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Abstract: Kola Bay is the most developed coastal area in the Russian part of the Barents Sea, but
despite a long history of research, information about the local shallow-water benthic communities is
lacking. For this reason, in this fjord area, we investigated the soft-bottom zoobenthos to determine
its distribution and the factors influencing its abundance, biomass, and diversity. An analysis
of 24 samples collected by divers at eight stations located at 7–8 and 10–15 m depths revealed
127 benthic taxa with an average abundance and biomass of 12,190± 4740 ind. m−2 and 30 ± 8 g m−2,
respectively. The most severe abiotic conditions (high rates of sedimentation and eutrophication)
were found at the head of the bay while the highest densities of predator red king crabs were
registered in the middle part. The total benthic abundance and biomass, as well as the abundances
of infauna, mobile taxa, subsurface deposit feeders, and surface deposit feeders, decreased towards
the central part of the bay, reflecting gradients in the environmental conditions. In the inner part
of the bay, we registered two communities: Cossura pygodactylata + Ciliatocardium ciliatum and
Arctica islandica + Laonice cirrata, while the benthos of the middle part was less structured. Redundancy
analysis indicated that the faunal abundances were influenced mainly by predator density (negative
association) and the organic matter content (positive association). The total benthic biomass was
negatively linked to water temperature due to the predominance of cold-water species in the area
and a close positive association of this factor with crab abundance. In contrast, the highest diversity
was registered at the warmer sites, which may have been a reflection of the borealization process
in the Arctic. Our results contribute towards the proper management and conservation of the
local benthic ecosystem and provide reference data for future monitoring programs and coastal
management guidelines.

Keywords: benthic diversity; benthic communities; environmental drivers; fjord; Kola Bay; Barents
Sea

1. Introduction

The Barents Sea is one of the largest shelf areas in the world [1,2]. The northern
part of the sea is characterized by a cold Arctic climate, relatively low productivity, and
ice-associated ecosystems [1,3,4], while the southern part represents warmer areas with
highly productive ecosystems [1,5,6]. The high productivity of the Barents Sea supports
large-scale fisheries for Atlantic cod, haddock, capelin, beaked redfish, golden redfish, and
Greenland halibut. The economically important crustaceans are northern shrimp, red king
crab, and snow crab [1,7,8].

The heterogeneous physical, chemical, and biological environments that are structured
and interact along a continuum of spatial and temporal scales produce a rich mosaic of
habitats and processes, especially with regard to the composition, structure, and functioning
of the coastal marine ecosystems [9–12]. The Barents Sea coastal zone contains diverse
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benthic communities that are important not only as consumers of primary production and
food for various top predators such as fish and crabs, but also for the biogenic structure,
nutrient turnover, and sediment stabilization they provide [13,14]. Estuarine benthic
ecosystems are subject to great environmental variability [15–18]. As a result, the life
cycles of the marine benthic organisms here show marked seasonal patterns in growth and
reproduction [19].

Despite severe environmental conditions and seasonal limitations in the availability
of particulate organic matter, the shallow-water marine benthic communities in polar
regions can exhibit high faunal abundances and biomass [20–22]. However, the factors
driving the diversity and distribution of the coastal benthic fauna are not well understood.
There are many environmental variables that may influence the composition and structure
of the sea floor biota, and variations in the physical environment may create habitat
heterogeneity over a range of small and large geographical scales [18]. In cold-water regions,
key environmental factors include food supply, substrate properties, sea ice duration,
temperature, salinity, light, and nutrient concentrations [23–25]. However, the influence
of these factors on the distribution of the benthic communities may vary considerably
between regions. For example, sediment characteristics have been found to be significant
in many locations [24,26,27], while at other sites the relationship between the benthic
abundance and diversity indices and the substrate characteristics has been found to be
less consistent [28–32], reflecting the possible role of other oceanographical factors and
biological interactions [33,34].

Recent studies have shown clear natural and human-mediated climate variability,
leading to shifts in water stratification, light regime, ice coverage, acidification, nutrient
availability, biogeochemical cycles, and carbon fluxes in the Barents Sea [35,36]. Such
environmental changes are expected to influence benthic communities, and thus, the
studies focused on the assessment of their structure and functioning are of high relevance.
Furthermore, the coastal sites of the Barents Sea are nursery areas for the red king crab
Paralithodes camtschaticus (Tilesius, 1815) [37,38], which was introduced from the North
Pacific in the 1960s to create a basis for viable fisheries. This species has become very
abundant in the Barents Sea, and for many local benthic species, it is currently a primary
predator. The total number of crabs can fluctuate within a wide range [39–42] depending
on fishing pressure and climatic factors [8,38,43].

As more than half of the human population lives within 100 km from the shore, coastal
zones experience intensive human activities associated with fisheries, aquaculture, trans-
port, oil and gas industries, and tourism [44]. This leads to substantial changes in the
natural processes and habitat quality. In most cases, the ability of ecosystems to provide
appropriate conditions for the survival of individual organisms, populations, and commu-
nities is lower than in offshore zones [45]. Thus, research on coastal benthic communities is
important to monitor their ecological status and to evaluate the possible changes in the feed-
ing habits of commercially important species [46,47]. Taking into account the importance
of the Arctic as a key development priority, the strategy for the development of the Russian
Arctic zone declares “the growth of fishery industries including technological re-equipment
of local enterprises, construction of new vessels and infrastructure, introduction of new
production facilities and development of aquaculture” [48]. Many of these activities are
currently being planned or undertaken in Kola Bay [49], which makes this area a priority
for research in order to assess the health status of the local biota.

The benthic communities of Kola Bay have been studied since the early 20th cen-
tury [50–55], but these surveys covered mainly deep-water locations, whereas the shallow-
water sites have not yet been well studied due to the difficulties in on-board benthic
sampling. For this reason, our study aimed to describe the composition, distribution, and
diversity of the shallow-water soft-bottom benthic fauna in Kola Bay and to evaluate the
role of environmental factors in driving the structure of the local benthic communities.
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2. Materials and Methods
2.1. Study Area

Kola Bay is a typical 51-km long fjord with its width gradually decreasing from
3.0–3.5 km near the entrance to 1.5–2.5 km in the center and to 1.0–1.5 km in the apex of
the bay [56]. The total area and the volume of Kola Bay at low tide are 175.295 km2 and
15.494 m3, respectively [57]. There are two bends dividing the area into three parts: the
northern, the middle, and the southern. The depth increases from the head (maximum 40 m)
to the center (170–180 m) and to the mouth of the basin (>300 m). Kola Bay is separated
from the open sea by a sill at 104 m depth. The bottom sediments vary from silt or sandy
silt and muddy sand at the deeper sites to sand, pebbles, and rocks at the sites with high
water flow velocity [50]. Two rivers flow into the head of the bay with an annual run-off
volume of 9.09 km3, and the main interactions between the river and the sea waters occur
in this area [57,58]. Although there is a clear gradient in salinity in the surface layer in
Kola Bay, the bottom salinity is quite stable (33–34 psu) across the area apart from a small
site in its southern part. At 15–20 m depths, the water temperature varies from 0.3 to 1 ◦C
in winter and from 8 to 10 ◦C in summer [57,59]. At 5 and 10 m depths, the temperature
in the southern part of the area is lower than in the central part by 3.5–4.0 ◦C in summer,
1 ◦C in autumn, and 0.3 ◦C in winter. For this reason, the seasonal amplitudes of the water
temperatures in the south of Kola Bay are lower (by 4.7 at 5 m and 5.9 ◦C at 10 m), compared
to the central part (5.6 and 7.3 ◦C, respectively) [59].

The influx of the Atlantic waters prevents the area from freezing, although in ex-
tremely cold winters, the southern part is covered with ice. Stratification processes occur
during the spring–summer period, forming a distinct halocline and thermocline within the
surface layer [56]. The waters of Kola Bay are well aerated, and the oxygen concentration
varies from 10.3–10.9 mg L−1 in autumn and winter to 10.3–13.0 mg L−1 in spring and
summer [57].

The main benthic predators, red king crabs, have been registered in Kola Bay since the
1990s. The juvenile red king crabs occur at shallow-water sites with higher densities in the
central and northern parts of the area. The juvenile crabs prefer bivalve mollusks [60]. The
adult crabs migrate to Kola Bay in spring for mating and spawning and in early summer
for feeding [61].

2.2. Sample Collection and Analysis

Samples were collected by divers at 4 sites (A, B, C and D) and 8 stations (two at each
site) in the central and southern parts of Kola Bay during September–November 2006, at
depths ranging from 7 to 15 m (Figure 1).

The sampling sites differed substantially in terms of the distance from the rivers enter-
ing the head of Kola Bay, the sediment compositions, and other environmental conditions
(Table 1).

At each station, the water temperature was measured with a thermometer (precision = 0.01 ◦C).
Water samples were taken, and in the laboratory, we determined water salinity using an
electronic salt meter (precision = 0.005). The data for the seasonal amplitudes in temperature
and salinity were obtained from the literature [59].
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Table 1. Summary of characteristics of sampling stations in Kola Bay.

Parameter
Station

A1 A2 B1 B2 C1 C2 D1 D2

Latitude 69.97364 68.97344 69.03966 69.03957 69.07886 69.07823 69.11787 69.11787
Longitude 33.0292 33.03041 33.03225 33.03443 33.20043 33.20071 33.39318 33.39404

Distance from the fjord head, km 10 10 17 17 25 25 34 34
Abiotic variables

Depth, m 7 11 7 10 8 11 7 15
Bottom temperature, ◦C 7 7 7 7 8 8 8 8

Bottom salinity, psu 32.4 33.2 34.2 34.4 33.1 34.0 33.3 34.6
Seasonal temperature amplitude, ◦C * 5.3 5.9 5.6 4.7 7.3 7.0 6.0 5.6

Seasonal salinity amplitude, psu * 5.7 1.0 3.5 0.9 3.0 2.4 3.3 0.5

Sediments Silt Silt Silty
sand

Silty
sand

Silty
sand Silty sand Sand,

gravel
Sand, gravel,

pebbles
Size categories of sediment grains:

Pebble >10 mm 0 0 0 0 0 0 0 11.0

Gravel
>5 mm 0 0 5.6 0 0 0 1.11 30.54
5–2 mm 0.05 0 16.73 1.01 1.86 0.35 4.66 21.85
2–1 mm 0.10 0.00 10.43 0.86 1.28 0.60 13.96 4.63

Sand
1–0.5 mm 0.61 0.05 9.74 2.07 1.86 1.20 32.28 3.47
0.5–0.25

mm 1.52 0.30 9.70 4.45 8.77 4.77 29.88 6.84

0.25–0.1
mm 6.79 2.22 24.52 13.94 57.58 27.80 11.28 13.72

Aleurite
0.1–0.05

mm 2.65 0.25 19.29 20.70 24.48 33.33 6.13 6.90

0.05–0.01
mm 51.56 50.70 0.77 27.16 1.21 15.24 0.11 0.21

Pelite

0.01–0.005
mm 12.50 16.90 0.13 9.94 0.54 4.42 0.14 0.17

0.005–0.001
mm 3.91 7.61 1.03 2.65 0.27 2.95 0.45 0.67

<0.001 mm 20.31 21.97 2.06 17.22 2.15 9.34 0.00 0.00
Sediment sorting coefficients 0.62 0.62 0.83 0.82 0.55 0.75 0.72 0.79

Organic matter content, % 9.53 8.90 2.71 3.01 1.40 2.34 0.49 2.84
Biotic variables

Red king crab density, ind 1000 m−2 ** 0 0 2 2 2 2 34 130
Red king crab biomass, g 1000 m−2 ** 0 0 71.2 71.2 60 60 465.8 3406

Note. *—taken from Zuyev [59], **—taken from Pavlova and Zuyev [61].

The data for the sediment granulometry (sediment samples from the upper 5 cm layer)
were collected during the diving surveys. The samples were placed in 0.5 L plastic contain-
ers and then frozen. The surface sediments (3 cm) were sectioned, dried, homogenized, and
sampled for sediment grain size analysis by dry sieving, using the standard methods [62].
The sediments were weighed after sieving, and the modal sediment size and percent com-
position were calculated. According to particle size, the sediment fractions were divided
into 4 categories: pelite (<0.01 mm), aleurite (0.01–0.1 mm), sand (0.1–1.0 mm), and gravel
(>1.0 mm). Each station was sampled in triplicate.

A sediment sorting coefficient (Hr) that represents the degree of mixing of the different
sediment types was calculated according to Romanovsky [63]:

Hr =

−
n
∑

i=1
pi · ln pi

ln n

where n is the number of sediment fractions in a sample, and pi is the frequency of occurrence
of fraction i. Ideally sorted or homogeneous sediments (Hr = 0) occur in high-energy areas,
while unsorted or heterogeneous sediments (Hr = 1) normally occur in low-energy areas.

The sediments were dried at 525 ◦C, and the content of organic matter (OM) as a
calcination product was determined according to the standard methods [64].

Three quantitative benthic samples (0.0625 m2 each) were collected per station in all
the accessible habitats (n = 24 samples). The divers collected the upper sediment layer
(15 cm) using a 25× 25 cm metal frame with a mesh bag. Each sample was washed through
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a 0.5 m sieve and then fixed with 4% neutral-buffered formalin. In the laboratory, the
benthic samples were washed again, fixed in 75% ethanol, and identified to the lowest
taxonomic level possible. Taxon abundance and biomass were recorded for each station by
counting and weighing (precision = 0.0001 g) the individuals collected per sample. The
mollusks were weighed with shells; the polychaetes that exhibited tube secretion were
weighed with tubes; and the tube-dwelling encrusting polychaetes were weighed without
tubes. The abundance and biomass data were calculated as individuals per m2 and grams
per m2, respectively.

The trophic structure of the benthic communities was determined according to the
biomasses, abundance, and contribution of the major taxa. For classification, we used
published data on the life-history traits of the benthic species [65–67].

The diversity indices included the total number of species, the Shannon index (H’),
Pielou evenness (J’), and the Simpson index (D’) [68].

To describe the feeding behavior of the soft-bottom benthic communities, which
reflects their health status, we calculated the infaunal trophic index (ITI) [69]:

ITI = 100− 33
0n1 + 1n2 + 2n3 + 2n4

n1 + n2 + n3 + n4

where n1–n4 are the numbers of individual suspension feeders, surface detritus feeders,
surface deposit feeders, and subsurface deposit feeders, respectively. The ITI score varies
from 0 to 100, and the results can be interpreted as follows: 60.0–100.0 = normal community;
30.0–59.9 = changed community; and 0–29.9 = degraded community. We selected the ITI
because this index is known to be sensitive to changes in the environmental conditions
caused by organic pollution [69].

The ecological status of the benthic communities was also evaluated with the difference
of evenness index (DE) [70]:

DE =
JA − JB

lgS

where JA and JB are Shannon diversity indices calculated by abundance and biomass,
respectively, and S is the total number of species in a sample. DE ranges from −1 (no
stress) to +1 (very strong stress), and 0 is the transition point from the unstressed to the
stressed state.

The density and biomass data for the red king crabs at the sampling sites (Table 1)
were obtained from Pavlova and Zuyev [61].

2.3. Statistical Analysis

A permutational multivariate analysis of variance (PERMANOVA) using 999 per-
mutations on the Bray–Curtis dissimilarity index was performed in order to compare
the significant differences in the sediment composition among the sampling sites. The
differences in the sediment composition between the pairs of stations were assessed using
a non-parametric 2 Sample Kolmogorov–Smirnov test in PAST 3.26.

Cluster analysis was used to distinguish the spatial communities based on the Bray–
Curtis similarity measure and group average linkage classification. The similarities between
the station groups based on hierarchical clustering were tested using analysis of similarities
(ANOSIM), in which global R = 1 indicates a complete separation of groups and global
R = 0 indicates no separation [71]. The species responsible for the differences between the
station groups were identified by SIMPER analysis [71]. Prior to the analyses, the data
were square root transformed. All calculations were performed in the software package
PRIMER 5.0.

The relationships between the local environmental variables and the benthic abun-
dances, biomass, diversity, and stress indicators were examined using a redundancy analy-
sis (RDA). This approach was chosen because the preliminary detrended correspondence
analysis indicated that the length of the first axis was <3 standard deviation units, showing
the linear ordination method to be preferable [72]. The input dataset of the environmental
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variables included sediment type (proportions of gravel, sand, aleurite, and pelite at each
station), water temperature, and salinity and their seasonal amplitudes, OM, Hr, depth,
and red king crab density and biomass. Four datasets were used for the response variables:
two included the abundances and biomass of the most common species (n = 42), the third
included N, H’, J, and D, and the fourth dataset included the abundances of the functional
and trophic groups. A Monte Carlo permutation test (n = 999) was used to reveal the
explanatory variables that best explained the benthic abundance, biomass, and diversity
data. All the ordinations were performed using CANOCO for Windows v. 4.5 [72]. Prior
to the analyses, the species abundance and biomass datasets were log(x + 1) transformed
to avoid the highest values from dominating the analyses [72]. In addition, the Pearson
correlation coefficients were calculated to analyze the significance of the linear relationships
between the selected environmental and biological variables.

The mean values are presented with standard errors.

3. Results
3.1. Environmental Conditions

The near-bottom temperature and salinity demonstrated a smooth increase from site A
(7 ◦C, 32.4 psu)) to site D (8 ◦C, 34.6 psu) (Table 1). The highest annual sea water amplitude
occurred at station C1 (7.3 ◦C), while the minimum was found at station A1 (5.3 ◦C). With
respect to the annual sea water salinity amplitude, the latter station had the highest value
(5.7 psu), while the lowest amplitude was registered for station D2 (Table 1).

According to Hr, the stations A1, A2, C1, C2, D1, and D2 were located on poorly sorted
sediments, while stations B1 and B2 were located on unsorted sediments (Table 1).

The major sediment type changed from aleurite silt in the southern part to coarse sand
with gravel in the central part of Kola Bay. The sediment composition differed significantly
among the sampling sites (PERMANOVA, pseudo-F = 8.841, p = 0.001). The pair-wise
comparisons indicated significant differences between neighboring sites (A–B, B–C and
C–D) at the same depth (λ = 1.77–6.19, p < 0.003). The stations located at 7–8 and 11–15 m
depths also demonstrated significant differences (λ = 2.6–4.07, p < 0.01), except for stations
A1 and A2 (λ = 0.69, p = 0.73). The highest contents of fine sediment particles and OM were
found at site A. The sediments at stations B1 and B2 were composed of coarser fractions
at 7 m but not at 11 m, whereas the OM concentration decreased by three times. The
proportion of fine sediment particles tended to decrease at sites C and D. The sediment at
sites B and D contained higher proportions of sand and gravel at 7–8 m when compared
to 10–15 m. The opposite situation was registered at site C. The highest OM values were
observed in the central part of the bay. The OM content was positively correlated with clay
(rs = 0.81, p = 0.006) and negatively with sand content (rs = −0.82, p = 0.0003).

3.2. Benthic Community Structure

A total of 127 taxa were identified, with individuals from six phyla where annelids
and mollusks were dominant. The taxa richness varied from 21 to 52 species per station,
with the highest values at stations A2 and D1 (Table 2).

A frequency of occurrence exceeding 50% was registered for 14 species: the poly-
chaetes Pholoe assimilis (96%), Eteone flava (92%), Chaetozone setosa (92%), Cistenides hyperborea
(84%), Micronephthys neotena (76%), Capitella capitata (76%), Cossura pygodactylata (76%),
Paraougia caeca (60%), Laonice cirrata (60%), Chone duneri (56%), and Leitoscoloplos acutus (52%)
and the bivalves Macoma calcarea (80%), Parvicardium pinnulatum (68%), and
Mytilus edulis (56%). About one-third of all the taxa were found in single samples.
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Table 2. Benthic characteristics of sampling stations in Kola Bay.

Parameter
Station

A1 A2 B1 B2 C1 C2 D1 D2

Number of phyla 5 5 6 4 5 4 4 4
α-diversity (species per station) 31 46 21 41 30 40 52 47

Taxonomic composition

An 65%
Nm 3%
Ar 6%

Mo 23%
Ed 3%

An 70%
Nm 4%
Ar 4%

Mo 20%
Ed 2%

Cn 2%
An 75%
Nm 2%
Ar 6%

Mo 14%
Ed 2%

An 76%
Ar 7%

Mo 15%
Ed 2%

An 67%
Nm 3%
Ar 3%

Mo 23%
Ed 3%

An 72%
Ar 13%
Mo 13%
Ed 3%

An 40%
Ar 15%
Mo 38%
Ed 6%

An 46%
Ar 9%

Mo 43%
Ed 2%

Mean abundance (SE), ind. m−2 13,790
(6100)

40,830
(17,480)

5150
(510)

7780
(450)

3906
(510)

1850
(1400)

21,936
(2905)

2300
(450)

Mean biomass (SE), g m−2 34(19) 25(15) 28(4) 76(60) 24(6) 8(7) 40(6) 5(1)

Dominant by abundance CP
(77%)

CP
(81%)

CS
(22%)

CS
(25%)

CP
(32%)

CH
(17%)

NG
(39%)

NG
(37%)

Dominant by biomass CC
(54%)

CP
(37%)

LC
(57%)

AS
(61%)

ME
(39%)

LA
(30%)

BC
(52%)

ME
(20%)

H’ 1.56 1.34 3.88 3.35 2.76 4.18 3.04 3.77
J’ 0.32 0.24 0.69 0.63 0.56 0.79 0.53 0.68
D 0.60 0.66 0.11 0.15 0.24 0.08 0.21 0.17

ITI 6.5 4.5 45.4 36.2 17.1 16.2 35.0 38.1
DE 0.17 0.32 –0.24 –0.29 0.07 –0.19 –0.03 0.05

Epifauna:infauna ratio by biomass 1:49 1:12 1:9 1:99 1:1.3 1:2.3 2.3:1 1:1

Dominant trophic group
by abundance

SSDF
(83%)

SSDF
(85%)

CAR
(35%)

CAR
(35%)

CAR
(42%)
SSDF
(42%)

SSDF
(44%)

SF
(32%)

OMN
(38%)

Dominant trophic group by biomass SF
(58%)

SSDF
(45%)

SDF
(73%)

SF
(62%)

SF
(49%)

SSDF
(35%)

SF
(78%)

SF
(52%)

Note: An—Annelida, Ar—Arachnida, Cn—Cnidaria, Ed—Echinodermata, Mo—Molusca, Nm—Nemertea,
CP—Cossura pygodactylata, CS—Chaetozone setosa, CH—Cistenides hyperborea, NG—Nematoda g. sp.,
CC—Ciliatocardium ciliatum, LC—Laonice cirrata, AS—Arctica islandica, ME—Mytilus edulis, LA—Leitoscoloplos
acutus, BC—Balanus crenatus, SSDF—Subsurface deposit feeder, CAR—Carnivores, SF—Suspension feeder,
OMN—Omnivorous, SDF—surface deposit feeder, H’—Shannon index, J’—Pielou evenness index, D—Simpson
dominance index, ITI—infaunal trophic index, DE—difference of evenness index, SE—standard error.

The mean values of the benthic abundance and biomass were 12,190 ± 4740 ind. m−2

and 30 ± 8 g m−2, respectively. The most common species are presented in Table 3.
The highest faunal abundances were registered in the southern part of Kola Bay. Some
species, such as the polychaete Cossura pygodactylata at stations A1 and A2, were extremely
abundant. The expressed predominance of different polychaete worms at stations A1 and
A2 resulted in the lowest H’ and J’ indices and the highest value of D’ at site A.

The structure of the benthic communities showed substantial differences along the
axis of Kola Bay (Figure 2).

Polychaeta was the most common group at sites A, B, and C, while Nematoda pre-
vailed at site D. The total abundance of polychaetes was positively correlated with the pelite
content (r = 0.79, p = 0.02) and negatively with water temperature (r =−0.91, p = 0.002). The
highest biomass was registered either for the polychaetes or for the bivalves but without
significant correlations with the environmental variables. At station D1, the cirripedians
were the most common in terms of biomass. Significant correlations were found for the
crustacean biomass and gravel (r = 0.71, p = 0.05), aleurite (r = −0.74, p = 0.03), and pelite
(r = −0.81, p = 0.01). In the southern part of the study area on thin-grained sediments, the
total biomass of benthic infauna was much higher than that of the epifauna, whereas in the
central part on the coarse-grained sediments, the proportion of infauna decreased so that at
station D1 the epifaunal biomass was higher than that of the infaunal one. The biomass
of the epifauna was significantly positively correlated with the sand content (r = 0.80,
p = 0.02).
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Table 3. Ten most numerous taxa at each station (bold font) in Kola Bay.

Group Taxon
Station

A1 A2 B1 B2 C1 C2 D1 D2

Abundance, ind. m−2

Nmt Nematoda g.sp. 0 133 0 16 0 21 8640 860
Art Balanus crenatus 0 0 0 0 6 6 176 0
Art Verruca stroemia 0 0 0 0 0 181 0 213
Pol Alitta virens 0 0 59 80 12 74 0 0
Pol Capitella capitata 650 1440 300 672 188 128 80 0
Pol Capitella sp. 128 0 0 0 0 0 0 60
Pol Chaetozone setosa 690 1160 1120 1920 363 80 16 42
Pol Chone sp. 104 91 230 112 0 5 1408 0
Pol Cistenides hyperborea 8 37 155 123 175 310 3285 112
Pol Cossura pygodactylata 10,060 33,140 475 1160 1260 150 0 5
Pol Eteone flava 104 171 464 272 106 107 96 37
Pol Galathowenia oculata 64 240 48 48 0 11 0 0
Pol Glycera capitata 0 5 10 0 6 16 75 60
Pol Laonice cirrata 40 101 293 181 6 53 0 0
Pol Leitoscoloplos acutus 0 0 59 11 0 213 138 85
Pol Micronephthys neotena 616 1760 860 1560 1363 123 0 0
Pol Parougia caeca 40 42 123 224 18 5 0 0
Pol Pholoe assimilis 32 192 379 880 50 96 1160 190
Pol Pholoe baltica 0 16 0 0 6 0 160 0
Pol Phyllodoce maculata 0 37 11 0 31 16 80 0
Biv Hiatella arctica 0 0 0 0 0 0 2280 5
Biv Macoma calcarea 360 1400 11 69 56 43 624 60
Biv Mya arenaria 16 0 60 53 25 0 293 0
Biv Mytilus edulis 112 202 16 0 19 0 2357 117
Biv Parvicardium pinnulatum 24 21 11 16 25 0 11 60

Oph Ophiura robusta 8 11 11 16 70 11 5 11
Biomass, g m−2

Nem Nemertea g. sp. 0.63 0 0.14 0 0 0 0 0
Art Balanus balanus 0 0 0 0 0 0 0 0.18
Art Balanus crenatus 0 0 0 0 0.04 0.01 20.64 0
Art Rostroculodes borealis 0 0 0 0 0 0 0.51 0
Pol Alitta virens 0 0 1.23 0.63 0.05 0.79 0 0
Pol Capitella capitata 0.41 1.07 0.09 0.12 0.24 0.03 0.04 0
Pol Chaetozone setosa 3.86 5.05 3.77 6.97 2.00 0.30 0.01 0.01
Pol Cistenides hyperborea 0.01 0.40 0.14 0.09 2.76 0.39 3.24 0
Pol Cistenides granulata 0 0 0 0 0 0 0 0.48
Pol Cossura pygodactylata 3.10 9.51 0.09 0.48 0.33 0.02 0 0.00
Pol Eteone flava 0.53 0.63 1.37 0.42 0.43 0.14 0.07 0.01
Pol Glycera capitata 0 0.77 0.70 0 0.03 1.02 0.15 0.25
Pol Harmothoe imbricata 0 0 0.01 0 0.14 1.07 0.12 0
Pol Laonice cirrata 3.00 0.90 16.21 16.81 1.64 1.47 0 0
Pol Leitoscoloplos acutus 0.02 0 0.12 0.19 0 2.54 0.13 0.06
Pol Micronephthys neotena 0.63 1.67 0.66 0.71 1.28 0.08 0 0
Pol Pholoe assimilis 0.01 0.23 0.37 0.35 0.04 0.05 0.40 0.04
Pol Praxillella praetermissa 0.37 0.39 0.01 0.02 0 0.01 0 0
Pol Scoletoma fragilis 0 0 0.94 1.46 1.59 0.10 0 0.12
Pol Spio limicola 0 0 0.30 0.04 0.09 0.02 0 0
Gas Cryptonatica affinis 0 0 0 0 0 0 1.35 0
Gas Lepeta coeca 0 0 0 0 0 0 0 0.23
Gas Margarites groenlandicus 0 0 0 0 0 0 0 0.18
Biv Arctica islandica 0 0 0.09 46.51 0 0 0.17 0
Biv Ciliatocardium ciliatum 18.55 0.3 0 0 0 0 0.03 0
Biv Crenella decussata 0 0 0 0 0 0 0 0.13
Biv Heteranomia squamula 0 0 0 0 0.01 0.01 0.95 0.02
Biv Hiatella arctica 0 0 0 0 0 0 1.48 0.01
Biv Macoma calcarea 1.14 2.90 0.04 0.22 0.18 0.08 1.10 0.04
Biv Mya arenaria 0.61 0 1.11 0.51 0.68 0 3.21 0
Biv Mya truncata 0 0.01 0 0 0 0 0 0.75
Biv Mytilus edulis 0.09 0.10 0.01 0 9.30 0 2.21 0.87
Biv Palliolum tigerinum 0 0 0 0 0 0 0 0.22
Biv Parvicardium pinnulatum 0.20 0.15 0.07 0.10 1.59 0 1.81 0.07

Note: Art—Artropoda, Gas—Gastropoda, Nem—Nemertea, Nmt—Nematoda, Pol—Polychaeta, Biv—Bivalvia,
Oph—Ophiuroidea.
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The highest proportion of mobile taxa was registered at site A (85%); in the remaining
sites, this parameter varied from 53 to 63%. The abundance of this group was positively
correlated with the pelite content (r = 0.70, p = 0.05). The sessile organisms demonstrated
an increase in the contribution to the total material from 0.6% at site A to 9.6% at site D.

The dominating trophic groups were composed of different benthic taxa throughout
the study area (Table 2, Figure 2b). The contributions of dominants to the total abundance
and biomass were often low, indicating unstable conditions. The average abundance of
surface deposit feeders was positively correlated with the pelite content (r = 0.74, p = 0.03),
while the average biomass of this group was negatively correlated with the bottom tem-
perature (r = −0.76, p = 0.03). The abundance of subsurface deposit feeders increased
with the increasing OM content (r = 0.78, p = 0.023) and decreasing water temperature
(r = −0.81, p = 0.01). The average biomass of the carnivorous taxa showed negative correla-
tions with the abundance and biomass of red king crabs (r = −0.74, p = 0.04, and r = −0.74,
p = 0.03, respectively).

The biogeographic affinity of the benthic taxa found in Kola Bay indicated the predom-
inance of Boreo-Arctic species (63%), followed by boreal species (35%). The latter group
demonstrated higher species richness in the middle part (32% vs. 20% in the southern part)
of the study area and at 10–15 m depths (28% vs. 25% at 7–8 m).

The ITI calculated for the infaunal taxa was extremely low at site A (Table 2), indicating
a high proportion of subsurface deposit feeders. The highest ITI (predominance of surface
deposit feeders) was registered at station B1. This index decreased at site C and increased
again at site D. The positive values of DE, which meant a predominance of r-strategists,
confirmed the stress conditions of the benthic communities at site A (Table 2). Intermediate
values were registered for stations C1, D1, and D2, indicating less stressed communities.
According to the DE, the best conditions were confirmed for stations B1, B2, and C2

The cluster analysis performed with the biomass data separated our benthic stations
into two distinct groups, at a 43.6% level of similarity with the three outliers (stations C2,
D1, and D2) (Figure 3).



Diversity 2023, 15, 84 11 of 23

Diversity 2023, 15, x FOR PEER REVIEW 11 of 24 
 

 

tion of infauna decreased so that at station D1 the epifaunal biomass was higher than 
that of the infaunal one. The biomass of the epifauna was significantly positively corre-
lated with the sand content (r = 0.80, p = 0.02). 

The highest proportion of mobile taxa was registered at site A (85%); in the re-
maining sites, this parameter varied from 53 to 63%. The abundance of this group was 
positively correlated with the pelite content (r = 0.70, p = 0.05). The sessile organisms 
demonstrated an increase in the contribution to the total material from 0.6% at site A to 
9.6% at site D. 

The dominating trophic groups were composed of different benthic taxa through-
out the study area (Table 2, Figure 2b). The contributions of dominants to the total 
abundance and biomass were often low, indicating unstable conditions. The average 
abundance of surface deposit feeders was positively correlated with the pelite content (r 
= 0.74, p = 0.03), while the average biomass of this group was negatively correlated with 
the bottom temperature (r = –0.76, p = 0.03). The abundance of subsurface deposit feeders 
increased with the increasing OM content (r = 0.78, p = 0.023) and decreasing water tem-
perature (r = –0.81, p = 0.01). The average biomass of the carnivorous taxa showed nega-
tive correlations with the abundance and biomass of red king crabs (r = –0.74, p = 0.04, 
and r = –0.74, p = 0.03, respectively). 

The biogeographic affinity of the benthic taxa found in Kola Bay indicated the pre-
dominance of Boreo-Arctic species (63%), followed by boreal species (35%). The latter 
group demonstrated higher species richness in the middle part (32% vs. 20% in the 
southern part) of the study area and at 10–15 m depths (28% vs. 25% at 7–8 m). 

The ITI calculated for the infaunal taxa was extremely low at site A (Table 2), indi-
cating a high proportion of subsurface deposit feeders. The highest ITI (predominance of 
surface deposit feeders) was registered at station B1. This index decreased at site C and 
increased again at site D. The positive values of DE, which meant a predominance of 
r-strategists, confirmed the stress conditions of the benthic communities at site A (Table 
2). Intermediate values were registered for stations C1, D1, and D2, indicating less 
stressed communities. According to the DE, the best conditions were confirmed for sta-
tions B1, B2, and C2 

The cluster analysis performed with the biomass data separated our benthic sta-
tions into two distinct groups, at a 43.6% level of similarity with the three outliers (sta-
tions C2, D1, and D2) (Figure 3). 

 
Figure 3. Dendrogram resulting from clustering performed on the Bray–Curtis similarity matrix 
produced from the square root transformed benthic biomass data in Kola Bay. 

The ANOSIM indicated that there were significant differences in the contributions 
of benthic species for the groupings delineated with the cluster analysis (Global R = 0.97, 
p = 0.020). Cluster I was composed of stations A1 and A2 and was dominated by the 
polychaete Cossura pygodactylata and the bivalve Ciliatocardium ciliatum (mean abun-
dance 30015 ± 11800 ind m–2, mean biomass 29 ± 8 g m–2). Cluster II included stations B1, 

Figure 3. Dendrogram resulting from clustering performed on the Bray–Curtis similarity matrix
produced from the square root transformed benthic biomass data in Kola Bay.

The ANOSIM indicated that there were significant differences in the contributions
of benthic species for the groupings delineated with the cluster analysis (Global R = 0.97,
p = 0.020). Cluster I was composed of stations A1 and A2 and was dominated by the
polychaete Cossura pygodactylata and the bivalve Ciliatocardium ciliatum (mean abundance
30,015 ± 11,800 ind m−2, mean biomass 29 ± 8 g m−2). Cluster II included stations B1, B2,
and C1. The dominant taxa in this cluster were the ocean quahog Arctica islandica and the
spionid polychaete Laonice cirrata (5300 ± 570 ind m−2 and 39 ± 14 g m−2, respectively).
The SIMPER analysis showed that five taxa (three bivalve mollusks and two polychaete
worms) primarily accounted for observed differences in the benthic groups, with the clam
Arctica islandica being the most important (Table 4).

Table 4. Results of SIMPER analysis: contribution of benthic species (cut-off 90%) to the total
dissimilarity between Cluster 1 and Cluster 2 delineated with cluster analysis in Kola Bay.

Species
Average Dissimilarity = 76.58%

Av. Diss SD Contrib Cum

Arctica islandica 14.71 0.65 19.2 19.2
Laonice cirrata 13.62 1.29 17.78 36.99

Ciliatocardium ciliatum 13.34 0.88 17.42 54.41
Cossura pygodactylata 9.53 1.37 12.45 66.86

Mytilus edulis 5.86 0.66 7.65 74.51
Macoma calcarea 2.95 1.48 3.86 78.37
Chaetozone setosa 2.78 1.39 3.63 82.00
Scoletoma fragilis 2.00 2.51 2.62 84.61

Cistenides hyperborea 1.77 0.76 2.31 86.92
Parvicardium pinnulatum 0.97 0.74 1.27 88.19

Alitta virens 0.94 0.98 1.22 89.42
Capitella capitata 0.92 1.33 1.2 90.62

Note: Av. Diss—average dissimilarity (%), SD—standard deviation, Contrib—contribution (%), Cum—cumulative
contribution (%).

3.3. Environmental Control of Benthic Communities

The RDA based on the abundance data of the benthic fauna showed that the first
two axes explained a large proportion of the total variation (67.7%). Axis 1 was strongly
positively correlated with crab density and biomass and water temperature, and negatively–
with aleurite and pelite, while Axis 2 was positively correlated with depth and temperature
(Figure 4a).
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Figure 4. Ordination of samples by redundancy analysis with respect to benthic
abundance (a), biomass (b), diversity (c), and functional and trophic groups (d)
and their relations to environmental variables in Kola Bay. The proportions of
the total variability explained by the first two axes are given. Biological variables:
Ali-vi—Alitta virens, Arc-is—Arctica islandica, Bal-ba—Balanus balanus, Bal-Cr—Balanus crenatus,
Cap-ca—Capitella capitata, Cap-sp—Capitella sp., Cha-se—Chaetozone setosa, Cho-sp—Chone
sp., Cil-ci—Ciliatocardium ciliatum, Cis-gr—Cistenides granulata, Cis-hy—Cistenides hyperborea,
Cos-py—Cossura pygodactylata, Cre-de—Crenella decussata, Cry-af—Cryptonatica affinis, Ete-
fl—Eteone flava, Gal-oc—Galathowenia oculata, Gly-ca—Glycera capitata, Har-im—Harmothoe
imbricata, Het-sq—Heteranomia squamula, Hia-ar—Hiatella arctica, Lao-ci—Laonice cirrata,
Lei-ac—Leitoscoloplos acutus, Lep-ca—Lepeta caeca, Mac-ca—Macoma calcarea, Mar-gr—Margarites
groenlandicus, Mic-ne—Micronephthys neotena, Mya-ar—Mya arenaria, Mya-tr—Mya truncata, Myt-
ed—Mytilus edulis, Nem—Nematoda g.sp., Oph-ro—Ophiura robusta juv., Pal-ti—Palliolum tigerinum,
Par-ca—Parougia caeca, Par-pi—Parvicardium pinnulatum, Pho-as—Pholoe assimilis, Pho-ba—Pholoe
baltica, Phy-ma—Phyllodoce maculata, Pra-pr—Praxillella praetermissa, Ros-bo—Rostroculodes borealis,
Sco-fr—Scoletoma fragilis, Ver-st—Verruca stroemia, N—number of species, H’—Shannon index,
J—Pielou index, Si—Simpson index, EPI—epifauna, IN—infauna, Sessile—sessile organisms,
Mob—mobile, S-M—semi-mobile, CAR—carnivores, OMN—omnivorous, POL—Polychaeta,
BIV—Bivalvia, SF—suspension feeders, SDF—surface deposit feeders, SSDF—subsurface deposit
feeders. Environmental variables: gravel, sand, aleurite, and pelite—sediment type, T—water
temperature, S—salinity, dT—seasonal temperature amplitude, dS—seasonal salinity amplitude,
OM—organic matter, H—sediment sorting index, Crab-D—crab density, Crab-B—crab biomass,
De—depth.
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The RDA based on benthic biomass indicated that Axis 1 and Axis 2 explained 36.7%
and 22.4% of the variance in the data, respectively. Axis 1 was strongly negatively corre-
lated with water temperature and crab density and biomass, while Axis 2 was negatively
correlated with OM and positively–with sand content (Figure 4b). The first axis separated
the benthic stations located on the thin-grained and coarse-grained sediments (Figure 4a,b).
The mollusks and barnacles tended to be more abundant on the seafloor composed of
sand and gravel, while the polychaetes, especially Cossura pygodactylata, Chaetozone setosa,
Eteone flava, Micronephthys neotena, Galathowenia oculata, and Laonice cirrata preferred pelite
and aleurite (Figure 4a,b). The biomasses of the subsurface deposit feeders, such as the
polychaetes Cossura pygodactylata, Galathowenia oculata, and Praxillella praetermissa and the
bivalve mollusks Ciliatocardium ciliatum, increased as the OM content increased.

In the case of the RDA based on the diversity indices, the water temperature and
crab indices demonstrated negative correlations with both Axis 1 and Axis 2 (Figure 4c).
The first axis explained 98.9% of the total variation. When we considered the average
abundance of the different functional and trophic groups, we found that the first two axes
were significant and together explained 89.6% of the variation. Both canonical axes were
strongly negatively correlated with aleurite and pelite and negatively with the crab indices,
gravel, sand, and Hr. The second axis separated the stations with the predominance of
epifauna and infauna and the stations with higher contributions of sessile rather than
deposit-feeding species and higher proportions of carnivore rather than omnivore species
(Figure 4d).

The forward selection procedure (permutation Monte Carlo test) revealed the factors
that contributed significantly to each RDA model (Table 5).

Table 5. List of environmental variables that contributed to the RDA models based on the benthic
abundance, biomass, diversity, and functional groups data in Kola Bay.

Variable
Abundance Biomass

EV F P Variable EV F P

Crab-D 40 3.93 0.001 T 26 2.09 0.026
OM 20 2.98 0.038 OM 19 2.09 0.074

Crab-B 14 1.58 0.213 S 19 1.75 0.101
T 12 2.72 0.076 dS 12 1.53 0.286
H 7 2.24 0.120 H 9 1.67 0.363
S 5 2.42 0.337 Sand 9 1.06 0.420

Gravel 2 0 1.000 Gravel 6 0 1.000

Variable
Diversity Functional and Trophic Structure

EV F P Variable EV F P

T 36 22.25 0.007 H 7 43.22 0.048
dS 28 2.39 0.180 Aleurite 26 3.29 0.080
H 17 1.67 0.247 Crab-D 14 3.24 0.085
S 14 1.13 0.318 Crab-B 34 3.14 0.103

Gravel 4 14.84 0.068 Gravel 7 1.99 0.210
OM 1 5.60 0.175 Pelite 12 1.63 0.234
Sand 0 0 1.000 Sand 0 0 1.000

Note: T—temperature (◦C); S—salinity; dS—seasonal salinity amplitude; OM—organic matter (%); H—sediment
sorting index; gravel, sand, pelite—sediment type; Crab-D—crab density (ind. 1000 m−2); Crab-B—crab biomass
(g 1000 m−2); EV—explained variation (%); F—pseudo F-ratio; P—probability level.

These factors were crab density and OM for benthic abundance, water temperature
for benthic biomass, and diversity indices as well as the sorting index Hr for abundances of
functional and trophic groups. In general, higher crab abundance led to lower abundances
of the other benthic taxa, while the OM content had either positive or negative effects
depending on the species. A higher temperature led to lower total benthic biomass but
higher diversity indices, except for D’. The epifaunal, sessile, and omnivorous taxa tended
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to be more abundant on the heterogeneous sediments while the infauna and deposit-feeders
preferred more homogeneous sediments.

4. Discussion
4.1. Environmental Conditions

All fjords have some freshwater inflow, and many such systems have large rivers
discharging into them, usually at the head. The river run-offs and the complex interplay
between the external forces from both terrestrial and open ocean systems and the internal
structuring factors result in strong spatial gradients in the environmental variables and
strong stratification in the fjords [73]. This situation is registered in Kola Bay as well. Indeed,
different parts of this area differed in terms of the local thermohaline processes. In the
southern part, the water in the upper layer is colder and less saline. The salinity amplitude
is higher and the temperature amplitude is lower than in the central part of the fjord.

The sediments at our sampling stations were composed of different-sized fractions
(Table 1), and this pattern is usually registered in most parts of the Barents Sea [74]. Al-
though the flow velocity of the tidal currents in the shallow waters of Kola Bay is high [75],
the sediments here are not well sorted. The predominance of grain sediment particles as
well as the high OM content in the sediment at site A reflects significant sedimentation of
the mineral particulate matter and detritus. As a result of the freshwater discharge of large
rivers, the OM content in the southern part is 1.6 times higher than in the middle part of
Kola Bay [76].

At the head of the bay, the main sources of OM are riverine inputs and human sewage
from local communities. We registered high OM content at site A only. Overall, the
concentrations of biogenic compounds are much higher in the southern part than in the
middle part of the area, except for N–NO2

− [77]. This enhances the production processes
and leads to higher phytoplankton concentrations, which also contribute to the total OM
available for benthic animals. In general, the sedimentation of suspended mineral solid
particles at the head of Kola Bay is less intense than in many glacier fjords in the Canadian
Arctic or Svalbard [78,79].

The oxygen concentrations in the upper water layers (0–20 m) are higher than 9 mL L−1 [77],
and therefore, hypoxic events in the bottom animals are unlikely. The intense wave flowing
activity and high velocity of the tidal currents (5 to 20 cm s−1 [75]) are, probably, the most
important factors responsible for the lower OM content at the 7 m depth in comparison to
that at the 11 m depth at site A and for the better-sorted sediments from a depth of 8 m at
site C (Table 1). A similar influence of tidal and current activity on the particle size of the
sediments and OM content has been registered for the shallow-water zone (7–10 m depths)
in some Norwegian fjords [80].

The distribution of red king crabs also had a clear longitudinal gradient: the average
density of juveniles was higher in the middle part of the bay because this area is closer to
the outer part of the fjord, whose grounds serve as the main spawning and nursery areas
for red king crab in Kola Bay [61].

Thus, the inner part of our study area has the most extreme abiotic conditions for ben-
thic animals, whereas, in the outer part, the benthos is mainly influenced by biotic factors.

4.2. Benthic Community Structure

The relatively low number of benthic taxa in the shallow water of Kola Bay is explained
by the limited sampling efforts and a narrow depth range. Polychaeta and Bivalvia were
the most important groups and a similar pattern has been reported for numerous Arctic
fjords [81]. We registered a series of benthic assemblages that changed successively along
the estuarine gradients in both the biotic and abiotic the factors. Because our clusters
were composed of stations belonging to different sites, coincident boundaries between the
assemblages were not expressed (Figure 3). The differences between sites A and B were
associated not so much with the changes in the species compositions as with the differences
in the community structure, i.e., the proportional distribution of different functional groups.
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In the middle part of the bay, the differences between sites C and D were mainly caused
by shifts in the taxa composition resulting from the higher sediment heterogeneity and
a wide range of ecological niches in this area (Table 4). The tendency for complicated
habitat conditions to increase the number of species and alter the community structure is a
common pattern among benthic studies worldwide [82,83].

A remarkable feature of the shallow-water benthos in Kola Bay is a clear trend towards
an increase in the invertebrate abundance under eutrophic conditions, and the small
subsurface deposit-feeding polychaete Cossura pygodactylata is largely responsible for this
pattern. Holte and Oug [80] also reported enrichment effects for benthic animals from
discharges of municipal sewage and fish factory effluents in two polluted Norwegian fjords,
but their abundance calculations for benthos were lower (2000–8000 ind. m−2) than at
station A2 in Kola Bay. In Tromsøysund, peaks in benthic abundances were associated with
dense populations of Capitella capitata [80]. In Kola Bay, this species, which is considered an
indicator of organic pollution and hypoxic conditions, had 16–20-fold lower abundance
than did Cossura pygodactylata. It should be noted that such substantial increases in benthic
abundances have not been evident in the inner parts of the non-polluted and less closed
fjord systems along the Norwegian coast [84] and in the Arctic fjords in Svalbard [23]. The
extremely high abundance of polychaetes and bivalves at station D (Table 2) is explained
by the presence of small juveniles.

Most stations within our study area were characterized by high abundances of a
limited number of species, resulting in lower diversity and higher stress indices and
only at site B can the state of the macrozoobenthos be judged as normal. According to
the previously published data, deeper-water benthic communities in the southern part
of the bay (site A) had intermediate stress indices [55] in contrast to the high values
recorded for the shallow-water stations in the present study, indicating a vertical gradient
in disturbance. Eutrophic conditions have been shown to promote benthic communities
with a dominance of animals which feed on detritus beneath the sediment surface [69]. In
our case, high abundances of such organisms, including the detritus-feeding polychaetes
Cossura pygodactylata and Capitella capitata, as well as the omnivorous polychaete worm
Micronephthys neotena, led to low ITI at site A, where the active water circulation is more
favorable for suspension-feeding taxa. The low ITI values at sites C and D (Table 1) reflect
a decrease in the proportion of suspension feeders, most likely due to the feeding activity
of the red king crabs. This species is able to reduce the abundance of bivalve mollusks
in a short period of time, thus altering the structure of the benthic communities [60]. The
foraging activity of this crab predator may also be responsible for the reduction in the total
benthic biomass at 10–15 m depths in the middle part of Kola Bay [85–87].

The shallow-water benthic communities in Kola Bay demonstrated decreased propor-
tions of the common trophic groups and an increased contribution of carnivorous taxa to
the total biomass that contradicts the structure of the shelf benthic communities where
the proportion of carnivorous species does not exceed 10% [88]. Similar patterns have
been found for other regions [89,90] and reflect differences in the physical, chemical, and
biological factors at different depth ranges [88,91].

In the sub-Arctic Norwegian fjords, deeper sites were found to harbor more diverse
benthic fauna and higher abundances of surface deposit feeders with maximum densities
at 7–25 m [80,84]. To reveal the possible vertical patterns in the structure of the benthic
communities, we compared the current results with a previous study conducted at the
same sites in Kola Bay but at deeper locations [55]. We found an increase in the number of
species per station (α-diversity) as the depth increased at sites A, B, and C (Figure 5a).
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A decrease in the invertebrate abundance with depth was evident at site D only; at the
remaining sites, the maximum values were registered at 10–11 m or shallower (Figure 5d).
A trend towards an increase in benthic biomass was observed in the southern part of the
bay, especially at site A, where the total biomass at the deep-water stations was seven
times higher than at the shallow-water stations (Figure 5e). Such a peak is associated with
significant inputs of organic material to the seafloor and favorable food conditions for the
deep-water benthos [55].

With respect to abundance, Polychaeta dominated both the shallow- and the deep-
water sites, whereas Bivalvia dominated the shallow-water locations in terms of benthic
biomass (Figure 6a). Surface deposit feeders dominated the benthic communities at the
deeper stations at sites B and C. In the inner part of Kola Bay, we registered a predominance
of subsurface deposit feeders, while subsurface deposit feeders and carnivorous taxa
prevailed in the central part of the fjord (Figure 6c). When considering the biomass data,
one can see more dominant groups than in the case of the abundance dataset (Figure 6d).
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4.3. Environmental Control of Benthic Communities

The community composition and structure of marine soft-bottom benthic communities
reflect an array of environmental variables; many of them are the products of an interaction
between sediment composition, particle mobility at the sediment–water interface, and
complex interactions between the physical (temperature, salinity, oxygen concentration,
and wave activity), chemical (biogen and nutrient concentrations), and biological (predator
density and competition) factors operating over long time periods [92–97]. Our results
also demonstrated that both abiotic and biotic factors play a role in shaping the benthic
communities in Kola Bay.

An expressed temperature gradient between the southern and middle parts of Kola
Bay was found to directly influence the diversity indices of the shallow-water benthos.
This factor was also negatively scaled with the total benthic biomass, explaining 26% of
the RDA model. An increase in species richness may be explained by the arrival of boreal
species [98], while a decrease in benthic biomass may be associated with a lower production
of cold-water species and a higher abundance and predation pressure of red king crab in
warmer waters [60]. Both vertical and horizontal salinity gradients occur in Kola Bay, but
these gradients seem to have no effect on the local benthic communities because these are
composed of euryhaline species, which are well adapted to significant tidal and seasonal
fluctuations in water salinity.
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The sediment composition determines such important habitat conditions as stability,
diversity of ecological niches, and food availability [99,100]. In Kola Bay, we found both
longitudinal (for shallow water) and vertical (for most sites) gradients in the sediment
composition. The former gradient had greater significance for the benthos in the southern
part while the latter was particularly important for the benthic organisms occupying the
stations located in the central part of Kola Bay. This gradient coupled with fluctuations in
other factors explains the poor cluster grouping we found for the stations in the middle part.

We found positive correlations between the polychaete abundance and pelite (Figure 5a).
This pattern is explained by the fact that burrowing polychaetes prefer thin-grained sedi-
ments [101]. A degree of sediment sorting would be important for bivalves because this
parameter has been found to directly relate to near-bottom water dynamics and mixing
processes [102]. According to the RDA model, the OM content was a significant driver
of the benthic taxa abundances, explaining 19% of the total variance (Table 5). So, great
inputs of OM and intense sedimentation processes form very mobile deposits, which are
rich in nutrients, at stations located at the head of Kola Bay, and, as a result, the local
fauna is composed of small mobile subsurface deposit feeders capable of survival in such
labile sediments [103] while the epifauna is poor. We found strong positive correlations
between OM and the biomasses of the polychaetes Cossura pygodactylata, Galathowenia
oculata, and Praxillella praetermissa and the bivalve mollusks Ciliatocardium ciliatum and
can suggest that these species are reliable indicators of eutrophication. According to the
RDA, the sediment sorting coefficient explained 7% of the total variation in the abundance
of the trophic and functional groups. As the proportion of coarse particles increases and
the OM content decreases, the number of epifaunal as well as the number of sand- and
gravel-associated taxa increases, and, in turn, the proportion of semi-mobile and sessile
species also increases, and the suspension feeders become the dominating trophic group.
Similar patterns have been reported for some Svalbard fjords where small polychaetes and
bivalves occupied the zones affected by inputs from large tidal glaciers. Such communities
are well adapted to fine sediment fractions and have similar alterations in J’ [33,79]. In
contrast to the Svalbard waters, where the OM is dispersed with terrigenous material and
strong freshwater discharges, in Kola Bay the OM remains available for the benthic animals
and supports high population abundances.

In the middle part of our study area, the zonation of the benthos was found to be
primarily under the control of predator–prey interactions. The RDA results indicated a
negative correlation between crab density and the total benthic abundance in Kola Bay,
and this factor explained 40% of the variance. Previous studies have shown that red
king crabs are opportunistic predators and that their diet includes a variety of benthic
animals [104]. Their feeding activity has been suggested to alter the benthic community
structure [60,87,105–108]. In the coastal zone of the Barents Sea, including Kola Bay, the
crab predation pressure on the local benthic communities may vary seasonally depending
on recruitment patterns. The crab recruitment, in turn, is driven by natural population
processes, variations in climatic factors, and fishing pressure [37,38,43,109,110].

Moreover, it is known that predation crops the prey populations, often leading to
decreased competition among benthic species that would otherwise exclude each other
and, thus, allow more species to occupy the same region [111–113]. This may partly explain
the fact that the highest diversity indices were found at stations with higher abundances of
red king crabs, which are known to feed primarily on bivalves, polychaetes, and echino-
derms [60]. Predators can also act as disturbance agents on soft-bottom communities and
influence the structure and functioning of benthic systems [114]. Norwegian authors have
shown that after the red king crab introduction, the sediment habitat quality in some fjords
was reduced due to hypoxic conditions and low biological activity below the surface layers
as a result of the removal of important benthic organisms which performed bio-irrigation
and sediment reworking [115]. Thus, red king crabs seem to reduce faunal abundance in
Kola Bay not only by direct consumption but also through the mortality caused by their
activities that disturb benthic communities.
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5. Conclusions

Ocean warming through climate change is considered to have substantial effects
on the composition and structure of marine benthic communities, including changes in
the distributional boundaries of species and the replacement of cold-water organisms by
warm-water taxa. Biological invasions are considered to be another global environmental
problem for marine ecosystems in general and benthic communities in particular. Finally,
organic water pollution leading to eutrophication can also alter aquatic systems. Although
the current study was conducted within a relatively small area, the results of our benthic
surveys are in line with the mentioned global trends. We found that the invasive red king
crab significantly affected the faunal biomasses of benthic species, leading to their decrease
at some sites. Water temperature was found to be a significant factor driving the total
community biomass (negatively) and benthic diversity (positively). The higher diversity
may have been a result of the warming that promoted the range expansion of boreal species
in the Arctic. The distribution and structure of the shallow-water benthic communities in
Kola Bay are also driven by sedimentation processes and organic matter inputs. The benthos
of Kola Bay experiences strong disturbance, and the main causes of stress conditions are the
intense sedimentation and eutrophication in the southern part and the predator pressure in
the middle part. The latter factor, coupled with more heterogeneous habitat conditions in
the middle part of Kola Bay, leads to significant spatial variations in the species composition
of the benthic communities. As the structure of the soft-bottom benthic communities in
Kola Bay has already been altered, each kind of human activity in this area should be
undertaken with great caution to prevent the possible negative scenarios associated with
diversity loss and the degradation of benthic habitats.
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