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Abstract: Habitat complexity plays a critical role in shaping biotic assemblages and ecosystem
processes. While the impacts of large differences in habitat complexity are often well understood,
we know less about how subtle differences in structure affect key ecosystem functions or properties
such as biodiversity and biomass. The late-successional seagrass Posidonia australis creates vital
habitat for diverse fauna in temperate Australia. Long-term human impacts have led to the decline
of P. australis in some estuaries of eastern Australia, where it is now classified as an endangered
ecological community. We examined the influence of P. australis structural complexity at small
(seagrass density) and large (meadow fragmentation) spatial scales on fish and epifauna communities,
predation and sediment erosion. Fine-scale spatially balanced sampling was evenly distributed across
a suite of environmental covariates within six estuaries in eastern Australia using the Generalised
Random Tessellation Structures approach. We found reduced erosion in areas with higher P. australis
density, greater abundance of fish in more fragmented areas and higher fish richness in vegetated
areas further from patch edges. The abundance of epifauna and fish, and fish species richness were
higher in areas with lower seagrass density (seagrass density did not correlate with distance to patch
edge). These findings can inform seagrass restoration efforts by identifying meadow characteristics
that influence ecological functions and processes.

Keywords: ecosystem function; seascape ecology; endangered seagrass; seagrass restoration;
Posidonia australis

1. Introduction

Seascape habitat structure and complexity (hereafter referred to as habitat complexity)
can strongly influence biotic assemblages, ecosystem functioning and processes [1]. For
example, more complex habitats generally host higher richness and abundance of asso-
ciated species because they provide a greater variety of niches [2]. Differences in habitat
complexity can also influence predator-prey interactions [3,4], for example by altering
availability of shelter for prey and access to predators [5].

Seascape habitat complexity incorporates small-scale structural complexity (e.g., shoot
density of plants) and large-scale variables related to the spatial configuration and fragmen-
tation of habitats [6]. Our understanding of how ecosystem functions and processes are
impacted by different components of habitat complexity is limited and at times, conflicting.
For example, several studies suggest fragmentation leads to declines in carbon stocks and
biodiversity [7–9]. In contrast, Fahrig [10] reports positive effects of fragmentation ‘per se’
on biodiversity and habitat functioning.

The growth of human populations, overexploitation of natural resources and climate
change are modifying ecosystems globally, increasing habitat degradation and unpre-
dictably altering habitat complexity [11–13], resulting in impacts on biodiversity [14],
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ecosystem functioning [15,16] and ecosystems services [17–19]. The decline in foundation
species (i.e., species that support biodiversity and define the structure of a community)
can have dramatic consequences for habitat complexity and dependent species, leading to
disproportionate effects on ecosystem functions [14,20,21].

Marine ecosystems are heavily impacted by human activities globally [11] and recent
decades have seen extensive changes in the overall abundance and habitat complexity of
habitats such as kelp forests [22] and seagrass meadows [23,24]. Seagrasses are marine
flowering plants that form extensive coastal habitats that support high biodiversity and
provide a range of ecosystem functions [25]. Some seagrasses can capture and store carbon
more efficiently than terrestrial plants [26,27], create a dense habitat where a wide variety
of fauna can live, find protection and/or forage [28,29], and they prevent coastal erosion
by stabilising sediment [30]. Seagrass habitats support higher biodiversity and perform
a range of ecosystem functions beyond unvegetated habitats [31–33] but we have limited
information on how differences in habitat complexity are impacting these relationships.

Habitat complexity can influence the composition of seagrass associated macroinver-
tebrates [34] and fish [35–37], and impact ecological processes like predation [5]. This has
been investigated by isolating individual aspects of habitat complexity, such as patch size
and distance to meadow edge [32,38–40]. Fish assemblages across estuarine seascapes are
also shaped by seagrass meadows [41] and by landscape patterns at different spatial scales,
including habitat composition and configuration [42]. Differences in habitat complexity
can alter sediment movement [30] for example by altering hydrodynamic flow at within-
patch [43] and meadow scales [44]. However, our understanding of how seagrass habitat
complexity at multiple spatial scales influences ecosystem functions is limited and having
this information can guide conservation and restoration approaches.

In this study we examine how habitat complexity relates to ecosystem functions
(fish and epifauna composition, predation and sediment erosion rates) at several spatial
scales to inform conservation and restoration of the threatened seagrass, Posidonia australis
(Hook.f.). This seagrass is endemic to the southern half of Australia, where it creates dense
meadows in sheltered and shallow bays. Some economically important species of fish and
invertebrates depend on P. australis complex habitat during their juvenile stages or during
their whole life [45,46]. There is evidence that some fish species respond to small-scale
differences in P. australis habitat complexity [47] and macrofauna abundance may be driven
by habitat preference [48] but little is known about the consequences that differences in
habitat complexity may have on seagrass-associated species assemblages.

Long-term human impacts have led to the decline of P. australis in some estuaries of
eastern Australia. Six populations of P. australis in south-eastern Australia being listed as
endangered under NSW Government legislation in 2012 (Fisheries Management Act 1994
(NSW), Australia) and an additional three estuaries were also listed as threatened ecological
communities under the Commonwealth legislation in 2015 (Environment Protection and
Biodiversity Conservation Act 1999 (Cth), Australia (EPBC Act)). Some populations are still
declining despite protection [49,50], due to multiple impacts including boat moorings [51],
dredging and construction [52]. P. australis can take decades to recover after disturbances
due to slow growth rates [53]. Small-scale restoration projects using innovative techniques
to revegetate areas where P. australis has declined are having success [54] but the challenge
now, in the UN Decade of Ecosystem Restoration, is to scale-up restoration efforts [55].
Mitigation approaches such as conservation and restoration projects are becoming essential
tools to reverse the decline of foundation species such as seagrasses. Thus, quantifying
the relationships between habitat complexity and ecosystem functions better informs
restoration strategies and outcomes (e.g., by helping select targets for restoration projects).
This is particularly relevant for the recovery of ecological communities associated with
endangered and slow-growing species like P. australis.
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Working across six estuaries that include some of the most impacted P. australis
meadows in south-eastern Australia, we quantify how habitat complexity (seagrass density,
meadow fragmentation and distance to meadow edge) is related to: (1) fish abundance
and species composition, (2) mobile epifauna abundance, (3) fish predation rates and
(4) erosion rates. As marine fauna and processes can respond to complexity at different
spatial scales [56], we used a seascape approach that incorporates variability at different
levels including sub-patch (e.g., seagrass shoot scale; [57]), within-patch (e.g., distance
to meadow edge; [40]) and among-patch (connectivity) or seascape scale [58]. Seascape
ecology is a growing field of marine science that brings spatial approaches common in
terrestrial landscape ecology into marine ecosystems to help resolve spatial patterns [59,60].
Including a seascape approach allows a deeper understanding of heterogenous marine
ecosystems and their connections, incorporating the natural interconnectivity of seascapes,
which are shaped by patterns and processes that operate at multiple spatial scales [6,59].

2. Materials and Methods
2.1. Study Estuaries and a-Priori Site Selection

Fish and epifauna composition, sediment erosion and predation rates were quantified
in Posidonia australis meadows in six different estuaries in New South Wales, Australia
(Figure 1). These included three estuaries in which P. australis is classified as endangered
under the NSW and Commonwealth Government legislation: Lake Macquarie (−33.049637,
151.647302), Pittwater (−33.591091,151.318788) and Botany Bay (−34.006181, 151.193384),
and three estuaries where P. australis is not endangered under NSW Government legislation:
Port Stephens (−32.718373, 152.125055), Jervis Bay (−35.040582, 150.784482) and St Georges
Basin (−35.140870, 150.638630; Figure 1). The P. australis ecological community in Port
Stephens is listed as endangered under the Commonwealth legislation. P. australis is con-
fined to only 17 of the 121 NSW estuaries known to contain seagrass [50] and only grows
in three geomorphic types of estuaries, specifically ocean embayments (Botany Bay and
Jervis Bay), tide-dominated estuaries (Port Stephens and Pittwater) and wave-dominated
estuaries (Lake Macquarie and St Georges Basin) see [61] for details on the characterises of
these estuaries. Although the six estuaries display some different environmental charac-
teristics (Table S1), the sampled areas included here are characterised by broadly similar
oceanographic regimes that enable Posidonia australis to occur, including high salinity, low
nutrients levels and relatively stable environmental conditions [61].

P. australis distribution was initially identified using the high-quality imagery program
NearMap Australia. High-resolution spatial layers describing the area and extent of
P. australis were obtained using the latest available seagrass mapping in each estuary (NSW
Fisheries Spatial Data Portal) [62]. We selected a single meadow within each estuary,
outside of any Marine Park Sanctuary Zones (present in Port Stephens and Jervis Bay)
and away from boat moorings, to avoid potentially confounding processes. Each selected
meadow has an area ranging from 200,000 m2 to 600,000 m2.

Traditional sampling in a stratified random pattern (e.g., with repeated samples taken
from inside or outside habitat patches) produces clusters of sites in similar spatial and
environmental settings, and corresponding gaps in sampling effort. Spatially balanced sam-
pling aims to resolve the clustering issue by selecting sites a priori that are evenly dispersed
across space and a set of landscape-related covariates. These methods are particularly
useful for landscape (or seascape) studies [63] and are now used in marine systems [64],
facilitated by an increase in the availability of marine spatial data. Within each meadow,
specific GPS sampling sites (thereafter, sites) were selected a priori using Generalised Ran-
dom Tessellation Structures (GRTS; [63]). The area covered was approximately 90,000 m2

per meadow. The GRTS algorithm pre-selected 15 sites algorithmically to ensure that they
were spatially balanced, i.e., evenly separated along both spatial and predictor scales (level
of fragmentation, area of seagrass, and distance to patch edge; see Table S2 for complete
data). Site depth ranges are as follows: 1.0–4.1 m in Port Stephens, 0.7–3.5 m in Lake
Macquarie, 1.3–3.3 m in Pittwater, 1.0–4.0 m in Botany Bay, 1.5–4.9 m in Jervis Bay and
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1.2–3.7 m in St Georges Basin (Table S2). Minimum distance between sites was 20 m and
a site could be on a bare patch or on seagrass. Gridded spatial layers were generated at
each site to represent the level of meadow fragmentation, area of seagrass, and distance
to patch edge, based on the seagrass mapping data described above. Seagrass area and
fragmentation (perimeter-area ratio, Figure 2) were calculated in a 50 m, 250 m and 500 m
radius from each site (noting that multiple methods exist to measure fragmentation; [65,66]).
In this study, the term ‘fragmentation’ refers to the level of patchiness of the seagrass on a
continuum from a continuous meadow configuration to a more heterogeneous seascape of
bare patches within the meadow to a configuration made up of patches of seagrass in a
matrix of bare sand (Figure 2). Distance to patch edge was derived from the same data and
was estimated as the distance from the site to the nearest edge of seagrass (Figure 2). These
steps in the sampling selection process were completed in the R statistical environment
(R Core Team 2021). Packages ‘rgdal’ [67], ‘raster’ [68] and ‘geosphere’ [69] were used
to manipulate the spatial data, and ‘SDMTools’ was used to calculate the fragmentation
statistics (now superseded by the ‘landscapemetrics’ package).

2.2. Sampling

Sampling took place by free diving during the late spring/summer months (November–January)
in all estuaries, to avoid seasonal variations that might influence epifauna [70] and fish
communities [45]. Botany Bay and Port Stephens were visited during 2019–2020 summer,
while the remaining estuaries were sampled during 2020–2021 summer due to COVID-19
travel restrictions that came into place in early 2020. At each of the 15 preselected sites
per meadow, we recorded in situ P. australis shoot density (where seagrass was present)
by counting individual shoots present in a 25 × 25 cm (0.0625 m2) quadrat. All the in
situ measurements were taken within 2 m2 of the GPS sampling site.

2.3. Variation in Abundance of Epifauna with Habitat Complexity

The mobile epifaunal community was quantified at each preselected site using artificial
seagrass made to mimic P. australis (Figure S1a,b). Artificial seagrass was used instead
of sampling real shoots to standardise sampling (including age and size of ‘shoots’) and
to avoid collecting shoots of an endangered seagrass. Each unit was individually tagged
and contained one wooden pole covered by a green plastic material and six pieces of
partially frayed brown rope, one at the top, four at mid-height and one at the base. One
unit was deployed in each site (n = 15 per meadow). Individual artificial seagrass units
were collected after 4 to 5 weeks using a 1 L plastic jar underwater. The plastic material
and the pieces of ropes were pulled out as a unit from the pole and quickly placed into the
container to retain all invertebrates. The container was immediately closed to minimise
loss of epifauna. Samples were stored in 5% formaldehyde solution with marine water.
Prior to sorting, samples were rinsed in freshwater and contents were passed through a
500 µm sieve. Invertebrates of 10 sites from each estuary (except in Pittwater where we
could only find and recover 8 artificial seagrass units) were sorted to morphospecies under
a dissecting microscope, counted and stored in 70% ethanol. Samples that had been highly
colonised by epifauna were carefully subsampled using a Folsom Plankton Splitter in order
to sort approximately the same amount of invertebrates in each sample.
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Figure 1. The coastline sampled along the east coast of Australia is highlighted by the red box (A).
Map of the six estuaries sampled in New South Wales (B). Map credits: Jordan Gacutan. Aerial
imagery of the six meadows sampled for this study with sampling sites in yellow: Port Stephens, Lake
Macquarie, Pittwater, Botany Bay, Jervis Bay and St Georges Basin. Imagery collected from Google
Earth (2021). Under the NSW Government legislation P. australis is classified as non-endangered in
Port Stephens, Jervis Bay, St Georges Basin, while it is classified as endangered in Lake Macquarie,
Pittwater and Botany Bay. Port Stephens, Lake Macquarie, Pittwater and Botany Bay are also listed as
endangered ecological communities under the Commonwealth legislation.
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2.4. Variation in Fish Community with Habitat Complexity

The fish community was quantified at each preselected site with remote underwater
video by deploying one GoPro Hero 4 (Figure S1c). Using stereo cameras was considered
but logistically not feasible and instead we opted to sample more sites simultaneously.
Sampling took place at high tide from 9 am to 2 pm on sunny days. Cameras were attached
to an adjustable metal stand (ranging from 30 to 70 cm height) such that they were at the
top of the seagrass canopy (Figure S1c), with a float on the surface to identify the location
and assist retrieval. Visibility was assessed on site and sampling only proceeded if visibility
was more than 1.5 m. The 15 cameras in each meadow were left recording simultaneously.
After excluding the first 5 min from each video to eliminate deployment disturbance,
40 simultaneous minutes per estuary were selected and analysed using the EventMeasure
software (version 5.41, created by Jim Seager, Bacchus Marsh, Victoria, Australia; SeaGis Pty.
Ltd., www.seagis.com.au). To characterise the fish community in each video, we calculated
the species richness (number of species) and MaxN (the maximum number of fish of each
species recorded in a single frame). MaxN is a commonly used conservative method that
avoids re-counting of the same fish individuals [71,72]. The sum of each species’ MaxN
gave the total relative abundance at each sampling site.

Data on fish functional traits (feeding information, Table S2) were collected to under-
stand whether the fish functional traits could explain the relationship between the fish
abundance and the predictors. The feeding information for each fish species was extracted
from the online resource FishBase (fishbase.se) [73]. Fish species were classified into the
following four groups: carnivore (piscivorous and non-piscivorous fish), planktivore, her-
bivore (eating mostly macroalgae/seagrass), omnivore (eating some macroalgae/seagrass).
For species lacking ecological information on FishBase, we gathered trait data from the liter-
ature where possible and remaining species data were extracted from the online resources
Fishes of Australia [74] and The Australian Museum [75] (https://fishesofaustralia.net.au,
https://australianmuseum.net.au, accessed on 28 April 2022; see Table S2 for complete
table and data sources).

www.seagis.com.au
https://fishesofaustralia.net.au
https://australianmuseum.net.au
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2.5. Variation in Predation Rates with Habitat Complexity

Predation rates were investigated using the standardised ‘squid-pop’ method [76].
Equally sized pieces of dried squid (2 × 2 cm) were secured to the top of a pole using
fishing line. One pole was deployed at each preselected GPS site, with the squid at the
top of the seagrass canopy. Squid-pops were visually checked after 1 h of deployment and
removed if the bait was eaten. Remaining squid-pops were checked after 24 h and then
were all removed. Squid-pop loss was recorded as ‘1’ where the entire bait was eaten, or ‘0’
where the whole or part of the bait remained.

2.6. Variation in Erosion with Habitat Complexity

Erosion was measured using the depth of disturbance (DOD) rod method [77]. One
DOD rod was placed at each preselected site and measured after 4 to 5 weeks. A DOD rod
consists of a stainless-steel rod (5 mm diameter and 1.2 m length) which we positioned
protruding 49 cm above the sediment, with a loosely fitted washer on the rod laying on the
seabed. When the sediment is eroded the washer sinks and the maximum erosion is given
by the difference between the final and the initial elevation of the washer.

2.7. Statistical Analysis

We tested for correlation among predictors using the R function ggpairs in the package
GGally and ggcorplot in ggplot2 to ensure variables were not highly correlated. Using
a cutoff of r > 0.45, seagrass area and fragmentation within 50 m and 250 m radius and
seagrass area at 500 m were not included in the models due to high correlation (Figure S2).
Hereafter ‘fragmentation’ refers to fragmentation at 500 m. We used generalised linear
mixed models (GLMMs) to test the influence of the predictor variables on each of the
response variables, with ‘estuary’ as a random effect. The predictor variables considered
were all continuous measurements: ‘P. australis shoot density’, ‘meadow fragmentation’ and
‘distance to patch edge’. There was a separate model for each response variable: ‘sediment
erosion’, ‘epifauna abundance’, ‘relative abundance of fish’ (using the negative binomial
family), ‘relative abundance of fish per feeding group’ (using the negative binomial family),
‘fish richness’ (Poisson family), ‘predation after 1 h’ and ‘predation after 24 h’ (binomial
family). GLMMs were fitted using the glmmTMB function in the glmmTMB package [78].
Statistical analyses and graphs were performed using the software R (version 4.0.2; R Core
Team 2020) and relied on the tidyverse workflow [79] and ggplot2 [80].

3. Results
3.1. Variation in Abundance of Epifauna with Habitat Complexity

A total of 55,224 individuals of mobile epifauna were counted across the six meadows,
with abundance ranging from 23,272 invertebrates collected at Pittwater and 17,752 at
Botany Bay to only 1692 invertebrates collected at Lake Macquarie. Amphipod crustaceans
accounted for 82% of all individuals collected, with 10% from the family Caprellidae, fol-
lowed by polychaete worms (5.4%). Total abundance of epifauna was significantly higher
in areas with lower seagrass density (p < 0.001, Figure 3b, Table 1), where seagrass density
was the only significant predictor.

3.2. Variation in Fish Community with Habitat Complexity

A total of 52 species of fish were observed across the six meadows (Table S3), ranging
from 31 species in Jervis Bay to 20 species in St Georges Basin and Pittwater. Fish richness
declined with increasing seagrass density (p < 0.05, Figure 4b, Table 1) and increasing
distance to patch edge (p < 0.001, Figure 4a, Table 1) and was not significantly associated
with seagrass fragmentation (Figure 4c, Table 1).
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Figure 3. The relationships between abundance of epifauna and (a) distance to patch edge, (b) P. aus-
tralis shoot density/0.0625 m2 and (c) seagrass fragmentation. Sites on bare sediment have a negative
value for distance to edge. Each point represents a sampling site, coloured by estuary, with the
points jittered to avoid overplotting. Fitted lines are predictions ± 95% Coefficient Intervals from
generalised linear mixed models.

Table 1. Model outputs for each response variable after performing generalised linear mixed models
including the 3 predictors as fixed factors and estuary as a random effect. Asterisks indicate significant
p-values (* for p-value ≤ 0.05, ** for p-value ≤ 0.01, *** for p-value ≤ 0.001).

Response Variables Predictor Variables Estimate p-Value

Relative abundance of fish

Distance to meadow edge 0.002 0.32

Fragmentation 1.61 0.004 **

Shoot density −0.037 0.001 **

Fish richness

Distance to meadow edge 0.004 <0.001 ***

Fragmentation 0.44 0.34

Shoot density −0.01 0.03 *

Epifauna abundance

Distance to meadow edge −0.003 0.17

Fragmentation −0.63 0.75

Shoot density −0.06 0.0004 ***
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Table 1. Cont.

Response Variables Predictor Variables Estimate p-Value

Predation after 1 h

Distance to meadow edge −0.01 0.08

Fragmentation −4.65 0.05

Shoot density 0.02 0.55

Predation after 24 h

Distance to meadow edge −0.009 0.31

Fragmentation 0.29 0.94

Shoot density 0.01 0.72

Sediment erosion

Distance to meadow edge 0.005 0.07

Fragmentation −0.89 0.15

Shoot density 0.037 0.004 **
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A total of 2385 fish (sum of MaxN) were observed during the study across the six
meadows, ranging from 265 in Port Stephens to 663 in St Georges Basin. The total relative
abundance of fish decreased with increasing seagrass density (p < 0.01, Figure 5b, Table 1).
Total relative abundance of fish also increased with increasing seagrass fragmentation
(p < 0.01, Figure 5c, Table 1) but did not vary with distance to edge of a patch (Figure 5a,
Table 1).
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Most fish species were carnivorous (n = 30), 16 were omnivores, four were planktivores
and only two were herbivores (Table S1). Total relative abundance of carnivorous fishes
declined with increasing seagrass density (p < 0.001), increased with increasing seagrass
fragmentation (p < 0.001) and did not vary with distance to edge. Total relative abundance
of herbivores only declined with increased fragmentation (p < 0.05). The relative abundance
of the other groups of fish (omnivores and planktivores) was not significantly associated
with any of the predictor variables.
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3.3. Variation in Erosion with Habitat Complexity

Sediment erosion (ranging from 0 to 16 cm over the entire sampling time) varied with
seagrass density (p < 0.01, Table 1), with denser P. australis having the least erosion. No
other predictor variables were associated with changes in erosion.

3.4. Variation in Predation Rates with Habitat Complexity

On average, 31% (±10%) of squid pops were eaten after 1 h and 71% were eaten after
24 h (±13%) across the six estuaries. Predation rates had no significant relationship with
any of the measured biotic variables (Table 1).

4. Discussion

This study adds to our understanding of the relationships between structural attributes
of seagrass meadows and their associated biotic assemblages and functional processes. We
tested how a range of habitat complexity measures (at within-patch to seascape scales)
influenced functional habitat provisioning for fish and invertebrate communities, along
with rates of predation and sediment erosion in six seagrass meadows. Fish were more
abundant in areas with high levels of habitat fragmentation and both fish and epifauna
were less abundant where seagrass density was greatest. We found lower fish species
richness in areas with denser seagrass, but richness was higher in vegetated areas further
from patch edges (seagrass density did not correlate with distance to patch edge). Similar
to other studies, sediment erosion was reduced in densely vegetated areas [30]. These
findings highlight the complexity of the relationship between habitat spatial configuration
and functional habitat provision.

4.1. Habitat Use and Predation by Fish

While there were some consistent patterns in habitat use and predation responses
to habitat structure across the six estuaries, these patterns did not always match the
general patterns in the literature. In contrast to previous studies [29,36,81]; but see [42], we
found that fish abundance and richness declined with increases in seagrass density, which
represented the smallest scale at which habitat complexity was measured. Accordingly,
there was no indication of a threshold level of shoot density that ensured the use of seagrass
meadows by fish. However, we acknowledge that the environmental differences among the
estuaries may have influenced some of the results (Table S1; [61]). The sampled meadows
displayed variable ranges of shoot density (as per [82]): the seagrass in St Georges Basin
reached 50 shoots/0.0625 m2 (~800 shoots/m2) while the meadows in all other estuaries had
between 10–30 shoots/0.0625 m2 (~160–480 shoots/m2). This is not entirely unexpected,
as species assemblages often differ between low and high densities of seagrass [36] and
not all fish species respond to seagrass density [83]. The majority of the fish observed were
classified as carnivores and they were the only ones influenced by seagrass density (less
fish in denser seagrass), suggesting that most fish observed here are not driven by the need
of finding refuge but perhaps by presence of other smaller fish as prey. While not addressed
within this study, some of the fish sampled here may be residents of the meadow [46],
and thus may be more affected by seagrass density than transient species. Detecting fish
where vegetation is particularly dense may also require more detailed methods than remote
cameras [84–86]. This sampling method mostly detected the supra-canopy fishes associated
with the meadow whereas methods such as visual census may be more appropriate for
sampling within-canopy species [86].

Habitat fragmentation appears to be an inconsistent but important driver of fish
species richness and abundance at seascape scales. In this study, fish abundance increased
with fragmentation, supporting that seascape-scale spatial arrangement of habitats influ-
enced seagrass fish communities [87]. This relationship was driven by the fish species
belonging to the carnivore functional group and may be related to a predatory behaviour
that is facilitated in a more fragmented habitat. In contrast, herbivorous fish were less
abundant in more fragmented areas. Fragmented seagrass beds may create a more di-
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verse habitat, with seagrass interspersed with bare sediments, attracting fish with different
habitat preferences [88]. There was not, however, evidence of a relationship between fish
species richness and fragmentation in this study. The greater fish richness observed in
vegetated sites toward the middle of the meadow in this study may suggest that many
fish we observed may be utilising the seagrass meadows both as a refuge and for forag-
ing [28]. However, there was no evidence that the abundance of any functional groups was
significantly influenced by distance to edge. Fish communities can be more abundant and
diverse at seagrass edges [89,90] and responses to edges are often species-specific [89,91] or
depend on patch size [39]. In contrast, this study did not detect positive edge effects on fish
communities. This result may be explained by the variability of responses by the species
sampled as some may have a stronger association with interior areas, others with edges or
with both habitats [39,92]. Many individuals observed in this study were juveniles (pers.
obs.), providing support for the utility of seagrass beds as a preferred nursery area [45,93].

In this study, predation was not influenced by any variables. Predation success and
foraging are often greater in more fragmented areas [94,95] or at edges [96], however,
presence of top-level predators (not targeted in this study) may alter this relation-
ship [97,98] by inducing a predator avoidance behaviour. Although the squid-pop
technique is commonly used worldwide [76], it may be targeting only a limited range of
fish species [94]. The high rate of squid pop consumption overnight may be explained
by diel migration of some species of fish between vegetated and bare habitat [33]. This
can often be the reason of a greater abundance of fish in seagrass beds at night [99,100].

4.2. Use of Seagrass Habitats by Invertebrate Epifauna

We observed greater numbers of invertebrates in less dense seagrass areas. This
is in contrast with some previous results, that showed more abundant epifauna in
areas with higher P. australis densities due to animals preference for more complex
habitat [48]. Predation success may be reduced in dense vegetation [93,101], however,
there may be exceptions related to the predatory behaviours, as ambush predators are
not be negatively impacted by vegetation [102,103]. Mobile invertebrates are often more
abundant in complex habitats with high levels of epiphytes [56], rather than greater
macrophyte complexity [70,104]. This may explain, beyond the effect of the large range
of shoot density sampled here, the more abundant epifauna found where epiphytic algae
grew or drifted on the deployed artificial seagrass (Botany Bay and Pittwater, pers. obs.).
Epiphyte abundance and composition could also be driven by the presence of seagrass
detritus, with some species using it as food source or as physical habitat [105].

Previous studies have found that proximity to the edge of seagrass meadows strongly
influenced epifauna abundance, with different patterns depending on the epifauna group
e.g., cumaceans increase at edges, while amphipods decline from seagrass to sand; [106]).
We did not find any edge-effect, with this study adding to those that have found variable
responses of epifauna to edges, including those with a greater abundance of inverte-
brates [40,107] or those finding that habitat centres have more abundant invertebrates [108].

4.3. Variation in Erosion with Seagrass Density

Sediment erosion was reduced in denser areas. This supports the critical function
of seagrasses at reducing erosion and sediment movement by trapping and stabilising
sediments [30,109,110]. Coastal erosion is affecting coasts worldwide and is often combatted
through shore nourishment (i.e., deliberate placement of sand to restore a beach) or coastal
hard constructions (e.g., groynes and breakwaters; [111]). These solutions are, however,
usually temporary and not very cost-efficient at a long term and can further alter local
hydrodynamic conditions [109,111]. On the other hand, protecting and restoring vegetated
beach foreshore habitats helps stabilise sediments and creates a natural self-sustaining
system [112].
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4.4. Future Directions

A key consideration after this study is that undertaking a “seascape” approach may
provide highly valuable insights to understand faunal assemblages associated with seagrass.
The application of techniques developed in landscape ecology can help unravel what drives
the communities that inhabit and utilise marine habitats [6,56,59,113]. Understanding how
processes and faunal communities respond to different components of a habitat is critical
for modern conservation and restoration, as critical foundation species continue to decline
globally [114,115]. Therefore, incorporating landscape-scale approach into site selection
can improve restoration success [116].

Habitat connectivity is a major driver for the distribution of fauna in marine sys-
tems [34,87,117] and, although not directly measured in this study, it needs to be mentioned
as the sampled areas displayed some different environmental characteristics (Table S1,
Figure 1; [61]). Greater connectivity may reduce the impacts of urbanisation for more
resilient species [118]. The types of surrounding habitats, their complexity and their spatial
connections can influence marine communities [119–121] for example by shaping fish move-
ments. Individual fish can rely on different habitats, move among them with the tides, time
of day and during different stages of their life [29]. The presence of different surrounding
habitats may enhance fish abundance and species [58] as they tend to prefer habitats with
high diversity and high connectivity [87]. A more detailed interrogation including seascape
variables such as distance from natural reefs, mangroves and saltmarshes may contribute
to explaining some of the patterns.

Differences in environmental variables among sites/estuaries may have influenced
some of the outcomes of this study, including the types of species present in the meadows
of P. australis. Meadows in Port Stephens and in St Georges Basin were particularly
narrow as the depth dropped very quickly into bare sediment, which may explain the high
fragmentation and the small range in distance to edge. Port Stephens, Lake Macquarie,
Pittwater and Botany Bay are located in catchments with a large human population density
relative to Jervis Bay and St Georges Basin, and human activities could influence the
estuaries differently. Different fishing pressure among estuaries may have also played a
role in the variability among sites, for example commercial fishing is no longer permitted
in Lake Macquarie, Botany Bay or St Georges Basin. Although Port Stephens and Jervis Bay
estuaries are within marine parks, the specific sites sampled in these estuaries were not in
fishing exclusion (sanctuary) zones. The morphological characterises of the estuaries and
position of each site relative to the mouth of the estuary also differed, which may affect
water exchange and perhaps fish or invertebrate assemblages. However, estuaries were
similar enough to enable P. australis to grow (such characteristics are found in only 17 of
121 seagrass estuaries in NSW [50]). Future studies could benefit from sampling multiple
meadows (with different levels of fragmentation) in each estuary.

This study advanced understanding about what structural characteristics of P. australis
meadows drive biotic assemblages and can inform strategies to manage endangered sea-
grass habitats by informing decisions for future restorations, e.g., identifying specific
meadow structural traits that may be targeted during conservation or restoration projects.
For example, to reduce coastal erosion, the restoration target would include higher seagrass
densities, supporting the thesis that seagrasses are critical at stabilising coastlines [109],
while to ensure high species richness of fish, it may be preferable to protect vegetated
areas further from the edge. On the other hand, if the target is to enhance biodiversity and
improve habitat provision, these results showed no evidence of a seagrass density thresh-
old, meaning that benefits of restoration can be achieved without necessarily restoring
meadows to the highest natural densities observed (e.g., fish were supported across a wide
range of shoot densities). In conclusion, despite observing high variation in relationships
with habitat provisioning, there is clear value in considering habitat spatial patterns at
multiple scales in seagrass systems.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d15020125/s1, Table S1: Environmental characteristics and aspects
of the ecology of the six estuaries sampled in this study, based on [61,122,123]. NA—no commercial
fishing in these estuaries. Table S2: List of the sampling sites and variables obtained using Generalised
Random Tessellation Structures (GRTS). Site ‘ps7′ was not included in the analyses because too deep
and not representative of a seagrass habitat. Table S3: list of fish species observed in the videos,
including species functional traits (feeding information) [29,46,61,122–126]; Figure S1: example of
(a) an artificial Posidonia unit in a seagrass patch and (b) in a bare area and (c) of a supra-canopy
GoPro set up; Figure S2: correlation plots among variables: distance to patch edge, seagrass shoot
density, area and level of fragmentation at 50 m, 250 m and 500 m of radius.
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