use
efficiency, and thus high yields in cereal crops, are needed to adapt field practices and
irrigation schedules [179,187].

4.2. Detection and Evaluation of Heat Stress in Winter Wheat

Early detection of heat stress could help mitigate its detrimental effects on grain
production, which can be assessed using remote sensing technology to help markets and
governments prepare for grain shortages and organize insurance and recovery manage-
ment [193–196]. While the use of remote and proximal sensing to detect drought has
attracted considerable scientific interest, heat stress in cereals has not been nearly as well
studied. Many studies have shown that photosynthetic parameters (i.e., net photosyn-
thetic rate (Pn), maximum and potential efficiency of PSII (Fv/Fm and Fv/Fo), stomatal
conductance (Gs), and leaf chlorophyll content (LCC)) can serve as indicators of heat
stress conditions due to their effects on photosynthetic decline [32,36,197,198]. Because
VIs provide the ability to non-destructively observe photosynthetic parameters, they can
potentially be used as estimators of heat stress in plants [195]. Cao et al. [195] selected po-
tential VIs for heat stress detection that were most strongly associated with photosynthetic
parameters. The PRI was the most sensitive VI for heat stress among the 17 spectral indices
mentioned, and this sensitivity was due to the relationship between PRI and photosynthetic
activity, with PRI showing a positive correlation with the chlorophyll/carotenoid ratio,
which normally decreases under heat stress in plants [196,199]. With respect to the LCC,
chlorophyll index-red edge (CI red edge) had the highest coefficient of determination (R2),
and the normalized difference red edge index (NDRE) had the highest R2 with respect to
Pn; these two indices result from the fact that they are closely related to chlorophyll content
in plants. These results are consistent with those of Ryu et al. [200], who concluded that the
PRI is the most useful vegetation index under physiological stress caused by heat stress in
paddy rice. Unlike other VIs, the PRI decreased under the extreme heat stress even before
rice entered the heading stage. Considering that drought stress and heat stress usually
occur simultaneously in winter wheat, it is necessary to distinguish the symptoms of these
two types of stress and thus differentiate the spectral characteristics depending on the type
of stress.

4.3. Detection and Evaluation of Salinity Stress in Winter Wheat

Remote detection of salinity stress can provide a robust approach for monitoring crop
condition, evaluating the economic impact of using poor-quality water, and optimizing
crop productivity [201]. Many studies have derived soil salinity directly from the spectra
of salinized soil surfaces, but this method is not an option for a salinized soil surface with
vegetation cover [202–205]. Identifying and developing salt-tolerant genotypes is one of
the promising methods to improve the productivity of salt-stressed soils, and hyperspectral
proximal and remote sensing could be a reliable and rapid method [206]. In their study,
Elmetwalli et al. [201] compared the spectral responses of wheat and corn canopies grown
under different salinity and drought stress conditions and showed how the spectral curves
differed with respect to the stress parameters. Using PCA and PLDA, they found that it was
possible to distinguish between low and high levels of salinity- and moisture-related stress
in corn but not in wheat. Remotely sensed VIs of crops are also promising indicators of the
soil salinity [207]. In their study, Zhu et al. [207] measured the hyperspectral reflectance
of winter wheat during the grain filling phenophases. The VIs derived from the collected
hyperspectral data of winter wheat were compared with the salinity at four soil depths. The
results showed that the VIs, which include blue, red edge, and near-infrared wavebands,
best estimate the soil salinity. The study shows that the spectral reflectances of winter
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wheat illustrate well the physiological changes of plants under salt stress and that it is
possible to detect the soil salinity from the spectral response of plants.

4.4. Detection and Evaluation of Nutrient Deficiency Stress in Winter Wheat

Intensive cultivation and unbalanced fertilization practices have left soils depleted of
macronutrients such as N, P, and K. Deficiencies in these essential elements can drastically
affect the growth, development, and yield of wheat [208]. By the time the symptoms of
nutrient deficiency become clearly visible in the plant, a number of biophysical processes
have already been disrupted by nutrient deficiency stress, so it is critical to detect stress
early [209]. Traditional methods for monitoring nutrients in plants require sampling and
expensive chemical laboratory analysis, which is time consuming and sometimes economi-
cally and environmentally unacceptable [210]. Ground-, air-, and satellite-based remote
sensing systems have been successfully used to determine plant nutrient requirements [162].
The principle of remote sensing to determine nutrient stress in plants is to change the pho-
tosynthetic activity and cell structure, stretch, and overtones of chemical bonds such as the
N–H bond, which alters the spectral reflectance of plants [210,211]. However, most studies
monitoring nutrient deficiencies are related to N deficiency. N is a critical element required
for biomass formation in agricultural crops. The proportion of chlorophyll in the leaf and
the corresponding N content are indicators of the N requirement of wheat plants [89]. Since
the leaf N concentration is related to the chlorophyll amount, many remote sensing studies
have focused on estimating the chlorophyll concentration in leaves to estimate the N status
in an indirect way, which is a simpler method than the classical laboratory analyses to
estimate the N content in the plant [212]. A good correlation between canopy reflectance
and N accumulation in leaves was found by Zhu et al. [213] in a study on rice and wheat,
with the best results obtained when a ratio of reflectance at 810 nm to reflectance at 660 nm
and a ratio of reflectance at 870 nm to reflectance at 660 nm were used. Similar results
were presented by Jia et al. [214], who showed that reflectance at NIR, red, and green wave-
lengths and vegetation indices NDVI, GNDVI (Green normalized difference vegetation
index), RVI (Ratio vegetation index), and OSAVI were well correlated with the N content
of wheat plants using high-resolution satellite imagery. N deficiency usually leads to a
significant increase in the reflectance of the red component in the VIS region and a decrease
in the NIR region, so this change in spectral reflectance is considered key to detecting
insufficient N supply to the plant [89,215]. Li et al. [216] demonstrated a positive linear
relationship between index RVI and N uptake in winter wheat using a portable radiometer
capable of measuring in the 325–1075 nm range. Many authors have identified significant
wavelengths within the electromagnetic spectrum (515, 520, 525, 550, 575, 743, 1116, 2173,
and 2359 nm) that correlate with nitrogen content in plants [217]. Some studies have shown
a correlation between indices based on the red edge spectral region and nitrogen content in
plants. The DCNI (Double Peak Canopy Nitrogen Index) is an example of an index based
on the red edge using wavelengths of 720, 700, and 670 nm [218]. In addition to the DCNI
index, the following indices are most commonly used in the literature for this purpose:
NDVI, CCI (Chlorophyl content index), GNDVI, SAVI, OSAVI, and RVI [89,219–221]. Since
potassium (K) and phosphorus (P), along with nitrogen (N), are of paramount importance
to crops, monitoring their status through remote sensing systems would be prominent.
Previous studies have shown that hyperspectral remote sensing can be used to accurately
estimate K content in crops, which could be used for optimal K fertilization [91,210]. The
same authors indicated that the 1450 nm wavelength in the SWIR range was significantly
correlated with the K content in wheat leaves. Pimstein et al. [91] proposed a spectral index
based on the ratio 1645–1715, which can be used to determine the K concentration in wheat
plants. Another study by Yang et al. [222], which examined the relationships between spec-
tral reflectance, determined spectroradiometrically, and K content in wheat, found a strong
correlation with the leaf K content for wavelengths in the 1900–2300 nm range. According
to previous studies by Pimstein et al. [91] and Mahajan et al. [210], a strong correlation
between the P concentration and spectral reflectance was found in wheat at 1400–1500 and
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1900–2100 nm and 1650–1710 nm [91,210], so these regions of the EM spectrum could be a
potential area for developing VIs for P monitoring. In addition, Osborne et al. [223] found
that linear models that included 730 and 930 nm were able to predict the P concentration at
the V6 growth stage of corn, while for later stages, prediction of the P content was possible
in the blue region of the spectrum (440 and 445 nm), implying that very specific models
are needed for different stages, depending on the different effects of P concentrations on
the plant.

4.5. Detection and Evaluation of Frost Stress in Winter Wheat

Frost damage is a common disaster for winter wheat, and monitoring frost damage
is of great economic importance [224]. The advantages of remote sensing have led to a
number of studies on monitoring the effects of spring frost on crops. One of the first reports
on the remote sensing of frost in wheat was by Jurgens [225], who proposed the modified
normalized difference vegetation index (mNDVI) as a qualitative spectral indicator of
frost damage based on the fact that frost-damaged plants reflect radiation differently from
dehydrated plants, possibly due to damage in the cell structure. Gu et al. [226] found
that the effects of spring frost on plant development could be seen in the reduced NDVI
values after the frost event. The mechanism behind the frost-induced decrease in VI values
has been described in several studies [224,226–228]. During freezing and after thawing,
pigment degradation is greater than composition, resulting in a significant decrease in leaf
chlorophyll content [229]. It is reported that the reflectance in the NIR region decreases
due to the changing cell structure, while the water absorption band in the SWIR region
becomes weaker due to the reduction of the water content in the leaf. Consequently, the
increasing reflectance in the red region and decreasing reflectance in the NIR region lead
to a decrease in NDVI and EVI values under low-temperature stress [229]. Therefore,
Wang et al. [229] proposed to use the spring frost damage index (SFDI) and the normalized
difference phenology index (NDPI), the calculation of which includes the weighted sum of
the reflectance of the red and SWIR bands.

4.6. Detection and Evaluation of Waterlogging Stress in Winter Wheat

Waterlogging is becoming a limiting condition for crop production as extremely
heavy rainfall becomes more frequent worldwide, and its early detection is essential
for accurately managing production inputs and reducing the risks associated with crop
production [100,230]. Using various machine learning models, Yang et al. [230] found that
waterlogging can be well detected in the specific sublevels of the wavebands in the red
spectral region (640–680 nm), red edge region (670–737 nm), and NIR region (700–900 nm).
There are a few studies on the degree of waterlogging based on remote sensing, which
mainly focus on monitoring the occurrence of waterlogging and distinguishing between
different types of environmental stress [100,231,232]. Jiang et al. [233] found that spectral
VIs, which are based on wavelengths of 800, 550, and 680 nm, are optimal for detecting
waterlogging stress. Yang et al. [100] conducted a pot experiment in which they exposed
winter wheat to different levels of waterlogging and collected hyperspectral leaf data and
LWC values. They concluded that waterlogging leads to a decrease in LWC. The NDVI,
DVI, RVI, and LWC were also calculated. Using the BPNN model with the original and first
derivative spectrum, red edge, RVI, NDVI, and modified NDVI as independent variables,
they were able to invert the LWC and estimate waterlogging stress in winter wheat. Using
high-spatial-resolution satellite data, Liu et al. [234] mapped the waterlogging damage in
winter wheat fields based on VIs (NDVI, GNDVI, and EVI), LAI, and biomass.

4.7. Detection and Assessment of Biotic Stress Due to Weed Occurrence

Weeds cause notorious yield losses in crops and are usually more economically impor-
tant than other biotic stresses [235]. It is difficult to estimate the magnitude of crop stress
caused by weeds at large spatial and temporal scales because yield reductions caused by
weeds cannot be separated from variation caused by climatic and edaphic conditions or geo-
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graphic areas and from other biotic stress parameters [236]. However, there are a number of
scientific data on the incorporation of remote sensing techniques into the decision-making
process that is fundamental to site-specific crop protection against weeds [237–240]. More
recently, various multispectral or hyperspectral sensors are capable of providing high-
resolution data on crop canopy conditions that can form the basis for early detection and
identification of weed species [239]. Numerous machine learning methods (ML) have been
used in precision agriculture, where weed detection in the field is based on specific shape,
color, and texture descriptors (i.e., the morphological characteristics of weed leaves as
features for further classification) [241]. In their study, López-Granados et al. [242] used
spectral reflectance data in the 400 to 900 nm range to classify monocotyledonous weeds
from wheat plants in a field study. They concluded that real-time analysis of high-spectral-
resolution images was sufficient to map weed patches in wheat. Eddy et al. [243] tested
an artificial neural network (ANN) for classifying weeds (wild oats species and redroot
pigweed) and crops (spring wheat, canola, and field pea) using hyperspectral images
and achieved an overall accuracy of 94%. In their work, Shapira et al. [244] used general
discriminant analysis (GDA) to detect grasses and broadleaf weeds in cereals and broadleaf
crops. Using spectral reflectance values obtained by field spectroscopy, the total spectral
classification of canopies by GDA for specific narrow bands was 95 ± 4.19% for wheat and
94 ± 5.13% for chickpea. The results of the study by de Castro et al. [245] showed that
multispectral aerial imagery can be successfully used to map the area of cruciferous weed
patches in wheat and legume stands for site-specific treatment mapping. Creating images to
classify cruciferous weeds based on multispectral sensors is possible when plants are in the
vegetative (green) phenophases, while cruciferous weeds are in the early or full flowering
phenophase, when they have an intense yellow color. Martın et al. [246] investigated the
potential of hyperspectral data to discriminate between two weed species (Lolium rigidum,
Gaudin, and Avena sterilis, L.) in winter wheat and barley crops. They found that the far
SWIR range (1900–2500 nm) was particularly important for distinguishing A. sterilis in
the phenophases of stem elongation and grain filling. In contrast, for L. rigidum, the best
results were obtained with the early SWIR range (1300–1900 nm) in the phenophases of
late tillering and stem elongation. These authors also chose the red edge part of the EM
spectrum (680–780 nm), which is as sensitive for weed discrimination.

4.8. Detection and Assessment of Biotic Stress Due to Insect Pest Infestations

Remote sensing of insects is challenging due to the cryptic nature of many taxa and
the limitations imposed by spectral data resolution. Insects are often orders of magnitude
smaller than the spatial resolution or pixel size of many remote sensing systems, so their
monitoring and detection can be easily overlooked [247]. Insect-caused damage, such as
defoliation and stress symptoms on plants, is often easily observed with remote sensing
systems and has long been used for indirect insect detection [247,248], which is an im-
portant component of crop protection strategies and site-specific pest management [163].
Several studies have shown that insect herbivory affects photosynthesis through defoliation
and chlorophyll loss [120,127,137]. As a result, the spectral reflectance of leaves changes
accordingly due to lower light absorption by leaf pigments [249]. Many authors have noted
that differences in spectral reflectance can be seen in several wavelength ranges, including
a band at 450–500 nm corresponding to the green color in the VIS range, a chlorophyll
absorption band at 625–675 nm, and an NIR band [250,251]. The above bands are commonly
provided in satellite-based multispectral sensors such as Landsat, Sentinel-2, SPOT, etc.
and in a variety of airborne multispectral sensors [252,253]. In their work, Luo et al. [254]
showed significant differences between the spectral signatures of a leaf infested with the
wheat aphid S. avenae and a non-infested leaf, as well as in the values of the vegetation
indices NDVI and GNDVI, the red edge vegetation stress index (RVSI), and the aphid
index (AI). The reflectance of the infested leaf was higher in the VIS and SWIR regions and
lower in the NIR region of the EM spectrum. Elliot et al. [255] used aerial multispectral
imaging to investigate the damage caused by D. noxia to wheat crops, and the authors
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were able to relate vegetation indices to the amount of infested plants. In their study, Mirik
et al. [256] found that D. noxia significantly increased reflectance in the VIS range and
decreased reflectance in the NIR range at the canopy level compared with uninfested plants.
This statement provided evidence that D. noxia feeding degrades photosynthetic pigments
and alters the leaf morphology in wheat canopies. Since the leaf morphology has a strong
influence on the spectral signatures of leaves [256,257], its alteration by D. noxia feeding
resulted in optical differences between infested and uninfested plants. Genc et al. [258] in-
vestigated the potential of spectroradiometrically determined vegetation indices (NDVI and
structure insensitive pigment index, SIPI) as indicators of damage by sunn pest (Eurygaster
integriceps, Put.) under field conditions. They concluded that spectral measurements detect
the different sunn pest stages on wheat and also the sunn pest densities in controlled trials,
with higher numbers of individuals resulting in lower reflectance in the NIR range. Higher
reflectance values in the VIS region and lower reflectance values in the NIR region indicate
that lower chlorophyll concentration leads to lower photosynthetic rate of wheat [258].

The basic requirement for hyperspectral remote sensing to identify insect pests is to
detect changes in leaf reflectance caused by insect infestation and damage. However, as
mentioned earlier in this study, leaf damage can be caused not only by insect infestation but
also by other biotic and abiotic stress factors, making it important to accurately determine
the cause of the plant stress and damage. In this context, Backoulou et al. [259] showed
that spatial data from multispectral images can be used to identify spatial patterns of insect
damage to plants. They also applied this strategy to quantify the extent of stress caused by
D. noxia in wheat fields and to distinguish this damage from that caused by unfavorable
agronomic conditions and drought [249]. In their study, Yuan et al. [260] demonstrated the
potential use of hyperspectral data to discriminate between wheat diseases (yellow rust
and powdery mildew) and S. avenae infestations in winter wheat.

4.9. Detection and Assessment of Biotic Stress Due to Diseases

Remote sensing techniques using RGB cameras and multispectral and hyperspectral
sensors have been used to detect various plant diseases [261]. Fungal pathogen infection
causes various biochemical, physiological, and morphological changes in leaves and can be
detected using spectral reflectance data in the VIS and NIR regions of the EM spectrum [144].
Remote sensing and mapping methods have been proposed as innovative tools to improve
plant disease management [262–264]. This idea is based on precision agriculture approaches
where site-specific fungicides are applied based on remote sensing data and GIS [265].
Using hyperspectral imaging, leaf diseases can be detected at an early stage prior to the
appearance of visible symptoms, which has proven to be a useful tool for detecting and
differentiating fungal diseases in wheat [144,265–267]. Some foliar diseases can cause
chlorophyll loss, while others can lead to leaf water deficits [260]. Consequently, infected
plants may have different characteristics in the chlorophyll and/or water absorption regions
of their spectral reflectance curves, in contrast to healthy plants [264]. Yu et al. [264]
investigated the potential of different spectral traits to robustly estimate the severity of
Septoria infection at the canopy level in wheat genotypes. They demonstrated that the
canopy reflectance and the selected VIs were promising for disease quantification, with the
NDWI index performing better compared with other VIs. The study by Anderegg et al. [268]
demonstrates the potential of time-resolved canopy reflectance data for assessing foliar
disease in the context of breeding for resistance to Septoria blotch. In particular, the temporal
dynamics of the green leaf area index, in conjunction with the dynamics of physiological
senescence, is an important indicator of the presence of Septoria infection and its severity.
Therefore, the values of VIs (modified chlorophyll absorption ratio index 2-MCARI2 and
SIPI) could allow the evaluation of these traits with very high throughput. Bravo et al. [269]
used hyperspectral imaging for the early detection of yellow rust disease (P. striiformis)
in winter wheat in the spectral range between 463 and 895 nm. They found that infected
plants had higher reflectance in the VIS region and higher absorbance in the NIR region,
which was due to lower chlorophyll activity, mainly due to degradation of the internal leaf
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structure. Huang et al. [270] investigated the relationship between P. striiformis infection
and PRI index in wheat, finding that PRI detects yellow color changes with a correlation
coefficient of (R2 > 0.9). Ashourloo et al. [265] detected leaf rust (P. triticina) in wheat in a
controlled environment using the VIs (NDVI, PRI, Greenness Index-GI, and RVSI) with
accuracy greater than 60%. Cao et al. [266] studied 17 VIs for predicting powdery mildew
in wheat and reported that the difference vegetation index (DVI), triangle vegetation index
(TVI), and red edge peak area were highly correlated with disease severity under field
conditions. Lorenzen and Jensen [271] found a change in reflectance in the visible spectrum
of barley leaves infected with powdery mildew. Graeff et al. [272] found that the most
sensitive reflectance response to leaf damage from wheat powdery mildew infection was in
the 490–780 nm range.

Bauriegel et al. [273] analyzed wheat plants with a hyperspectral imaging system
under laboratory conditions and applied principal component analysis (PCA) to distinguish
spectral reflectance data from Fusarium diseased and healthy wheat spike tissues in the
wavelength ranges of 500–533 nm, 560–675 nm, 682–733 nm, and 927–931 nm. Fusarium
infections in spikes were successfully detected at BBCH stages from 71 (watery ripe stage)
to 85 (soft dough stage). However, it was found that the optimal time for disease detection
was at the beginning of medium milk stage (BBCH 75).

5. Data Analysis in Proximal and Remote Measurements of Environmental Stress

There are two main areas to consider when applying remote and close sensing tech-
niques to precision agriculture: data acquisition and data analysis methods. Multispectral
and hyperspectral imagery and sensor data collected by various platforms provide a wealth
of information about vegetation characteristics [274]. Using remote sensing data, scientists
can characterize specific environmental stresses by calculating and developing spectral
vegetation indices, multivariate models, and machine learning methods in modeling the
spectral and imaging measurements [256,275,276].

5.1. Vegetation Indices

The VI, calculated from the absorption and reflectance properties of vegetation (e.g., in
the red and NIR regions), is commonly used to monitor vegetation vigor and indicate plant
growth status [277,278]. A remote sensing time series VI can reflect the status of winter
wheat throughout the growth and development cycle from sowing to harvest [279]. Table 1
shows a summary of the most commonly used VI of environmental stress in winter wheat
that are listed in this paper. The timely detection of crop stress enables rapid coordination
and adjustment of planned agrotechnical measures and avoidance of negative effects on
yield, which is one of the postulates of precision agriculture. Precision agriculture, a
management approach based on observing, measuring, and responding to crop variability
within a field, includes data collection to characterize spatial field variability, mapping,
and in-field decision making and implementation [169]. The development of remote
sensing influenced a greater number of precision agriculture applications and enabled the
development of vegetation indices as indicators of crop stress and yield predictions [168].
Today, vegetation indices are used in wheat crops to assess abiotic and biotic stress. In
addition to stress assessment, vegetation indices play an irreplaceable role in predicting the
biomass and final grain yield [280].
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Table 1. Vegetation indices used for environmental stress detection and evaluation in winter
wheat crops.

Index Name Calculation Application Source

NDVI Normalized difference
vegetation index NDVI = NIR−RED

NIR+RED

Drought stress
Nutrient deficiency
Pest detection
Disease detection

[179,214,254,266]

PRI Photochemical Reflectance
Index PRI = R530−R570

R530+R570
Heat stress
Disease detection [200,270]

GNDVI Green normalized
difference vegetation index GNDVI = NIR−GREEN

NIR+GREEN

Nutrient deficiency
Waterlogging stress
Pest detection

[214,234,254]

SAVI Soil adjusted vegetation
index SAVI = NIR−RED

NIR+RED+L x(1 + L) Nutrient deficiency [210]

OSAVI Optimized soil-adjusted
vegetation index

OSAVI = NIR−RED
NIR+RED+L

L = 0.16
Drought stress
Nutrient deficiency [179,214]

AI Aphid index AI = R740−R887
R691−R698

Assessment and early
detection of aphid
infestation

[254,256]

WI Water index WI = R900
R970 Drought stress [179]

NDWI Normalized difference
water index NDWI = R860−R1240

R860+R1240
Disease detection
Drought stress [18,264]

5.2. Multivariate (Chemometric) Models and Machine Learning Methods

To obtain more comprehensive information on the state of crops, it is essential to
examine the entire EM spectrum. The use of multivariate regression techniques and
machine learning methods, such as artificial neural networks (ANNs), can utilize the full
spectrum to detect crop stress [281]. Valuable examples of chemometric and statistical
techniques for estimating vegetation biophysical variables from spectral measurement
data are partial least squares regression (PLSR), principal component regression (PCR),
and stepwise multiple linear regression (SMLR) [282]. Since chlorophyll content in plants
is a biophysical variable representative of canopy photosynthetic activity and its level is
influenced by numerous stress factors, Atzberger et al. [282] investigated the predictive
power and noise sensitivity of SMLR and “full spectrum” methods PCR and PLSR in
their work. In [282], PLSR showed the lowest cross-validated RMSE while being relatively
insensitive to artificial noise in given dataset. The large volume and accuracy of the
proximal and remote sensing data acquired by various platforms pose a “Big Data” problem.
Data acquired from these platforms must be properly archived and retrieved for further
analysis. ML is used when large datasets are available that relate inputs (e.g., imagery or
spectral data) to desired outcomes (e.g., stress detection). The advantage of using ML is the
ability to search large datasets to discover patterns and guide discovery by simultaneously
observing a combination of factors rather than analyzing each feature individually [283].
ML methods such as support vector machines (SVM), artificial neural networks (ANNs),
and kernel methods have been used to detect various stress factors. The SVM method has
been successfully used in a variety of scenarios for stress detection in plants [283]. Recently,
the combination of linear models such as PCA or PLSR with ML methods, especially
nonlinear models such as ANN, has gained great popularity [206].

6. Conclusions

This report discusses the current state of the art and capabilities of remote and proxi-
mal sensing technologies that have been used in precision agriculture over the past few
decades with various applications to detect, evaluate, and monitor environmental stressors
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in winter wheat. Among abiotic factors, the most important plant stressors include drought,
heat stress, salinity, nutrient deficiency, frost, and waterlogging, while biotic stressors
include weeds, pests, and diseases. As climate change significantly impacts winter wheat
production due to more frequent occurrences of various abiotic stress parameters as well as
improved conditions for weed, pest, and disease development, the need for these technolo-
gies can only increase in the future. For sustainable agricultural management, all factors
affecting crop production must be analyzed on a spatiotemporal basis. The future perspec-
tive concerns stress detection algorithms that operate reliably in space and time and are
able to distinguish, for example, water-, disease-, or pest-related stress signals from “noise”
caused by soil and other non-photosynthetically active plant material. Distinguishing stress
factors from multispectral and hyperspectral data is also important for making appropri-
ate and accurate crop management decisions, but advanced statistical, chemometric, and
especially machine learning models are making this goal increasingly achievable.

Author Contributions: Conceptualization, S.S. and D.L.; validation, D.L., I.P.Ž., V.L. and M.Z.;
investigation, S.S.; resources, V.L. and M.Z.; data curation, S.S. and D.L.; writing—original draft
preparation, S.S.; writing—review and editing, D.L., V.L., I.P.Ž. and M.Z.; visualization, S.S.; supervi-
sion, D.L.; project administration, M.Z.; funding acquisition, V.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This review was funded by the European Regional Development Fund through the project
Advanced and predictive agriculture for resilience to climate change (AgroSPARC) (KK.05.1.1.02.0031).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors thank the European Union, which supported the project “Advanced
and predictive agriculture for resilience to climate change (AgroSPARC)” (KK.05.1.1.02.0031) through
the European Regional Development Fund within the Operational Programme Competitiveness and
Cohesion (OPCC) 2014–2020, as well as the Environmental Protection and Energy Efficiency Fund of
the Republic of Croatia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Farahani, H.A.; Moaveni, P.; Maroufi, K. Effect of seed size on seedling production in wheat (Triticum aestivum L.). Adv. Environ.

Biol. 2011, 5, 1711–1716.
2. Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and

Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [CrossRef]
3. Food and Agriculture Organization of the United Nations (FAOSTAT). Data of Crop Production. Available online: http:

//www.fao.org/faostat/en/#data/QC (accessed on 15 January 2023).
4. Henry, R.J.; Rangan, P.; Furtado, A. Functional cereals for production in new and variable climates. Curr. Opin. Plant Biol. 2016,

30, 11–18. [CrossRef]
5. Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [CrossRef] [PubMed]
6. Lang, T.; McKee, M. The reinvasion of Ukraine threatens global food supplies. Brit. Med. J. 2022, 376, 10–11. [CrossRef]
7. Halecki, W.; Bedla, D. Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis.

Resources 2022, 11, 118. [CrossRef]
8. Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell

Rep. 2022, 41, 1–31. [CrossRef]
9. Bray, E.A.; Bailey-Serres, J.; Weretilnyk, E. Responses to abiotic stresses. In Biochemistry and Molecular Biology of Plants; Gruissem,

W., Buchannan, B., Jones, R., Eds.; ASPP: Rockville, MD, USA, 2000; pp. 1158–1249.
10. Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström,

A.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259,
698–709. [CrossRef]

http://doi.org/10.3389/fsufs.2020.617009
http://www.fao.org/faostat/en/#data/QC
http://www.fao.org/faostat/en/#data/QC
http://doi.org/10.1016/j.pbi.2015.12.008
http://doi.org/10.1126/science.1239402
http://www.ncbi.nlm.nih.gov/pubmed/23908229
http://doi.org/10.1136/bmj.o676
http://doi.org/10.3390/resources11120118
http://doi.org/10.1007/s00299-021-02759-5
http://doi.org/10.1016/j.foreco.2009.09.023


Diversity 2023, 15, 481 21 of 30

11. Rogelj, J.; Shindell, D.; Jiang, K.; Fifita, S.; Forster, P.; Ginzburg, V.; Handa, C.; Kheshgi, H.; Kobayashi, S.; Kriegler, E.; et al.
Mitigation pathways compatible with 1.5 ◦C in the context of sustainable development. In Global Warming of 1.5 ◦C. An IPCC
Special Report on the Impacts of Global Warming of 1.5 ◦C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission
Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to
Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W.,
Péan, C., Pidcock, R., et al., Eds.; WMO: Geneva, Switzerland, 2018; ISBN 978-92-9169-151-7.

12. Warrick, R.A. Carbon dioxide, climatic change and agriculture. Geogr. J. 1988, 154, 221–233. [CrossRef]
13. Lin, M.; Huybers, P. Reckoning wheat yield trends. Environ. Res. Lett. 2012, 7, 024016. [CrossRef]
14. Wiesmeier, M.; Hübner, R.; Kögel-Knabner, I. Stagnating crop yields: An overlooked risk for the carbon balance of agricultural

soils? Sci. Total Environ. 2015, 536, 1045–1051. [CrossRef]
15. Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009, 323,

240–244. [CrossRef] [PubMed]
16. Reynolds, M.P.; Quilligan, E.; Aggarwal, P.K.; Bansal, K.C.; Cavalieri, A.J.; Chapman, S.C.; Chapotin, S.M.; Datta, S.K.; Duveiller,

E.; Gill, K.S.; et al. An integrated approach to maintaining cereal productivity under climate change. Glob. Food Sec. 2016, 8, 9–18.
[CrossRef]

17. Pradhan, G.P.; Prasad, P.V.; Fritz, A.K.; Kirkham, M.B.; Gill, B.S. Effects of drought and high temperature stress on synthetic
hexaploid wheat. Funct. Plant Biol. 2012, 39, 190–198. [CrossRef]

18. Wang, X.; Yang, J.; Liu, G.; Yao, R.; Yu, S. Impact of irrigation volu me and water salinity on winter wheat productivity and soil
salinity distribution. Agric. Water Manag. 2015, 149, 44–54. [CrossRef]

19. Saddiq, M.S.; Iqbal, S.; Hafeez, M.B.; Ibrahim, A.M.; Raza, A.; Fatima, E.M.; Ciarmiello, L.F. Effect of salinity stress on physiological
changes in winter and spring wheat. Agronomy 2021, 11, 1193. [CrossRef]
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