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Abstract: While the general diet of Mediterranean elasmobranchs has been widely studied, little
is known about food partitioning and competition among sympatric species, despite these being
important forces structuring marine communities. Using stomach content and stable isotope analyses,
we investigated diet and trophic levels and evaluated the diet overlap and partitioning of Scyliorhinus
canicula, Mustelus mustelus, and M. punctulatus in the northwestern Adriatic Sea. These shark species
were confirmed as opportunistic mesopredators, but significant differences in their diets emerged.
The two bentho-demersal Mustelus species had a larger trophic overlap with S. canicula than between
each other. Given the pronounced morphological similarity of these two Mustelus species, this is
likely a strategy to limit competition. The strictly benthic S. canicula showed a more varied diet
compared to the other species. Stable isotope analysis highlighted that despite the smaller size and
overlapping diets, S. canicula occupied a slightly higher trophic level. A better characterization of
the trophic role of these species in the food web of the basin can be obtained from these data. At an
ecosystem level, this information is essential to evaluate the possible consequences of the decline or
recovery of the population of these exploited species.

Keywords: diet; competition; diet overlap; feeding habits; sympatric species; trophic level; stable
isotope; Scyliorhinus canicula; Mustelus mustelus; Mustelus punctulatus

1. Introduction

Inter- and intra-specific competition represents an important force in structuring
marine communities [1]. By reducing the pressure of competition, resource and food
partitioning is the main process allowing for the coexistence of sympatric species or of
different life stages of the same species [2,3]. Food partitioning is even more important when
co-occurring predatory species have similar morphology (i.e., mouth shape, dentition, and
body shape with the associated swimming abilities), habitat usage, and foraging habits (i.e.,
living and feeding either in the water column or close to the sea bottom). Indeed, similar
characteristics allow predators to target and hunt the same prey species [2,4], increasing
potential competition. This is particularly the case for congeneric species living in the
same community given their low evolutionary divergence and similar specialization [5].
Partitioning can occur along different levels, such as time, space, life stages, and trophic
niches [6–8]. A better characterization of trophic relationships, energy transfer, resource
partitioning, and competition occurrence can improve our understanding of the structure,
dynamics, and functioning of marine communities [6,9,10].
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Elasmobranchs (sharks, skates, and rays) are key top and mesopredatory species
whose predatory activity can be highly influential in marine ecosystems [11–13], regulating
both fish and invertebrate populations [14]. Mesopredatory elasmobranchs are extremely
important because they mediate the changes in community structure and functions caused
by the loss of apex predators [15,16]; nevertheless, diet information is often lacking [17].
Despite many species, especially opportunistic feeders, showing a significant dietary geo-
graphical variation [18,19], data on diet and trophic relationships are often limited to only a
few geographic areas and populations. Even fewer data exist on competition and resource
partitioning between co-occurring elasmobranch species [20]. Improved knowledge of the
trophic ecology of mesopredatory elasmobranchs, including diet composition, character-
ization of regional diets, niche breadth, and diet overlap between sympatric species, is
necessary. Indeed, this information can provide a better understanding of elasmobranchs’
functional role as top-down regulators in marine communities and of the processes of
energy transfer in trophic webs and marine ecosystems. In this context, combining the two
commonly used techniques of stomach content and stable isotope analysis is beneficial.
This approach can overcome the drawbacks of each technique, i.e., a high number of sam-
ples required for stomach content analysis and the low specific and temporal resolution of
stable isotope analysis, allowing for a better characterization of the diet and trophic role of
the investigated species ([21–23], and references within).

The northern Adriatic Sea is one of the most productive [24,25] and fished sub-basins
of the Mediterranean Sea [26,27]. Shallow waters and muddy–sandy bottoms characterize
the Italian coasts, while deeper waters and rocky substrates typify the Slovenian and
Croatian side [25]. This offers suitable habitats to a great variety of species, thus sustaining
high biodiversity [26]. Several mesopredatory elasmobranchs co-occur in this region [26,28],
many of which have been overfished in the past [26,29]. Among these, three of the most
abundant shark species, Mustelus mustelus, M. punctulatus, and Scyliorhinus canicula [28],
underwent a severe decline [26,29]. These species share similar benthopelagic habits and a
diet composed of mainly crustaceans and, in smaller proportions, teleosts, mollusks, and
polychaetes [30–32]. S. canicula is a small (up to 50.5 cm; [33]), benthic species that inhabits
the continental shelf and uppermost slopes on rocky to sandy bottoms down to a depth
of 400 m, where it rests in crevices and holes [30]; therefore, it is more abundant on the
eastern side of the study area, which is characterized by rocky substrates [25]. This is an
oviparous species that lays eggs throughout the year in the study area and reaches maturity
at small sizes (around 40–41 cm; [33]). Due to its sedentary habits, S. canicula resides in
the northwestern Adriatic Sea throughout the year [33], although some sexual segregation
occurs in the study area, as also reported in other populations [33–35]. The two Mustelus
species are large (up to 158 and 141 cm for M. mustelus and M. punctulatus, respectively; [36])
viviparous species that reach sexual maturity at large sizes (110–120 cm [36]) and share very
similar morphology, life history traits [36,37], and habitats. These congeneric species have
a demersal habit and spend most of the time swimming in midwater or, more commonly,
near the bottom, down to a depth of 350 m [30]. Both species perform seasonal migrations
in the study area, arriving when the water temperature starts to increase (April–May)
and leaving when temperatures start to drop (November–December; [36]), moving to the
southern part of the basin. The northwestern Adriatic Sea is used as a parturition and
mating area, and, at different times, mature pregnant females, mature actively reproducing
males, and juveniles and neonates of both sexes can be found [36].

The diet of these three species has been previously investigated in different areas [32,38–41],
also including the northeastern Adriatic Sea [42–46]. Nevertheless, apart from a comparison
between the two Mustelus species in the Strait of Sicily [31], no data exist on diet overlap and
resource partitioning among these three species. Yet, their co-occurrence and similar morphology
and habits suggest that a strong trophic competition might exist. Obtaining in-depth information
on their trophic ecology is essential to understand their functional role in the ecosystem and the
potential top-down consequences of the observed population decline [15,16]. In this context,
this study aimed to (1) better characterize the diet and trophic strategy of these three species in



Diversity 2023, 15, 1163 3 of 21

the northwestern Adriatic Sea using stomach content and stable isotope analyses; (2) highlight
intra-specific diet differences related to sex, size, or season; and (3) identify potential competition,
resource partitioning, or diet overlap between the three species.

2. Materials and Methods
2.1. Stomach Content Analysis

Between 2012 and 2013, 480 specimens (Table 1) of Scyliorhinus canicula (N = 243),
Mustelus mustelus (N = 114), and M. punctulatus (N = 123) were sampled from the landings
of Chioggia’s fishing fleet operating in the northwestern Adriatic Sea [26,47]. S. canicula
was identified based on morphological features while, for Mustelus specimens, the species
was genetically attributed following Marino et al. [37]. Sex was attributed according to the
presence of claspers in males. Total length and body mass were recorded using a measuring
tape (0.5 cm accuracy) and a scale (0.1 kg), respectively. Excised stomachs were preserved
in 70% ethanol in seawater. After removing excess ethanol with tissue paper, the total mass
of the stomach content was measured with a precision scale (0.01 g). Prey was identified
using a stereomicroscope to the lowest possible taxonomic level according to the available
identification keys [48–55], counted, and weighed (0.01 g). When only body parts were
found, the smallest number of individuals from which the fragments could have originated
was recorded. Unidentifiable material was not included in the analysis.

Table 1. Total length (cm; mean ± standard deviation) of Scyliorhinus canicula, Mustelus mustelus, and
M. punctulatus used for stomach content (non-empty stomach) and stable isotope analyses. Data are
presented and divided into sex, size, and season groups in S. canicula and for sex and size groups in
M. mustelus and M. punctulatus. Numbers in parentheses represent the sample size of each group.

St
om

ac
h

co
nt

en
ta

na
ly

si
s

Scyliorhinus canicula

Small Big Total

Cold season Hot season Cold season Warm season

Males 41.3 ± 0.4 (2) 35.3 ± 2.5 (3) 45.8 ± 2.7 (6) 45.5 ± 2.2 (31) 44.6 ± 3.5 (42)
Females 40.3 ± 1.4 (11) 40.1 ± 1.9 (18) 44.6 ± 1.6 (70) 44.4 ± 1.8 (59) 43.7 ± 2.4 (158)
Total 39.8 ± 2.2 (34) 44.8 ± 1.9 (166)

Mustelus mustelus

Small Big Total

Males 62.0 ± 12.8 (21) 106.4 ± 10.0 (6) 71.9 ± 22.4 (27)
Females 63.4 ± 13.3 (28) 118.7 ± 16.3 (47) 98.1 ± 30.9 (75)
Total 62.8 ± 13.0 (49) 117.3 ± 16.2 (53)

Mustelus punctulatus

Small Big Total

Males 39.0 ± 3.0 (49) 106.9 ± 11.0 (12) 52.4 ± 27.7 (61)
Females 38.9 ± 5.0 (43) 108.9 ± 11.1 (9) 51.0 ± 27.5 (52)
Total 39.0 ± 4.0 (92) 107.8 ± 10.8 (21)

St
ab

le
is

ot
op

e
an

al
ys

is

Scyliorhinus canicula

Small Big Total

Males / 45.2 ± 1.8 (12)
Females / 45.3 ± 1.8 (12)
Total / 45.2 ± 1.8 (24)

Mustelus mustelus

Small Big Total

Males 73.0 ± 9.4 (4) 114.2 ± 14.4 (6) 97.7 ± 24.4 (10)
Females 69.8 ± 11.5 (6) 125.5 (1) 77.8 ± 23.5 (7)
Total 71.1 ± 10.3 (10) 115.8 ± 13.8 (7)

Mustelus punctulatus

Small Big Total

Males 53.7 ± 6.4 (5) 101.0 ± 9.6 (9) 84.1 ± 25.0 (14)
Females 50.5 (1) 105.1 ± 15.5 (9) 99.6 ± 22.6 (10)
Total 53.2 ± 5.9 () 103.0 ± 12.7 (18)
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To investigate whether a sufficient number of stomachs were analyzed, cumulative
diversity curves were made using the lowest taxonomic level of the prey, separately for each
species. Using EstimateS software (version 9.1) [56], the order in which the stomachs were
analyzed was randomized 500 times, and the Shannon–Weaver index (H′, mean± standard
deviation; see below for its calculation), a proxy for diet diversity, was plotted against
the total number of non-empty stomachs [57]. The presence of an asymptote in the curve
indicates that enough stomachs were analyzed [58].

For each stomach, the percent fullness (%fullness), a proxy for feeding intensity [59],
was calculated by dividing the total mass of the stomach content by the body mass of the
specimen and multiplying by 100. Diet breadth was investigated with two diversity indices;
the Shannon–Weaver index (H′; [60]) [61] was calculated as:

H’ = ∑n
i = 1 pi· ln(pi) (1)

where pi is the amount of prey category i (g) relative to the totality of the prey categories
found in the stomach (n). The Pielou index is a proxy for diet evenness, highlighting the
potential dominance of few prey categories in the diet (J′; [62]), and was computed as:

J′ = H′/Hmax (2)

where Hmax is the maximum value that H′ can assume, equal to log(S), where S is the total
number of prey categories found in the stomach.

For each prey category, the percent frequency of occurrence (%FOi), the prey-specific
abundance (%PNi), and the prey-specific weight (%PWi) were calculated as:

%FOi = (ni/N) × 100 (3)

where ni is the number of stomachs in which prey category i was found, and N is the total
number of non-empty stomachs.

%PNi =
(

∑ni
j = 1 Nij

)
/ni (4)

where %Nij is the numerical abundance of prey category I in stomach sample j, and ni is
the number of stomachs containing prey category i;

%PWi =
(

∑ni
j = 1 Wij

)
/ni (5)

where %Wij is the abundance by weight of prey category i in stomach sample j, and ni is
the number of stomachs containing prey category i.

Using these indices, the prey-specific index of relative importance (%PSIRIi) was
calculated as [63]:

%PSIRIi = 0.5 × %FOi × (%PNi + %PWi) (6)

To investigate feeding strategies, %PNi was plotted against %FOi [64].
To check for the existence of trophic overlap among each predator pair combination,

the simplified Morisita–Horn (M–H) index [65] was computed using %PWi:

M–H =
(

2 ∑n
i = 1 pij pik

)
/
(

∑n
i = 1 pij

2pik
2
)

(7)

where n is the total number of prey categories, pij is the proportion of the prey category
i consumed by predator j, and pik is the proportion of the prey category i consumed by
predator k. According to the criteria proposed by Langton [66], an M–H value > 0.6 indicates
a high dietary overlap, values ranging from 0.3 to 0.59 correspond to a medium overlap,
and values < 0.29 indicate a low overlap.
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2.2. Stable Isotope Analysis

From a representative subsample of specimens analyzed for the stomach content
(Table 1), about 1 cm3 of white muscle was excised from below the first dorsal fin. Addi-
tionally, in spring–summer of 2013, individuals of the dominant prey categories (teleosts,
crustaceans, and mollusks) were collected from catches from otter-trawl vessels fishing in
the northern Adriatic Sea (Table S4). At least three individuals for each prey category were
processed to obtain muscle tissue (about 2 g). For the smallest prey, different samples were
pooled and analyzed together.

Muscle samples were oven-dried at 60 ◦C for 48 h, then ground into a fine powder
using a combusted mortar and pestle. Samples were not subjected to lipid extractions
since they all had consistently low lipid content (carbon (C): nitrogen (N) < 4.0; [67]). The
stable C and N ratios were measured using an Isotope Ratio Mass Spectrometer DeltaV
Advantage (Thermo Fisher Scientific, Bremen, Germany) together with a CHN Analyzer
Flash 2000 (Thermo Fisher Scientific, Bremen, Germany). The ratio of stable isotopes was
expressed in delta (δ) notation:

δ = [(Rsample/Rstandard) − 1)] × 103 (8)

where δ is the isotope ratio of the sample relative to the standards (international standard
Vienna Pee Dee Belemnite (VPDB) for C and atmospheric nitrogen for N). Rsample is the
fraction of heavy to light isotopes in the sample, while Rstandard is the fraction measured
in the standard. The multiplication by 1000 is used to express the δ notation as units of parts
per thousand (‰). An internal standard (mussel muscle) was analyzed throughout each
run and was both accurate and precise (−20.5 ± 0.5‰ for δ13C and 5.7 ± 0.2‰ for δ15N).
For both δ13C and δ15N, the analytical precision of measurements was 0.2%. Sucrose IAEA
CH6 (International Atomic Energy Agency, Vienna, Austria), L-glutamic acid (RM 8574,
National Institute of Standards and Technology, NIST, Gaithersburg, MA, USA), caffeine
(National Institute of Standards and Technology, NIST, Gaithersburg, MA, USA), and urea
(National Institute of Standards and Technology, NIST, Gaithersburg, MA, USA) were used
as certified reference materials.

Using δ15N, the trophic level of species was estimated according to Fortibuoni et al. [68]
with an enrichment factor ∆N of 3.4‰. The δ15N value of Adriatic zooplankton (6.6 ‰)
used as a baseline for the primary consumer of trophic level one was assumed from Berto, D.
(Institute for Environmental Protection and Research (ISPRA), Venice, Italy), unpublished
data, 2023.

2.3. Data Analysis

To test differences in diet, three dichotomous factors were taken into consideration:
season (warm or cold), sex, and size (small or big). We considered size rather than sex-
ual maturity because, in elasmobranchs, size accounts for dietary ontogenetic shifts and
predatory abilities [7,69]. The mean total length observed in the northern Adriatic Sea
(males and females combined: 41.5, 92.9, and 76.1 cm for S. canicula, M. mustelus, and
M. punctulatus, respectively; [33,36]) was used as a threshold to allocate individuals to the
big- or the small-sized group. Species sampled during spring or summer (March–August)
were allocated to the warm season group, while those sampled during autumn or winter
(September–February) were allocated to the cold season group.

Before analysis, the normality and the homogeneity of variance of the datasets were
checked with the Shapiro–Wilk test and Lavene’s test, respectively. If, after transformation,
data were not normally distributed, non-normal distributions or non-parametric tests
were used. For a better description of the sample and for the interpretation of the results,
separately for each species, chi-squared tests were used to investigate differences in the
proportion of males and females between the two size groups and between the two seasons
and to test differences in the proportion of big and small individuals between the two
seasons. Potential differences in %fullness, H’, and J’ between sexes, size groups, and
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seasons were tested. A linear model was used, including sex, size, and their interaction as
fixed factors. Due to the small sample size, a separate linear model was used to test the
factor season. Before analysis, an arcsin of the square root transformation of %fullness data
was used [70]; for clarity, results were reported as percentages.

A permutational multivariate analysis of variance (PERMANOVA), including sex,
size, season, and their interaction, was used to highlight any intraspecific differences in
diet [5,71–74]. The analysis was based on the Bray–Curtis similarity matrix obtained from
the square root transformation of the prey biomass data. A non-metric multidimensional
scaling (nMDS) was performed to graphically represent the dissimilarity between the
different groups [5]. Prior to the analysis, prey categories with %FOi lower than 5% were
aggregated in larger categories according to taxonomic and ecological criteria, with the
exclusion of prey belonging to species of commercial values or showing high abundance in
the diet of one of the species (Table S1). A PERMANOVA test including the factor species
(three levels) was used to investigate any interspecific differences in diet composition.
To identify differences between species pairs, pairwise PERMANOVA comparisons were
performed. A similarity percentage (SIMPER) analysis based on square root transformed
biomass data was used to identify the percent dissimilarities between the groups and the
percent contribution of the different prey categories to the observed differences [5,71–74].

Given the lack of normality, potential differences in stable isotope values were investi-
gated using non-parametric Kruskal–Wallis tests. Differences between size groups (big and
small) within each species (except for S. canicula) and differences between the three species
were tested separately.

Results were reported as mean ± standard deviation (S.D.). A significance level of
α = 0.05 was used for the tests. Data were analyzed using R statistical software (ver-
sion 4.2.2), with lme4 [75], lsmeans [76], and emmeans [77] packages (R Core team 2021)
and Statsoft (Ver. 5.0). Multivariate analyses were performed using PRIMER 6 and PER-
MANOVA+.

3. Results

Of the analyzed stomachs, 35 (14.4%), 12 (10.5%), and 10 (8.1%) contained only par-
asites (cestodes and nematodes) in Scyliorhinus canicula, Mustelus mustelus, and M. punc-
tulatus, respectively. They were thus considered empty and not included in the analyses.
A summary of the total length and of the number of males/females for each species, size
group, and season is reported in Table 1 and Figure S1. In M. mustelus, the proportion of
males and females in the big- and the small-sized groups significantly differed (χ2 = 13.01,
p < 0.001), while it was similar in S. canicula (χ2 = 0.98, p = 0.32) and M. punctulatus (χ2 = 0.10,
p = 0.74). In S. canicula, a significantly higher proportion of females was observed in the
cold season (χ2 = 13.95, p < 0.001), while the proportion of small and big animals did not
differ between seasons (χ2 = 0.65, p = 0.42). All the M. punctulatus specimens and all the big
M. mustelus females were sampled only in the warm season; therefore, the factor season
was excluded from the analyses for these two species.

The cumulative diversity curves reached an asymptote for the three species, indicating
that the number of analyzed stomachs was high enough to describe their diet (Figure 1).
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Figure 1. Shannon–Weaver diversity index (Mean, solid line ± standard deviation, dotted lines) for
the cumulative diversity curve of Scyliorhinus canicula (SC, grey), Mustelus mustelus (Mm, blue), and
M. punctulatus (Mp, green).

3.1. Intraspecific Analysis
3.1.1. Scyliorhinus canicula

The main taxonomic categories in the diets were crustaceans (%PSIRI = 59.6%) and
teleost fishes (25.3%), followed by cephalopods (9.5%) and polychaetes (4.7%; Table S1).
In particular, the crustaceans Liocarcinus depurator, unidentified Caridea, unidentified
Portunidae, unidentified Brachiura, Liocarcinus sp., and Rissoides desmaresti were the most
important prey categories (%PSIRI > 4%; Table S1). S. canicula had a generalist feeding
strategy, as almost all prey categories were rare, being present in less than 25% of the
analyzed stomachs, and all having a prey-specific abundance (%PN) lower than 50%
(Figure 2a). Sex and size, but not their interaction, and season had a significant effect on
%fullness; values were higher in females, in small animals, and in the warm season. Size,
sex, and their interaction did not have a significant effect on the diversity indices, while
H’ and J’ were both significantly higher in the warm season (Table 2). PERMANOVA
highlighted significant trophic differences between sexes and seasons, but not between size
groups (Table 3; Figure 3a,b). The average diet similarity within males and females was
15.3% and 18.5%, respectively, and the average dissimilarity between sexes was 86.2%. The
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average similarity within the warm and the cold season was 20.9% and 15.4%, respectively,
while the average difference between the two seasons was 82.5%. Table 4 reports the main
prey categories contributing to the observed differences.
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Figure 2. Feeding strategy of (a) S. canicula, (b) M. mustelus, and (c) M. punctulatus represented as
the prey-specific abundance (%PN) of every prey category identified in the diet plotted against its
percent frequency of occurrence (%FOi). Each black dot corresponds to a different prey category
identified in the diet of the species.

Table 2. Results of the linear models testing the effect of size, sex, season, and the interaction between
size and sex on fullness% and Shannon–Wiener and Pielou diversity indices for S. canicula (Sc),
M. mustelus (Mm), and M. punctulatus (Mp). Statistically significant results are in bold. The mean
(±standard deviation) of each group is reported.

Fullness% Shannon–Wiener Pielou

Sc Mm Mp Sc Mm Mp Sc Mm Mp

Size F2,197 = 4.45
p < 0.001

F3,98 = 0.44
p = 0.66

F3,109 = 4.02
p < 0.001

F3,196 = 0.96,
p = 0.34

F3,98 = 0.51
p = 0.61

F3,109 = 0.88
p = 0.38

F3,178 = 0.23
p = 0.82

F3,90 = 0.49
p = 0.62

F3,101 = 0.27
p = 0.79

Big 1.90 ± 1.88% 1.29 ±
0.72% 0.68 ± 0.49% 0.70 ± 0.46 0.73 ± 0.41 0.85 ± 0.52 0.62 ± 0.26 0.64 ± 0.22 0.66 ± 0.24

Small 4.32 ± 3.47% 2.08 ±
1.41% 1.48 ± 0.92% 0.82 ± 0.42 0.70 ± 0.46 0.89 ± 0.47 0.63 ± 0.22 0.58 ± 0.26 0.75 ± 0.22
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Table 2. Cont.

Fullness% Shannon–Wiener Pielou

Sc Mm Mp Sc Mm Mp Sc Mm Mp

Sex F2,197 = 2.45
p = 0.02

F3,98 =0.05
p = 0.96

F3,109 =1.64
p = 0.10

F3,196 = 0.62,
p = 0.53

F3,98 = 0.71
p = 0.48

F3,109 = 0.91
p = 0.37

F3,178 = 1.28
p = 0.20

F3,90 = 0.33
p = 0.74

F3,101 = 0.07
p = 0.95

Males 1.41 ± 1.47% 1.65 ±
1.16% 1.32 ± 0.88% 0.76 ± 0.45 0.70 ± 0.49 0.88 ± 0.46 0.72 ± 0.23 0.59 ± 0.28 0.74 ± 0.19

Females 2.55 ± 2.54% 1.68 ±
1.18% 1.35 ± 0.95% 0.71 ± 0.46 0.72 ± 0.41 0.89 ± 0.49 0.59 ± 0.26 0.61 ± 0.23 0.72 ± 0.26

Size × sex F3,196 = 1.28
p = 0.20

F3,98 = 0.16
p = 0.87

F3,109 = 1.81
p = 0.07

F3,196 = 0.64
p = 0.52

F3,98 = 0.82
p = 0.41

F3,109 = 1.03
p = 0.31

F3,178 = 0.05
p = 0.96

F3,90 = 0.41
p = 0.68

F3,101 = 0.01
p = 0.99

Season F1,198 = 2.14
p = 0.03 / / F1,198 = 2.15

p = 0.03 / / F1,180= 2.22
p = 0.06 / /

Warm 2.33 ± 2.22% 0.84 ± 0.42 0.69 ± 0.21
Cold 2.28 ± 2.62% 0.58 ± 0.47 0.53 ± 0.28

Table 3. Results of the permutational multivariate analysis of variance (PERMANOVA) on the dietary
composition by biomass of S.canicula, M. mustelus, and M. punctulatus. Bold values highlight statistical
significance. df = degrees of freedom, SS = sum of squares, and MS = mean sum of squares.

Source df SS MS Pseudo-F P (perm) Unique Perms

S. canicula

Size 1 3631.9 3631.9 1.008 0.420 999
Sex 1 10131 10131 2.811 0.003 997
Season 1 7303.9 7303.9 2.027 0.034 999
Size × Sex 1 3867.8 3867.8 1.073 0.370 999
Size ×
Season 1 4132.5 4132.5 1.147 0.319 999

Sex × Season 1 3229.4 3229.4 0.896 0.571 999
Size × Sex ×
Season 1 3468.8 3468.8 0.965 0.474 998

Residual 192 6.9 × 105 3603.9
Total 199 7.4 × 105

M. mustelus

Size 1 20353 20353 8.156 0.001 999
Sex 1 1390.3 1390.3 0.557 0.737 999
Size × Sex 1 6193.4 6193.4 2.482 0.039 999
Residual 98 2.4 × 105 2495.5
Total 101 2.9 × 105

M. punctulatus

Size 1 41462 41462 13.123 0.001 997
Sex 1 3348.9 3348.9 1.060 0.391 999
Size × Sex 1 4254.8 4254.8 1.347 0.204 996
Residual 109 3.4 × 105 3159.5
Total 112 3.9 × 105
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Figure 3. Non-metric multidimensional scaling (nMDS) ordination of dietary composition by biomass of
(a) sexes (females, F: orange •; males, M: green�) and (b) seasons in S. canicula (cold season, Cold: blue�;
warm season, Warm: red •), (c) the combination of the levels of sex and size factors in M. mustelus (small
females, F Small: red •; small males, M Small: orange�; big females, F Big: blue •; big males, M Big: light
blue�), and (d) sizes in M. punctulatus (small animals, Small: red •; big animals, Big: dark blue�).

Table 4. Results of the similarity percentage (SIMPER) analysis reporting the average biomass and
percentage contribution of the different prey categories to the difference observed between sex and
season groups in the diet of S. canicula, and between size groups in the diet of M. mustelus and M.
punctulatus. Only prey categories contributing at least 4% to the difference were included in the table.

Species Factor Prey Category Average
Biomass

Average
Biomass

Contribution
(%)

S. canicula

Sex

Females Males

Portunidae 1.15 0.33 21.77
Unid. Teleosts 0.44 0.24 9.24
Other Caridea 0.14 0.33 7.45
Unid. Crustaceans 0.19 0.22 6.62
Sepiolidae 0.17 0.22 5.91
Other Brachiura 0.18 0.19 5.82
Rissoides desmaresti 0.11 0.14 4.63
Cepola macrophthalma 0.15 0.12 4.36
Alpheus glaber 0.08 0.17 4.19
Flatfishes 0.29 0.06 4.10

Season

Cold season Warm season

Portunidae 0.95 0.99 24.02
Unid. Teleosts 0.46 0.35 10.70
Flatfishes 0.36 0.14 6.54
Unid. Crustaceans 0.11 0.26 6.35
Other Brachiura 0.16 0.20 5.46
Sepiolidae 0.11 0.23 4.97
Deltentosteus quadrimaculatus 0.22 0.11 4.62
Other Caridea 0.14 0.22 4.61
Cepola macrophthalma 0.09 0.19 4.31
Unid. Polychaete 0.12 0.13 4.10

M. mustelus Size

Small animals Big animals

Portunidae 1.39 5.83 39.39
Squilla mantis 1.40 2.59 21.43
Other Brachiura 0.40 0.69 7.48
Ethusa mascarone 0.85 0.00 6.68
Unid. Crustaceans 0.39 0.25 4.24
Other Stomatopoda 0.22 0.37 4.20
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Table 4. Cont.

Species Factor Prey Category Average
Biomass

Average
Biomass

Contribution
(%)

M. punctulatus Size

Portunidae 0.04 2.20 25.17
Squilla mantis 0.02 0.85 9.13
Unid. Teleosts 0.15 0.69 7.30
Other Polychaete 0.40 0.49 6.41
Pelagic fishes 0.13 0.48 5.45
Other Brachiura 0.20 0.46 5.35
Other 0.02 0.48 5.00
Unid. Cephalopods 0.14 0.41 4.56
Anomura 0.35 0.07 4.36
Unid. Processidae 0.36 0.00 4.19

3.1.2. Mustelus mustelus

This diet was almost exclusively composed of crustaceans (%PSIRI = 95.3%). In
particular, Squilla mantis, L. depurator, unidentified Portunidae, Ethusa mascarone, Liocarcinus
sp., unidentified Brachiura, and Carcinus aestuarii were the most important prey categories
(Table S1). Almost all prey categories were rare; however, S. mantis was present in more
than 45% of the stomachs, and L. depurator and unidentified Decapoda had a prey-specific
abundance higher than 40% (Figure 2b). This suggests that M. mustelus had mostly a
generalist feeding strategy, apart from a weak specialization for the abovementioned prey
categories. Size, sex, and their interaction did not have a significant effect on %fullness or
the H’ or the J’ index (Table 2). PERMANOVA analysis highlighted the significant effects
of the interaction between sex and size and of the factor size (Table 3 and Figure 3c); the
pairwise test highlighted that small and big animals were significantly different from one
another independently from the sex, but small females and big males did not differ (Table 5);
however, only a few big males were sampled (N = 6). The average diet similarity within
small and big animals was 25.0% and 42.3%, respectively, while the average dissimilarity
between size groups was 77.6% (Table 4; see Table S2 in Supplementary Materials for the
results of the interaction between sex and size).

Table 5. Results of the pairwise test investigating the effect of the interaction between the factors
sex and size on the dietary composition by biomass of M. mustelus. Bold values highlight statistical
significance. SF = small females, SM = small males, BF = big females, and BM = big males.

Comparison t P (perm) Unique Perms

SF, SM 1.2579 0.140 998
SF, BF 3.3407 0.001 999
SF, BM 1.3271 0.120 998
SM, BF 3.4784 0.001 999
SM, BM 1.8145 0.008 995
BF, BM 1.2952 0.173 998

3.1.3. Mustelus punctulatus

This diet was dominated by crustaceans (66.2%), but polychaetes (14.1%), teleosts
(9.0%), and cephalopods (8.7%) were also present. According to %PSIRI, unidentified Pro-
cessidae, Dardanus sp., unidentified Caridea, and Dardanus calidus were the most important
prey (Table S1). Almost all prey categories were rare, apart for unidentified polychaetes and
unidentified Processidae, which were present in more than 60% and 40% of the stomachs,
respectively, and L. depurator and unidentified Processidae, which had a prey-specific abun-
dance approaching 50% and higher than 55%, respectively (Figure 2c). This suggests that
M. punctulatus had a weak specialization for polychaetes, L. depurator, and Processidae, and
otherwise, a mostly generalist feeding strategy. Size, but neither sex nor their interaction,
had a significant effect on %fullness; values for small animals were significantly higher
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than those measured in big animals. Size, sex, and their interaction did not have a signif-
icant effect on H’ or J’ index (Table 2). PERMANOVA analysis highlighted a significant
difference in the diet between size groups (Table 3, Figure 3d). The average similarity in
the diet within small and big animals was 22.5% and 23.5%, respectively, while the average
dissimilarities between size groups was 92.6% (Table 4).

3.2. Interspecific Comparison

The simplified Morisita–Horn index is equal to 0.71 between the pair S. canicula and
M. mustelus, 0.54 between S. canicula and M. punctulatus, and 0.32 between M. mustelus
and M. punctulatus. PERMANOVA analysis highlighted a significant difference in the diet
between the three species, and the pairwise test showed that all species differed from each
other (Figure 4; Table 6). The average diet similarity was 16.1% within S. canicula, 28.3%
within M. mustelus, and 17.9% within M. punctulatus. The average dissimilarity was 87.4%
between S. canicula and M. mustelus, 89.5% between S. canicula and M. punctulatus, and
91.1% between M. mustelus and M. punctulatus (Table 7).
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Figure 4. Non-metric multidimensional scaling (nMDS) ordination of dietary composition by biomass
of S. canicula (Sc, grey N), M. mustelus (Mm, blue �), and M. punctulatus (Mp, green •).

Table 6. Results of permutational multivariate analysis of variance (PERMANOVA) on the dietary
composition by biomass of the three species and of the associated pairwise tests. Bold values highlight
statistical significance. Sc = S. canicula, Mm = M. mustelus, and Mp = M. punctulatus. df = degrees of
freedom, SS = sum of squares, and MS = mean sum of squares.

PERMANOVA

Source df SS MS Pseudo-F P (perm) Unique Perms

Species 2 1.8 × 105 91733 26.52 0.001 998
Residual 412 1.4 × 105 3459.1
Total 414 1.6 × 105

Pairwise comparison

Pair-wise comparison t P (perm) Unique perms

Sc, Mm 5.211 0.001 999
Sc, Mp 4.492 0.001 999
Mm, Mp 6.002 0.001 999
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Table 7. Results of the similarity percentage (SIMPER) analysis reporting the average biomass and
percentage contribution of the different prey categories to the difference observed in the diet between
S. canicula and M. mustelus, S. canicula and M. punctulatus, and M. mustelus and M. punctulatus. Only
prey categories contributing at least 4% to the difference were included in the table.

Prey Category Average Biomass Average Biomass Contribution (%)

S. canicula M. mustelus

Portunidae 0.97 3.70 31.01
Squilla mantis 0.01 2.02 18.80
Other Brachiura 0.18 0.55 6.75
Unid. Teleosts 0.40 0.27 5.24
Ethusa mascarone 0.00 0.41 5.17
Unid. Crustaceans 0.19 0.32 4.57

S. canicula M. punctulatus

Portunidae 0.97 0.44 17.72
Unid. Teleosts 0.40 0.25 8.32
Other Polychaete 0.13 0.42 7.30
Unid. Crustaceans 0.19 0.25 6.60
Processidae 0.10 0.29 6.57
Anomura 0.01 0.30 6.00
Other Brachiura 0.18 0.25 5.75
Other Caridea 0.18 0.18 5.52
Sepiolidae 0.18 0.13 4.50

M. mustelus M. punctulatus

Portunidae 3.70 0.44 30.86
Squilla mantis 2.02 0.17 18.62
Other Brachiura 0.55 0.25 6.77
Ethusa mascarone 0.41 0.11 5.52
Unid. Crustaceans 0.32 0.25 4.78
Other Polychaete 0.04 0.42 4.18

3.3. Stable Isotope

Variation in average δ15N per species was restricted, ranging from 12.09‰ to 13.59‰;
on the opposite, δ13C values ranged from −13.13‰ to −17.60‰ (Figure 5, Table S3). δ15N
did not differ significantly among the three species, nor between big- and small-sized
individuals for M. mustelus (p > 0.05), while for M. punctulatus, significant differences
were observed (H1,23 = 7.111, p = 0.008). No significant differences were found between
sexes within species (all p > 0.05). δ13C showed high variation within species (Figure 5,
Table S3), presenting significantly higher values (always above−16.00‰) in big individuals
of M. punctulatus (H1,21 = 6.788, p = 0.009) and M. mustelus (H1,15 = 9.070, p = 0.003) as
compared to the small ones. Pertaining to prey, a decreasing trophic position in the food
web was observed from teleosts to crustaceans and mollusks (bivalves), with average δ15N
decreasing from 11.85‰ to 8.92‰ and 5.09‰, respectively, while δ13C average values
ranged from −17.00‰ to −19.20‰ (Figure 5, Table S4).
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dard deviation) for the three shark species categorized for size (S. canicula: grey N; M. mustelus: blue
�; M. punctulatus: green •) and for their main prey categories (Teleost: orange N; Crustacean: orange
N; Mollusks: orange N). Data are reported as the isotope ratio of the sample relative to the standards
(international standard Vienna Pee Dee Belemnite (VPDB) for C and atmospheric nitrogen for N).

4. Discussion

To better characterize the processes structuring communities in the northwestern
Adriatic Sea, we investigated the diet and trophic strategy of three of the most abundant
shark species in the area, namely Scyliorhinus canicula, Mustelus mustelus, and M. punctulatus.
For the first time for the area, we also assessed their trophic positions via stable isotope
analysis and investigated their potential diet overlaps and resource partitioning.

This study confirms the important role of the three studied species in the northern Adri-
atic Sea as mesopredators [31,78] feeding on crustaceans, teleosts, mollusks, and polychaetes.
Moreover, the three species were confirmed as generalist predators [79], although the two
Mustelus species showed some weak specializations for some prey categories. Despite the
general common preponderance of crustaceans in the diet of the three species, some dis-
similarities emerged from the comparisons with dietary studies conducted in the Atlantic
Ocean [80–87], other areas of the Mediterranean Sea [31,32,40,41,88,89], and even the north-
eastern Adriatic Sea [42–46,90]. This pronounced geographic variability likely results from
the opportunistic foraging strategy of these species, whose diet reflects prey availability in
different areas [18,19,32,40,87]. For the northern Adriatic Sea, differences in habitats between
the two sides of the basin may account for the reported diet variability. Indeed, the importance
of polychaetes in the diet that we observed in the northwestern Adriatic Sea for S. canicula
and, especially, M. punctulatus can be attributed to the preponderance of muddy habitats in
comparison with the rocky substrates of the eastern side [25].

Feeding intensity (i.e., stomach fullness; [59]) was higher in small S. canicula and M. punc-
tulatus [45], and in female S. canicula. It is likely that both groups require higher amounts
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of energetic resources: young, small individuals to sustain faster growth rates [91,92], and
females to sustain reproduction [32,34]. Stomach fullness was also higher in the warm
season in S. canicula, potentially to sustain the faster metabolism associated with higher
temperatures [93,94]. S. canicula diet was more diverse and homogeneous in the warm season,
likely because of seasonal differences in prey availability [41]. As also reported in other
areas [32], the diet of S. canicula differed between sexes. This species shows sexual segrega-
tion [34,35], with males and females occupying different habitats and, therefore, feeding on
different prey. Alternatively, the sexual dimorphism of teeth and mouth morphology can
explain the sexual dietary difference. Males have longer, sharper teeth that are more efficient
at capturing soft-bodied prey [95], and indeed, a greater importance of Sepiolidae in the diet
of male S. canicula is observed. Contrarily to previous studies [32,34,46], no ontogenetic shifts
in diet were highlighted in S. canicula, possibly because of the narrow size range and low
number of small animals sampled. Broadening the investigated size ranges could allow for
highlighting patterns related to ontogenetic shifts in diet. On the other hand, ontogenetic diet
shifts were confirmed in the two Mustelus species [31,41,44,88]. Smaller crustaceans (Ethusa
mascarone and Anomura, mostly Dardanus sp. and Processidae) were more or exclusively
present in the diet of small animals, while larger (Portunidae, S. mantis, and Brachiura) and
faster prey (teleosts and cephalopods) were more abundant in the diet of big animals. In
aquatic environments, predation is limited by the mouth gap [96], and as an individual grows,
it is able to prey upon larger animals [41] thanks to a greater crushing capacity [87] and
stronger bite and suction force [97]. Moreover, as animals grow, their swimming abilities also
improve, allowing them to hunt faster animals [98]. In the northwestern Adriatic Sea, big
Mustelus co-occur with smaller ones [26,36,37]; therefore, ontogenetic diet shifts are essential
in reducing competition, allowing co-occurrence, and increasing survival and fitness [2,3,7].

Although the investigated species are generalist predators, their diets significantly
differed. The important crustacean composition of the Mustelus species’ diet [31,38,42,44]
conforms to their dentition, presenting molariform teeth with weak cusps fused together at
the base, creating a strong plate that can efficiently crush crustacean shells [30]. On the other
hand, S. canicula has sharp teeth with two to four lateral cusps, also suitable for holding
soft-bodied prey such as teleosts and mollusks [95]. Moreover, S. canicula is a small, benthic,
sedentary species that lives mainly on rocky bottoms [30], while the two Mustelus species
are larger [36], benthopelagic, active species. These marked ecological and morphological
dissimilarities may explain the dietary differences observed between S. canicula and the
two Mustelus species. On the other hand, M. mustelus and M. punctulatus co-occur in the
same macro-geographic areas, exploit similar habitats, and have overlapping bathymetric
distribution [26,99] and very similar morphology [37]; nonetheless, these two species
differ in their diet. M. mustelus attains larger sizes [36] and can hunt larger and/or faster
prey [96,98,100], as suggested by the higher importance of large crustaceans (Portunidae,
S. mantis, and Brachiura) in its diet. Nevertheless, the diets of these two species also differed
when larger M. mustelus were excluded from the analysis (Figure S2 and Tables S5 and S6),
and therefore, size difference cannot be the only explanation. Despite similar morphology,
the mouth and dermal denticles’ shape vary between the two species [37], and preliminary
observations suggest that body morphology also differs, including the shape and dimension
of the first dorsal, pectoral, and caudal fins [101,102]. Fins are fundamental in determining
swimming type, maneuverability, and performance [103–105]. Similarly, specific dermal
denticles’ morphologies are associated with the enhancement of swimming performance
through drag reduction [106,107]. The difference existing in dermal denticles and fin
morphology, along with those in mouth shape [108], possibly accounting for different
swimming performances and predatory and feeding abilities, could be responsible for
the observed diet dissimilarities. This would allow the two species to target different
prey and finely differentiate the occupied habitat within the same broad geographic area
and benthopelagic zone [103–105], as observed in other sympatric Mustelus species [87].
M. mustelus, consuming almost exclusively benthic crustaceans, seems to feed in close
proximity to the seabed. On the other hand, M. punctulatus seems to also exploit the water
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column immediately above the sea bottom, as its diet is mostly composed of benthic prey
but also benthopelagic teleost and mollusks.

The observed differentiated diets fit with those predicted by ecological theories for
sympatric species; indeed, some degree of differentiation in the diets of species living in
the same geographic area and habitat is functional to ensure resource partitioning and
reduce the intensity of competition [2,3,7,109,110]. This mechanism could be the basis of the
lower similarities between the two congeneric species respective to those with S. canicula.
Contrarily, S. canicula has a broader diet, foraging opportunistically on all the variety of prey
present in the rocky-bottom habitat it occupies [111], converging in the use of food resources
with both Mustelus species without entering in strong competition with them [2,3,7,109].
Indeed, the diet similarity within S. canicula samples is the lowest observed among the
three species, with the highest total number of prey taxa identified (Table S1). Both M.
mustelus and M. punctulatus showed some, albeit weak, specializations in prey categories,
while S. canicula showed none. All these observations seem to support the broad generalist
foraging of S. canicula.

The results obtained from stomach content analysis are confirmed by isotope analysis,
even considering the relatively limited number of data, especially for prey. The δ15N values
of the three species did not reveal significant differences in the trophic position [21–23]. In
addition, no change for this parameter was observed when size and sex were considered,
except for M. punctulactus, and only for size. While this result shows that the three species
occupy the same trophic level, δ13C highlights that this condition is mirrored by differences
in terms of carbon sources in their diet [21–23]. In fact, for this parameter, marked and
significant differences were observed between small and big individuals of the Mustelus
species, a result that is consistent with the ontogenetic shift observed in these species
through stomach content analyses. The direction of such change indicates a shift toward
less negative values of δ13C of large-sized specimens. Similar results were reported by
Espinoza et al. [112] for other elasmobranch species, in which size was a relevant driver for
the changes in δ13C associated with differences in diet composition.

In terms of absolute values, the δ15N observed in the muscle of the three shark species
is compatible with the prevalence of crustaceans in their diet and a possible increase of
about 3.0–3.4‰ with an increase of one trophic level [113]. However, the relevant prey
categories of S. canicula and M. punctulatus also included other taxa, as shown by the
stomach data. In this context, the still relatively low proportion of prey presenting either
a higher trophic level (such as teleosts) or lower trophic level species (like bivalves) as
compared to intermediate levels (crustaceans) could have prevented the emergence of clear
differences in the trophic position of the three species. Such a pattern could have also been
influenced by the fact that, as reported by Fortibuoni et al. [68], the δ15N of elasmobranchs
may present lower values as compared to the actual trophic position of the species due
to high levels of urea retained by sharks for osmoregulatory purposes. In terms of δ13C,
S. canicula and small Mustelus specimens showed values similar to those observed in their
main prey, while larger M. mustelus and M. punctulatus presented higher δ13C values. The
higher δ13C estimates for the big-sized individuals reflect an increase of the lighter 12C
isotope with respect to the heavier 13C, likely favored by dietary adjustments determined
by several factors, such as habitat changes, movement patterns, and predatory capacity.
In this regard, it is likely that large-sized Mustelus specimens present a habitat use where
prey have a higher incidence of carbon source related to marine productivity processes as
compared to the coastal, inshore ones, which are characterized by lower (i.e., more negative)
δ13C values [21,22]. Therefore, large-sized specimens have a prevalence of food intake from
sources of carbon from the open sea, possibly reflecting an ontogenetic shift in habitat.

Other factors that were not investigated could influence the diet, isotope values, and
trophic relationships observed in this study. Isotopic values integrate diet over long pe-
riods [21–23]; because Mustelus species undertake seasonal migrations [36], their isotopic
values could be influenced by the prey consumed during the period spent outside the
study area. On the other hand, as stomach content analysis reflects more closely the prey
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consumed in a short period of time [21–23], the results obtained from this technique reliably
represent the diet of the species in the study area. However, the results of the stomach
content analysis accord with those of the stable isotope analysis, suggesting that these
species also feed on prey with similar trophic levels outside the study area. Neverthe-
less, broadening the spatial scale of the assessment could further allow for distinguishing
patterns related to changes in habitat use. The different bentho-demersal communities
present in the habitats occupied by S. canicula and the Mustelus species could also have
influenced the observed trophic partitioning [18,19,32,40,87]. However, refined information
on small-scale distributions of prey species is not yet available. Finally, other mesopreda-
tory bentho-demersal elasmobranchs could compete with the investigated species and
influence the trophic relationships in the area. Indeed, several shark (S. stellaris and Squalus
acanthias), skate (Raja clavata and R. asterias), and ray species (Pteroplatytrygon violacea, Dasy-
atis pastinaca, Myliobatis aquila, and Aetomylaeus bovinus) are abundant in the northwestern
Adriatic Sea [26,28], and some of them, at least in other areas, show similar diets to those of
the species investigated in this study [74,114–117]. Improving the knowledge of the diet of
these species in the area will better characterize the trophic and community dynamics of
the basin.

5. Conclusions

Our study confirmed the important mesopredatory role of the three investigated shark
species, simultaneously highlighting some unexpected resource partitioning and, at the
same time, trophic similarities between them. Given that most of the elasmobranch species
living in the northern Adriatic Sea are exposed to high fishing pressures [26] and have
undergone severe declines [26,29], further research is needed. Ultimately, these data should
be used in ecosystem models aimed at investigating potential top-down consequences of
the decline of these species [26].
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