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Abstract: Drought stress profoundly affects native desert plants’ survival and performance. Among
all the abiotic stresses, drought is considered a major constraint that influences the structure and
functions of desert ecosystems. Arid desert ecosystems are characterized by prolonged drought,
extreme temperatures, high solar radiation, water scarcity, high salinity, scarcity of soil nutrients,
and poor soil structure. Such extreme desert environments are the toughest regions on earth, which
present enormous challenges in conserving plant survival, growth and reproduction. Despite the
predominance of these environmental conditions, native desert plant species that grow in desert
environments develop complex adaptation strategies and resistance mechanisms to ameliorate the
abiotic and biotic stresses in the extreme environments including changes in biochemical, physio-
logical, and morphological levels. Arbuscular mycorrhizal fungi (AMF) form positive symbiotic
associations with a considerable percentage of terrestrial plants as their host, induce distinct impacts
on plant growth and protect plants from abiotic stresses. However, it is necessary to advance our
understanding of the complex mechanisms associated with AMF-mediated and other dark septate
endophytes (DSE)-mediated amelioration of native desert plants’ drought stress resistance and associ-
ated biological adjustments such as changes in hormone balance, water and nutrient status, stomatal
conductance and osmotic adjustment, antioxidant activity, and photosynthetic activity. This review
provides an overview of the relationships of mycorrhiza and fungal endophytes involved in drought
stress tolerance, summarizing the current knowledge and presenting possible mechanisms mediated
by AMF to stimulate drought tolerance associated with native desert plants. We discuss the research
required to fill the gaps and provide suggestions for future research.

Keywords: abiotic stresses; arbuscular mycorrhizal fungi; dark septate endophyte; desert ecosystems;
drought resistance; drought stress tolerance; ecophysiology

1. Introduction

In terrestrial ecosystems, plants are frequently exposed to environmental stresses.
Among them, drought is considered one of the major abiotic factors hazards that occur
in most global environments; it can also have significant economical, societal and envi-
ronmental impacts [1]. In ecological settings of arid environments, particularly desert
ecosystems, drought is directly connected to the total seasonal rainfall. Inadequacy of
precipitation over an extended period results in a water scarcity [2]. Moreover, drought is
predicted to increase in frequency and severity in several parts of the world due to reduced
water availability [1] and the rise of the evaporation rate due to global climate change [3].
In warmer climates, such as arid and semi-arid regions, shifts in seasonal precipitation
are particularly evident, which have escalated the risk of drought episodes [4]. Similarly,
the desert ecosystem is under continuous drought stress and is vulnerable to even slight
changes in water availability and soil moisture levels. It is reported that approximately 40%
of the planet’s total terrestrial area is considered to be water deficient arid dryland soils due
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to the scarcity of rainfall, high solar radiation and temperature fluctuations [5,6]. Extreme
temperature fluctuations and high solar radiation are the major drivers of environmental
challenges in arid desert ecosystems; these features can quickly heat up the desert with
low vegetation coverage during the daytime and temperatures drop down considerably at
night. The increased severity of drought in many regions and specifically the arid desert
environment may pose considerable challenges for natural ecosystem restoration, habi-
tat management, and even for crop production under farming systems [7]. Furthermore,
drought stress profoundly influences desert native seed germination, seedling development
and establishment in natural habitats [8,9]. Drought stress is the most crucial abiotic stress
inhibiting native vegetation survival, growth and performance; however, desert plants
have developed different strategies to adjust their levels of stress tolerance and drought
resistance [10,11].

Among the adaptive strategies, symbiotic association with arbuscular mycorrhizal
fungi (AMF), a ubiquitous type of soil microorganism, can establish symbiotic association
with the roots of over 80% of plant species, and develop adaptive mechanisms with their
host plants. The mycorrhizal association that prevails in desert ecosystems is capable of
enhancing resistance to drought stress and tolerance, improving plants’ ability to absorb
water and nutrients. The existence of soil and root microorganisms in terrestrial ecosystems,
particularly the arbuscular mycorrhizal fungi, is considered a crucial factor in the adaptation
of plants to a wide range of ecological circumstances, and they participate in various
ecological processes [12,13]. Desert ecosystems, however, are quite different from other
biomes in relation to microbial community composition and functions; the biomes are
leading drivers of desert systems, facilitating crucial ecosystem processes [14,15]. Desert
vegetation has the morphological, physiological and biochemical adaptation ability that
allows plants to tolerate extreme environmental conditions [16]. However, there is sparse
information regarding the interaction of mycorrhizal fungi with native plants in desert
ecosystems, particularly in the Kuwait desert regions and similar habitats. The aim of this
review is to provide an overview of the relationships of mycorrhiza and fungal endophytes
in drought stress resistance in native desert plants, and to summarize the current knowledge
on mechanisms mediated by AMF and the need for future research.

2. Desert Plants Responses to Drought Stress

Drought stress stimulates a variety of physiological, morphological and biochemical
responses to activate the adaptation mechanisms in plants to ameliorate the negative im-
pacts of drought. Three main environmental conditions—acute water scarcity, extreme
temperature fluctuations and salinity—are most associated with arid desert ecosystems. Of
these, drought is the major abiotic stressor limiting plant survival, growth and reproduction
in desert systems. Despite the severe environmental challenges, most native desert plants
can tolerate and resist drought stress by increasing their water use efficiency through
several functional and biological adjustments such as regulating stomatal activity [17,18],
decoupling aboveground and belowground responses [18] and controlling nutrient reab-
sorptions [19–22]. Drought stress can alter the biochemical activities in plants for resisting
drought stress and the alleviation of abiotic stress by increasing the activity of antioxi-
dant enzymes superoxide dismutase (SOD), guaiacol peroxidase and ascorbate peroxidase
(POD) [23]. Plants adapted to desert ecosystems are frequently exposed to diverse abiotic
stresses; they are required to reduce transpiration demand associated with water stress to
improve species survival and maintain stable populations and biodiversity [18].

To alleviate the negative impact of drought stress on desert plant performance, these
plants must adapt by regulating their biological functions and processes. It is reported
that drought stress has profound influence on plants’ survival, growth, and development,
mainly because of constraints in physiological, morphological, biochemical and molecular
processes and pathways [24,25]. These constraints include reduced turgidity, osmoregu-
lation, decreased carbon assimilation and gas exchange, decreased enzymatic activities
and ion absorption, oxidative damage, osmotic adjustment and reduced relative water
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content in leaves, which decreases stomatal conductance and net photosynthesis [26,27]. It
is believed that these processes occur within the plants’ internal system as a response to
drought stress.

Most of the major physiological processes such as photosynthesis, protein and en-
ergy synthesis, and metabolism of lipids are consistently affected in relation to water
deficiency [28]. Therefore, drought stress has been shown to influence multiple biologi-
cal processes and pathways in plants, which subsequently adjust their growth, biomass
production and water relations to maintain their productivity [29–31]. Many plants show
drought-stimulated accumulation of reactive oxygen species (ROS), which may cause oxi-
dation of proteins, DNA materials, carbohydrates, and damage membrane integrity [32–34].
However, plants accumulate several osmolytes and different antioxidant enzymes to com-
bat the influence of drought stresses [35,36]. Plants also synthesize important proteins in
response to drought stress; these proteins secure the performance of ion channels, search
for ROS, adjust antioxidant activities, aid gene expression, membrane integrity and water
transportation and, consequently, enhance plant tolerance of environmental stress [37,38].
Extreme temperature and high radiation levels prevailing in desert environments can have
distressing consequences for plants’ viability and the production of ROS, which may harm
DNA, proteins and membrane lipids [39]. Several other adaptive mechanisms reported
in response to heat, high radiation, excessive light and temperature include changes in
leaf orientation [40], with the formation of thick wax layers on leaf surfaces [41]; chang-
ing the angle of leaflets to avoid high levels of radiation [42]; the production of phenolic
compounds [43], and altering photosynthetic processes to ease the absorbed energy in
reducing oxygen to carbon dioxide [44].

Since severe water limitation is the key concern for natural vegetation development in
desert environments, different desert plant species adopt various strategies to resist and
survive water stress. Among these strategies drought escape, avoidance and/or building
resistance to tolerate and adapt to drought stress. One universal strategy followed by desert
annual plants is to keep their seeds dormant in the soil and to germinate when water is
available [45]. In contrast, perennial plants adopt morphological adaptations by developing
roots deeper into the soil to search for moisture. Other desert perennial plants may adopt
a drought-deciduous strategy, becoming dormant or having partially dieback in response
to drought stress.

Nonetheless, there is substantial evidence to indicate that AMF support host plants
against various abiotic stressors such as drought [46,47] and other environmental stresses,
i.e., heat, salinity, metals and extreme temperatures [48,49]. Li et al. [50] suggested that
soil microbes such as AMF often regulate plant growth response to drought stress and
alleviate drought damage via increasing photosynthesis, and antioxidant enzyme activities
and reducing levels of malondialdehyde (MDA) in drought conditions. Colonization of
these AMF can also stimulate various physiological responses to drought stress includ-
ing stomatal conductance sensitivity, CO2 assimilation, and decreases in relative water
content; further, leaf water potential is likely to be improved by AMF inoculation [51,52].
A schematic representation of potential mechanisms mediated by AMF and dark sep-
tate endophytes (DSEs) to regulate drought stress tolerance and improve desert plants’
performance and adaptation is shown in Figure 1.
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Figure 1. A schematic representation showing potential mechanisms mediated by AMF and DSEs to
adopt and regulate drought stress tolerance and improve plant growth and performance of plants.
Source images: Quoreshi et al. [53]. Other sources: Byregowda et al. [25], Cheng et al. [11] and
Begum et al. [37].

3. Drought Stress Arbitrated Influences in Plants Stimulated by AMF

In desert ecosystems, drought intensely reduces plant survival and productivity; con-
sequently, desert plants develop different strategies to combat drought stress tolerance.
Plant-AMF’s symbiotic relationships are known to enhance the adaptability of plants in
stressed environments and improve tolerance of their host plants to drought stress [54]. Ar-
buscular mycorrhiza fungi are the most common obligate symbiotic fungi involved in host
plants’ interactions to complete their life cycles. The fungi colonize the plant root system
and receive carbon from the host plant, while nutrients are provided from fungi to host
plants in symbiosis, modulating plant growth and development [55,56]. Research evidence
suggests that AMF symbiosis safeguards the host plants against drought stress by mediating
several mechanisms such as morphological, biochemical and physiological attributes [36].
Furthermore, AMF symbiotic association permits plants to grow more effectively under
abiotic and biotic stress environments [57]. AMF species are naturally occurring in most
ecological ecosystems and are widespread across various environments [56]. AMF species
usually developing a symbiotic association with host plants utilizing three methods from
the soil: AMF spores, external mycelium and infected root segments [58]. AMF species
are believed to be intuitive growth regulators of a vast majority of terrestrial ecosystems.
They provide a range of important biological processes by improving plant nutrition, stress
resistance and tolerance, soil structure and fertility [56]. Mineral nutritional features in
AMF symbiosis have been studied comprehensively and revealed that AMF are efficient in
considerably enhancing host plants’ nutrient acquisition, particularly in nutrient deficient
environments, and possess a symbiotic Pi uptake pathway [59–61]. Besides Pi uptake, ni-
trogen (N) and sulfur (S) can also be transported to host plant through AMF symbiosis via
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sulfur and NH4 transporters [62–64]. In recent studies, the contribution of AMF symbiosis
to increased micronutrient concentrations in plants has been reported [65,66].

The mechanisms that have been reported and essentially contribute to increased
drought and salinity stress tolerance in plants are complex and further complicated with
multiple responses with AMF (Table 1) and DSEs (Table 2). Tables 1 and 2 summarize the
observed responses and their potential mechanisms involved in response to various abiotic
stresses. Numerous researchers have reported improvements in soil health and quality
influenced by AMF [67,68]. AMF colonization and extensive proliferation of fungal hyphae
into soils enhances soil aggregation and stability as well as water holding ability, hence
improving drought tolerance [69]. Many studies have shown that AMF association with
host plants can regulate morphological adaptations to ameliorate drought stress tolerance
of the host plants [70]. In addition, Rouphael et al. [71] reported that AMF assist plant
nutrition by enhancing and relocating mineral nutrients beyond the depletion zones of
plant rhizospheres. AMF colonization with host plants induces root morphological changes,
improves root growth, root surface area, average diameter, and lateral roots, root-shoot
ratio, and hydraulic characteristics. Mycorrhizal extension hyphae help penetrate soil
pores to absorb water, resulting in roots’ improved capacity to acquire water and nutrients
from a distance [72,73]; this enhances drought resistance by influencing physiological and
biochemical mechanisms [74]. Morphological studies further revealed changes in plant
vascular architecture, starch storage and photosynthesis in the palisade mesophyll of AMF
associated plants [70]. Furthermore, AMF interfere with the phytohormone profile of host
plants, causing changes in phytohormones and thus bio-regulating plant performance
and promoting tolerance to environmental stresses. AMF symbiosis is found to be highly
correlated with enhanced plant tolerance and resistance to abiotic stresses such as drought
and salinity in arid environments [75]. AMF appear to influence host plants in improving
the tolerance processes and inhibit the reduction of primary metabolic pathways [49]. It
is likely that AMF can enhance soil and plant development under stressful environments
caused by abiotic factors [76,77]. AMF are the most effective soil microorganisms, helping
in soil aggregation and stabilizing soil structure through growing fungal hyphae into the
soil, thus producing glomalin [78–80]. Drought stress considerably affects photosynthesis
by reducing chlorophyll content and raising the production of ROS. AMF symbiosis can
improve chlorophyll synthesis and stimulate photosynthesis, as well as successive assim-
ilate production, by decreasing the ROS formation [81]. In addition, increased osmotic
adjustment is believed to be an essential component of drought tolerance mechanisms in
arid desert plants. Maintaining osmolyte accumulation is an essential strategy adopted by
plants to combat the negative influences of drought stress [36]. AMF colonization triggers
the increased accumulation of several osmolytes and improves drought tolerance [82,83].
Alterations in ROS and antioxidant-protected systems mediated by mycorrhizal associ-
ation are evaluated in detail by Wu et al. [84]. Apparently, AMF-associated plants pos-
sessed greater antioxidant enzyme activities and nonenzymatic antioxidant concentrations
which probably help to protect against oxidative damage, consequently enhancing drought
tolerance [70,85]. Furthermore, AMF increase the synthesis of phenolic compounds, which
reinforces the antioxidant defense mechanisms and ultimately develops resistance and
tolerance against drought stress [37,86]. Furthermore, AMF colonization may regulate
gene expression to combat drought stress tolerance. Two groups of stress-related genes
are known to respond different stresses. The first group act in stress tolerance, including
late embryogenesis abundant (LEA) proteins, osmotin, mRNA-binding proteins, enzymes
for osmolyte biosynthesis, and ROS–scavenging enzymes [87]. The second group includes
protein factors involved in the regulation of signal transduction and gene expression that
perhaps play a role in different stress responses [88]. Other published reports suggest that
AMF symbiosis triggers different molecular mechanisms such as gene expression, aqua-
porins (AQP), membrane transporters, sugar and ion transporters to control the effects of
drought stress [89]. AMF-attributed enrichment in expression of AQP which also improves
nutrient and water uptake and helps mitigate drought stress effects.



Diversity 2023, 15, 391 6 of 17

Hence, fungal species are crucial constituents in supporting and maintaining plant
functions and performance in a wide range of ecological systems. Zhao et al. [90] report
that AMF species play a significant role in desert ecosystems by maintaining plant biodi-
versity, richness and development. AMF impact community structure by altering plant
adaptation to restricted resources. However, it is likely that various adaptive mechanisms
of an abundant diversity of shrubs and perennial grasses relate to AMF in the regulation of
plant responses to stresses. Therefore, the association between AMF and plant adaptation
may influence the potential mechanisms underlying plants’ community dynamics in the
resource-limited desert ecosystem [91], leading to enhancing plant survival and improving
the level of resistance and tolerance under extreme desert ecosystem conditions.

Table 1. Various abiotic stresses, observed responses and potential mechanisms involved in relation
to AMF association with the host plant species.

Stress Observed Responses/Mechanisms with
AMF Association References

Drought

Increased sodium, potassium, catalase (CAT),
peroxidases (POD), ascorbate peroxidase
(APX), superoxide dismutase (SOD) by
Glomus intraradices on Calotropis procera Ait.
This improves the nutritive element
concentration and antioxidant enzyme
activity to decrease oxidative damage.

[92]

Drought

Improved leaf relative water content,
photosynthetic energy use efficiency, specific
leaf area in Cynophalla flexuosa L. This
increases tolerance to recurring drought
stress leading to high photosynthetic area.

[93]

Drought

Increased essential oil content, and oil yield
and decreased malondialdehyde (MDA),
hydrogen peroxide, catalase (CAT), ascorbate
peroxidase (APX), superoxide dismutase
(SOD), glutathione peroxidases (GPX) and
improved nutrient concentration, plant
biomass and essential oil content and
glomalin related soil proteins (GRSP) in
Pelargonium graveolense (L.) Herit.

[86]

Drought

Improved nitrogen metabolism by positively
regulating nitrate and nitrite reductase
activity, increased antioxidant enzyme
activity, ascorbic acid contents, and reduction
in glutathione level. This resulted in
significant amelioration of oxidative damage
to plant membranes by restricting the excess
generation of reactive oxygen species (ROS).
Greater content of proline, glucose, and total
soluble protein such as hydrogen peroxide.
Boosted phosphorous metabolism by
increasing alkaline and acid phosphatase
enzyme activity in Ephedra foliata.

[94]

Drought

Improvement in antioxidant system reducing
hydrogen peroxide accumulation and lipid
peroxidation. Increased Indole Acetic Acid
(IAA) promoting growth. Increases root
morphology (length, surface area and
volume) in Panicum turgidum.

[95]
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Table 1. Cont.

Stress Observed Responses/Mechanisms with
AMF Association References

Drought

Increased levels of phenols, the activities of
both peroxidase (POD) and
polyphenolxydases after AMF treatment and
increased leaf number and leaf area index in
Phoenix dactylifera.

[96]

Drought
Increased contents of glomalin-related soil
protein (GRSP) and increased soil structure
and phosphorus content in Medicago sativa.

[97]

Drought

Increased catalase (CAT), superoxide
dismutase (SOD), photosynthetic rate,
stomatal conductance and intrinsic water use
efficiency in Leymus chinesis and increased
catalase activity and photosynthetic rate in
Hemarthria altissima.

[50]

Drought Increased c DNAs, named HaPIP1 water
channel proteins, in Helianthemum almeriense. [98]

Drought

Increased drought impact and increased
turgor potential and mineral uptake of
potassium, nitrogen, zinc, and iron in
Olea europaea.

[73]

Drought

Increased catalase (CAT), ascorbate
peroxidase (APX), increased endogenous
level of cis-12-oxophytodienoc acid, jasmonic
acid and 12-OH-JA; regulates stomatal
conductance, lipid peroxidation, hydrogen
peroxide in shoot and root of
Digitaria eriantha.

[99]

Salinity

Increased shoot and root dry mass, stomatal
conductance, soluble sugars, free alpha
amino acid, sodium and potassium uptake in
Aeluropus littoralis.

[100]

Salinity
Improved root and shoot biomass and
phosphorus, zinc, and copper content in
Acacia nilotica.

[101]

Salinity Increased seedling weight, water content and
phosphorus and nitrogen in Leymus chinensis. [102]

Drought
Increased superoxide dismutase (SOD) and
total peroxidase (POX) activity in
Phillyrea angustifolia.

[103]

Drought Increased plant growth, phosphorus uptake
in Salsola laricina. [104]

Table 2. Various abiotic stresses, observed responses and potential mechanisms involved in relation
to Dark Septate Endophytes (DSE) association with the host plant species.

Stress Observed Responses/Mechanism in Relation
to Dark Septate Endophytes References

Drought

Improved root dry weight, NPQ
(non-photochemical quenching values, qP
(photochemical quenching values), increased
secondary metabolites such as polyphenols,
flavonoids, anthocyanins and enhanced
enzymatic activities related to secondary
metabolism in sorghum seedlings.

[105]
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Table 2. Cont.

Stress Observed Responses/Mechanism in Relation
to Dark Septate Endophytes References

Drought
Improved plant growth, antioxidant enzyme
activity and root development in
Artemisia ordosica.

[106]

Drought
Increased root biomass. Increase in potassium,
calcium content in root of Ammopiptanthus
mongolicus by some DSE species.

[107]

Drought
Improved root biomass, total biomass, nutrient
concentration and antioxidant enzyme activities
in Hedysarum scoparium by some DSE strains

[50]

Drought

Increase in proline, chlorophyll content,
antioxidant enzymatic activities and growth
parameters in Seidlitzia rosmarinus, Zygophyllum
eichwaldii and Haloxylon ammodendron.

[25]

Drought Increased plant growth, photosynthetic
parameters and P uptake in Lolium perenne. [108]

Drought
Increase in plant height, stem girth, leaf
characteristics, biomass and proline
accumulation in Chrysanthemum indicum.

[109]

Drought

Increased accumulation of soluble sugars,
decrease in MDA (malondialdehyde) and
degradation of chlorophyll in leaves in
Alhagi sparsifolia.

[110]

4. Role of Arbuscular Mycorrhizal Fungi in the Desert Ecosystem

Desert soil is mostly sandy soil (90–95%) found in arid and dry regions. It has a low con-
tent of nitrogen and organic matter with extremely high calcium carbonate and phosphates,
making it infertile. Fine, dry sandy soils with little or no structure are features of desert
ecosystems; they are commonly vulnerable to frequent wind erosion. Al-Whaibi [111] indi-
cated that AMF form symbiotic association within desert plant species and their activities
are significant to these plants. It has been demonstrated in many studies that mycorrhizal
association enhances plant survival, growth, biomass, and mineral and water uptake under
normal and drought conditions.

Among the biological and biophysical mechanisms, AMF appear to enhance soil ag-
gregate stability [112] and maintain higher drought tolerance in an arid environment [113].
AMF symbiosis mechanisms are related to different adaptation mechanisms in plants in-
cluding morphological modifications to drought stress that allow their tolerance to extreme
desert environments [111,114,115]. The presence of AMF in root zones of multiple native
desert plant species of Saudi Arabia facilitates nutrient uptake and increases the stabiliza-
tion of and sand dunes. AMF enhance the stability of soil aggregates and lead to general
improvement of soil’s physical and chemical properties, moreover the lowest AMF spore
quantities and species diversity were found in the root zones of plant species growing in
the middle of the sand dune area [116]. Desert AMF community structure and diversity
varies pursuant to the habitat complexity and ecological settings. Low diversity of specific
AMF community composition tends to be related to extreme abiotic environments and the
dispersal restriction in the desert ecosystems [117]. Plant diversity, ecosystem variability
and productivity are highly influenced by AMF composition [118]. Plant growth response
and reliance of host plants differs in relation to colonizing AMF specific species, leading
to changes in their competitive abilities that affect plant community structure [119]. The
abundance of AMF spores in rhizosphere of one plant species varies considerably from
other species, irrespective of whether they are from a similar habitat [120]. This suggests
that the host plant species determines the allocation of AMF within the ecological ecosys-
tem and habitat structure. However, Klironomos et al. [121] reported that inconsistencies
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between AMF spore estimates tend to relate to each AMF species and its host, regardless of
the ecosystem homogeneity. Furthermore, AMF diversity arrangements and distribution
are primarily associated with the dominant plant species within the specific habitat, and
season. Annual plants maintain a large amount of a fine mycorrhizal root network, whereas
perennial plants have a much deeper root system supporting a relatively stable mycelial
network deep in the soil profile [105]; this indicates that soil and root nutrients are the main
influencing factors on determining AMF diversity and distribution.

5. Dark Septate Endophytes (DSEs) and Drought Stress Tolerance in Desert Plants

Plant tissue harbors a wide diversity of root endophytic fungi which are mainly
beneficial symbionts, comprising DSEs [122]. These DSEs inhabit plant root tissues in
different ecosystems, particularly in extreme desert ecosystems; they often form symbi-
otic associations with the epidermis and the cortex of plant roots in arid and semi-arid
environments [106,123–126]. These sterile ascomycetous DSEs are categorized by melanized
dark septate hyphae with microsclerotia that colonize the roots of numerous plant species,
both intracellularly and extracellularly [127–129]. Arbuscular mycorrhizal fungi, the most
important root endophytes, are extensively studied and well documented for their role
in promoting resistance to drought stress, nutrient uptake and improvement in plant de-
velopment. However, DSEs, which have recently gained more attention, may have very
similar roles to AMF in improving stress tolerance responses, particularly in extreme arid
desert environments. They have an extensive ecological dissemination and are often found
colonized in a range of arid and semi-arid region plants [107,130]. Alleviating drought
stress tolerance in plants by exploiting endophytes could be an effective approach to recu-
perate the successful restoration of water deficit desert soils [131,132]. However, our current
knowledge on the characterization and function of DSEs, and their ecological significance
in arid stressful environments, is inadequate. Several research results indicate that DSEs can
stimulate drought resistance in plants in water-scarce conditions and increase plant growth
by improving water, nutrient and carbon (C) uptake, enhanced activities of antioxidant
enzymes, and facilitating oxidation stress [133–136]. DSEs association with plants can
significantly demote the oxidative cellular damage in stressed plants by strengthening their
antioxidative mechanisms [137]. They are also capable of developing adaptation strategies
against heavy metals, supporting sequestration in root walls and avoiding transport to
shoots [137]. Recent studies revealed that DSEs can defend a host plant by reducing heavy
metal absorption in plant tissues and/or by sequestering heavy metals in root walls in
insoluble form, consequently avoiding further translocation to shoots [51,138].

In a recent study, we observed the roots of native desert plants from the Kuwait
desert that were colonized by distinctive dark septate hyphae with a dark brown color
microsclerotia structure along with arbuscular mycorrhizal hyphae, vesicle and arbuscules
(Figure 2, [53]). The presence of such DSEs’ structures found in our study (Quoreshi et al.,
2018) [53] of native desert plant species suggests that the DSEs might be crucial constituents
of the roots in desert habitats, linked to adaptive drought and other environmental stress
resistance mechanisms similar to AMF endophytes. They are found in the root cells that
develop a typical structure such as septate hyphae, melanized cell walls, and microsclerotia
in clusters. The microsclerotia may act as resting spores, like other fungi, and serve as
storage for nutrient accumulation [139]. It is reported that DSEs have helpful ecological
roles in plant survival, growth, nutrient and water uptake [140,141], offering enhanced
plant resistance to a variety of environmental stresses [133,142,143].

Rodriguez et al. [48] suggest that many plants accept colonization with DSEs to
enhance their survival and growth in severe environmental conditions that are triggered
by drought, salinity and metal contamination in soils. This has also been reported to
increased nutrient uptake for host plants. Such increased nutrient absorption by plants,
when colonized by DSEs, may be related to the enhanced C and N absorption and elevated
activities of antioxidant enzymes [50]. Many researchers reported that increased nutrient
absorption by various plants is observed when inoculated with DSE isolates [50,107,136].
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Several reports indicate that DSEs are extensively found in plants in arid and semiarid
environments and can improve the tolerance of host plants to drought stress [106,126,144–146].
It is suggested that DSE fungi in water-limited environments normally show positive
responses to host plants in terms of drought tolerance and resistance [106,126]. The mech-
anism is perhaps related to significantly increased superoxide dismutase (SOD) activity
under drought stress to remove ROS and cope with oxidative damage. Therefore, DSEs
may perform a vital function in plant survival and growth under water deficit conditions.
However, the complete mechanisms mediated by DSEs which influence the tolerance of
environmental stresses are not fully elucidated and require further research.
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Figure 2. Pictures showing different structures of AMF and DSE colonization observed in root
system of native desert plants of Kuwait. Vesicles observed in summer root samples of Acacia
pachyceras (A), Panicum turgidum (B) and Pennisetum divisum (C). AMF arbuscules in winter root
samples of Cyperus conglomeratus (D), Pennisetum divisum (E), Stipa capensis (F). Microslerotia clusters
of DSE in Rhanterium epaposum (G), DSE hyphae in Plantago boisseri (H), Microsclerotia/resting spores
of DSE in Stipa capensis (I). All these structures were observed under compound microscope. Source
images: Quoreshi et al. [53].
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6. Conclusions and Future Prospective

Arid desert ecosystems harbor varied plants and soil microorganisms including AMF
which can enhance soil health conditions, improve plant stresses, and support plant growth
and performance. This review highlighted the important functions of AMF in improving
plant growth responses and adaptation under various abiotic stresses. It has been reported
that AMF association with host plants boosts the tolerance of plants in a water limited
environment; however, the drought tolerance and resistance mechanism is rather complex,
and it may be involved in multiple-level controlled systems. In a desert ecosystem, natural
habitats are exposed to wide range of environmental stresses with drought being the main
limiting factor. Several research reports have identified the various biological roles of
AMF in desert ecosystems, along with their association with native desert plants and their
enhanced resistance to tolerate drought stress by complex physiological adjustments. In
most natural environments, as well as the desert ecosystem, AMF species are thought to
have a selective advantage for individual plants of the same species habitats. Therefore,
understanding AMF symbiotic relationships with various native desert plants and their
responses to environmental stresses, particularly drought stress, can be a vital contribution
not only in determining plant community structure, but also in assisting restoration and
re-vegetation schemes, as well as the reestablishment of degraded habitats.

Despite recent advances in knowledge on the function of mycorrhizal symbiosis in
plants, the functions of AMF associated with native desert plants—assisting in their resis-
tance to and tolerance of drought stress—are not entirely established: drought is considered
a natural incident which occurs frequently and more intensely. There are numerous unan-
swered questions and the roles of nutrient uptake channels and signaling as well as ion
transport systems, associated with desert plants in drought stressed environments, need
to be investigated. Likewise, the role of AMF in seed germination mechanisms associated
with drought stress conditions is unexplored. Furthermore, the main focus of future re-
search should be dedicated to advanced molecular research on the identification of gene
expression and how the gene products regulate AMF-mediating growth and nutrient,
water uptake, and control them under stressful environments. More attention is needed to
understand DSEs and their function in desert ecosystems as well as how plants combat
drought stress and influence plant nutrition and productivity when colonized with DSEs.
Future research should exploit the link between the native desert plants’ adaptation to
various environmental stresses combining AMF and DSEs symbiotic relationship in the
desert ecosystems. Such research would increase our current knowledge of the role of
endophytes in combating drought stresses. Nevertheless, AMF biotechnology should be
explored as a potential bio-fertilizer enhancement for the restoration of disturbed desert
habitats for successful and sustainable rehabilitation efforts.
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