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Abstract: Biotic interactions are a key component of the proper functioning of ecosystems. However,
information on biotic interactions is spatially and taxonomically biased and limited to several groups.
The most efficient strategy to fill these gaps is to combine spatial information (species ranges) with
different sources of information (functional and field data) to infer potential interactions. This
approach is possible due to the fact that there is a correspondence between the traits of two trophic
levels (e.g., predator and prey sizes are correlated). Therefore, our objective was to evaluate the
performance of the joint use of spatial, functional and field data to infer properties of the predator–
prey interaction for five neotropical cats. To do this, we used presence–absence matrices to obtain lists
of potential prey species per grid-cell for each predator range. These lists were filtered according to
different criteria (models), and for each model, an interaction property was estimated and compared
with field observations. Our results show that the use of functional information and co-occurrence
allows us to generate values similar to those observed in the field. We also observed that there were
differences in model performance related to the intrinsic characteristics of the predator (body size)
and the interaction property being evaluated.

Keywords: food web; carnivores; body size; functional traits; co-occurrence

1. Introduction

One of the greatest challenges in ecology is filling the knowledge gap in our under-
standing of the role of species interactions in originating and maintaining biodiversity [1–3].
Despite the increasing number of studies and data available in recent years, information is
still limited to answering questions about species interactions, such as the geographic vari-
ation of species diets or the effects of such interactions on individual survival and fitness of
species [1,4]. In addition to the general lack of sampling in some regions, there is a dearth
of spatiotemporal information on biotic interactions, which is also taxonomically biased
for some species or groups of species [1]. Even in large studies on trophic networks [5],
it is difficult to obtain representative and unbiased information on biotic interactions for
most species due to both the stochastic nature of populations—i.e., if two species co-occur
but one species is rare, they will hardly interact [3,6], and due to the characteristics of the
species (e.g., activity period, migratory status). Therefore, filling this lack of information on
biotic interactions requires finding new methods that allow us to infer interactions or their
descriptors from existing information and thereby complement this information, improve
our understanding of interactions and reduce their loss [7,8].

The use of geographic co-occurrence (i.e., the occupation of the same geographical
space–sites—by two or more species) was one of the first strategies used to make inferences
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about relationships between species [9]. Considering that two species need to co-occur
in the same place at the same time in order to interact and that these interactions affect
the demography of such species, we would expect that they will mutually affect their
co-occurrence (e.g., prey population crashes may lead to local predator extinction or mi-
gration [6]). However, species’ co-occurrence can be affected by the particular species’
response to the environment as well as by sampling effort (e.g., co-occurrence probabil-
ities of two sympatric species with different climate tolerances will vary in geographic
space, also affecting the co-occurrence detectability) [6]. Likewise, co-occurrence alone
is unable to distinguish forbidden or improbable interactions, those interactions that, for
mechanical, historical or ecological reasons, cannot occur in nature –an herbivore eating a
carnivore—from potential interactions, those interactions that have not been reported but
could be occurring in nature [6,10,11]. These problems with the use of co-occurrence to infer
biotic interactions led to the development of methods based on the Eltonian niche concept,
i.e., ‘the place of an animal in a community, its relation to food and enemies’ [12], in which
the Eltonian niche of a species is defined by its position on the food web and according to
its functional traits [3,13]. The main difference between the use of co-occurrence and func-
tional traits is that the latter allows us to establish mechanisms by which species interact
(e.g., correspondence between hummingbird beak size and flower size in pollination, if
prey size falls within the predator’s prey size range [3,10]). Therefore, if we want to infer
interactions, we can use co-occurrence as a starting point and, by defining the Eltonian
niche of species from functional traits crucial for the type of interaction evaluated, refine
these inferences [3,13–15].

Functional traits (e.g., body mass, activity period) are more consistent with the local
spatial scale in which interactions occur compared to environmental variables [16], which
reflect broader characteristics of Grinnellian (instead of Eltonian) niches, i.e., ‘all values of
the scenopoetic variables for which the intrinsic growth rate is positive’ [17]. In general,
species with similar Eltonian niches tend to share functional traits, which increases func-
tional redundancy and thereby reduces analysis complexity by allowing for the grouping
of species with similar roles in the community [13,18]. Furthermore, the use of functional
traits of species can be used to evaluate trait matching between interacting species, thus
helping to discover interactions that have a greater probability of occurring or to define
trait intervals within which species can interact [3,19]. The relevance of functional traits
is particularly important in interactions such as predation, where the correspondence of
functional traits between predator and prey (e.g., body mass) as well as the prey’s pres-
ence or absence within the predator’s feeding range largely determines the viability of an
interaction [3,10,14].

In predator–prey interactions, body size is one of the most important traits, as the
predator chooses its prey based on whether it satisfies its metabolic requirements [20–22].
Given that the distribution of mammalian body size is left-skewed, with small species
being more common in most regions [23], if researchers only use co-occurrence data to infer
potential interactions, there will be good inferences on small predators, as they tend to feed
on small prey, but these inferences will be less accurate as predator size increases due to
their need for larger and less common prey [20,22]. The relevance of using other functional
traits, such as activity period or foraging strata, to infer descriptors of interactions will
depend on predator requirements, as well as their size. For instance, while many top-
predators are active all day, meso-predators tend to have reduced activity periods and to
be restricted to certain strata due to the risk of being predated by carnivores of similar or
larger sizes [24,25]. One of the most efficient strategies to infer trophic interactions and
understand the spatial variation of food webs has been the use of observed feeding intervals;
this is the extreme values of a trait (e.g., body mass) that determine that a species can be
consumed by a predator [3,10,14]. Using feeding intervals allows us to reduce the number
of potential preys based on existing knowledge about the prey species consumed by the
predator and their size, so their performance is usually good for most species (e.g., [10]).
Because the Eltonian niche of species is defined by species traits and their position on the



Diversity 2023, 15, 61 3 of 15

food web [13], it is expected that combining prey functional traits with predator feeding
intervals will result in a better representation of the Eltonian niche of the predator and,
thus, better inferences of potential interactions and their descriptors.

In the present study, we proposed a new approach to infer predator–prey species-level
interaction properties. Our approach is based on the combination of the Eltonian niches
and the geographical distributions of species, focusing on a five-step procedure requiring
data on species’ geographic distributions, body sizes, feeding intervals and foraging traits.
To evaluate our approach, we selected a set of five Neotropical predators with different
Eltonian niches that include top predators (Panthera onca, Puma concolor) that forage all day,
as well as species of mesopredators (Leopardus pardalis and Herpailurus yagouaroundi), and
small predators (Leopardus wiedii), with variable activity periods and foraging strata that
are distributed throughout the American continent. Our objective was to use the spatial
co-occurrence and functional traits of predators and prey species to generate species-level
properties of predator–prey interactions that can be contrasted against the empirical data
of such properties descriptors as observed in the literature for different predators and data
levels. (i) Species level: considering the complete geographic distribution of a predator and
all of its prey and (ii) locality level: considering point/locality data observed in the field on
the occurrence and interaction of both the predator and its prey. As such, this combined
approach of geographic distributions with the Eltonian niche concept can be useful for
integrating knowledge of species interactions across spatial scales, a recently recognized
challenge in biogeography and macroecology [26].

2. Materials and Methods
2.1. Data Collection

We collected species geographic ranges (i.e., extents of occurrence polygons), from the
IUCN database (https://www.iucnredlist.org/; accessed on 29 August 2019), mean body
mass across sexes (in grams) for mammalian species [27], life history traits, namely activity
period and foraging strata that provide information about co-occurrence on finer scales,
from the EltonTraits database, which was obtained through the standardization of field
data or interpolations [25], and predator–prey interaction data (i.e., lists of prey species for
different predators in different localities) from a literature review. Note that our considered
traits represent either mean values of species (body size), as intraspecific variation is rarely
available, or consensual values coming from standardization of descriptions on the use
of strata or time period of activity. We considered as a predator–prey interaction only
those cases in which direct evidence of consumption by the predator was found; that
is, the prey species record was obtained from the predator’s feces, stomach contents, or
direct observations. We focused on five Neotropical predators for which the three types
of data were available from a previous study [28]: margay (Leopardus wiedii), jaguarundi
(Herpailurus yagouaroundi), ocelot (Leopardus pardalis), cougar (Puma concolor), and jaguar
(Panthera onca). This dataset included a total of 77 publications for 13 countries across
the Neotropics, from the southern United States to northern Argentina, with 202 prey
species reported as part of the diet of these five predators (margay = 50, jaguarundi = 49,
ocelot = 126, cougar = 87, jaguar = 87; see Sánchez-Barradas & Villalobos, 2020 for a detailed
description of how the data were obtained).

We used literature data at two levels: (i) species level, as the total number and identity
of mammal species reported as prey within the individual geographic range of each predator
(i.e., considering the entire distribution of the predator as a single site) and (ii) locality level,
as the observed localities with lists of prey (at least three species) reported for each predator
(margay n = 6, jaguarundi n = 7, ocelot n = 21, cougar n = 9, and jaguar n = 5).

https://www.iucnredlist.org/
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2.2. Interaction Properties: Summary of the Approach

Our approach for inferring interaction properties for predator species started by
selecting predators for which there was available information on their observed predator–
prey interactions and compiling geographic ranges for these predators and their potential
prey (all other mammals excluding the focal predator) (Figure 1a). Based on these two
types of information, interactions and geographic distributions, the second step consisted
of obtaining three datasets for each predator (Figure 1b): (1) A “species-level” dataset
that comprised the complete list of prey species reported to be consumed by the predator.
We defined this dataset as the predator’s “interaction field,” in analogy to the species’
phylogenetic field (i.e., the phylogenetic structure of co-occurrence within a focal species’
range; [29,30]) this was done because by using the distribution area of a species as a
unit of study, it was possible to understand the ecological information contained in the
predator’s coexistence pattern. Here, a predator’s interaction field was a species-level
property representing its complete Eltonian niche, from which we then obtained a single
reference value for the focal species/predator (see below). (2) A “locality-level” dataset
that compiled all the localities for which there was information (literature) on the prey
consumed by the predator. This dataset considered only those localities with enough prey
(i.e., three or more prey species) to calculate a reference value for each site. (3) A “cell-level”
dataset was obtained from the range maps of the predator and its potential prey. Based
on these range maps and their overlap within a gridded domain (1◦ × 1◦ resolution), we
obtained a presence–absence matrix where rows represent the sites (grid-cells) occupied by
the predator, columns represent the prey species present in at least one of the predator’s
sites, and the matrix elements denote presence (1) or absence (0) of those prey species. To
ease illustration and calculation, we used this presence–absence matrix format to depict all
three datasets. Note that the first two datasets were from the literature on predator–prey
interactions; thus, we considered them as observed data and used them to derive reference
values at the species and locality levels. Conversely, the third dataset, cell level, was
simply based on range maps, and we used it to derive expected values on the interaction
properties that could then be compared to the reference values from the two previous levels.
To compare the locality with the cell-level data, we considered only those grid-cells in
which there were observed locality data (Figure 1b).

The third step of the approach consisted of replacing the presence values (1s) in
all three matrices with the corresponding body sizes (i.e., body mass in grams) of each
species (Figure 1c). Then, the fourth step of our approach consisted of using the cell-
level data to create different trait combinations (see below for a detailed description) that
define the potential set of prey species belonging to the Eltonian niche of the predator
(Figure 1d). Trait combinations included: (1) geographic co-occurrence between predator
and preys, (2) same as (1) but also considering the species’ activity periods and foraging
strata, (3) same as (1) but also considering the feeding range of the predator and (4) same
as (3) but also considering the species’ activity periods and foraging strata. Finally, the fifth
step consisted of contrasting the reference values at both the species and locality levels
with those obtained from the different models on cell-level data to assess their accuracy in
describing the interaction properties (Figure 1).
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Figure 1. General approach to infer predator–prey interaction properties at the predator level
combining geographic co-occurrence and Eltonian niches. (a) Predators that have information
on predator–prey interactions, as well as range maps were selected; (b) from the literature and
distribution data; three datasets were obtained for each predator, depicted as presence-absence
matrices. The first two datasets, species level (considering the complete predator’s distribution and
its reported prey) and locality level (considering only localities with literature data), were obtained
from the literature and used later as reference values for interaction properties. The third dataset,
the cell level, was obtained from range maps and their overlap. (c) The presence values (1s) are
replaced by the body size of the mammal species in the three datasets. (d) Different trait combinations
(geography: co-occurrence, life-history: activity, and morphology: feeding interval) were used to
derive models of different complexities that define the potential set of prey species belonging to
the Eltonian niche of the predator. (e) These models were used to derive descriptors of interaction
properties for the predator based on the cell-level dataset, which were then contrasted against the
reference values from the species- and locality-level datasets.
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2.3. Trait Combinations and Interaction Models

Given that geographic co-occurrence is usually not sufficient to infer species interac-
tions [10], we considered different trait combinations that reflect the match between the for-
aging characteristics of each predator and the vulnerability of each potential
prey [3,10,13,14] to create nine interaction models. These models further represented
different levels of complexity in data acquisition, ranging from simple models that use only
distribution data (i.e., co-occurrence) to multifactor models that use distribution data com-
bined with trait data and field observations of prey size intervals and prey size frequencies
(Table 1). These models were classified as a purely geographic model: (I) Co-occurrence
(COC), considering all prey species co-occurring with the focal predator species; two spa-
tiotemporal models based on life-history traits; (II) Activity: same as co-occurrence but
considering only those prey species that are active at the same time period as the focal
predator species; (III) Strata: same as co-occurrence but considering only those prey species
that forage in the same strata as the focal predator species; two body size models consid-
ering feeding intervals; (IV) NM: same as co-occurrence but considering only those prey
species that fall within the feeding interval of the focal predator species obtained from the
literature; (V) RNM: same as co-occurrence but considering only those prey species that
fall within the restricted feeding interval of the focal predator species (i.e., ”Preference” in
Table 1, describing preferred preys by size category as defined by a model considering the
frequency of prey consumption per size category per predator; for a detailed description of
this model see Supplementary Materials file S1–S3); and four saturated models combining
life history and body size data; (VI) NMA: same as NM but considering only those prey
species that are active at the same time period as the focal predator species; (VII) NMAS:
same as NMA but considering only those prey species that forage on the same strata as the
focal predator species; (VIII) RNMA: same as RNM but considering only those prey species
that are active at the same time period as the focal predator species; and (IX) RNMAS: same
as RNMA but considering only those prey species that are active at the same time period
and that forage on the same strata as the focal predator.

Table 1. Species’ trait combinations used in the interaction models for inferring predator–prey
interaction properties. Values of 1 imply the consideration of that trait in the corresponding model
(row), 0 values otherwise. NM = Niche Model, RNM = Restricted Niche Model, NMA = Niche Model
with Activity, NMAS = Niche Model with Activity and Strata, RNMA = Restricted Niche Model with
Activity, and RNMAS = Restricted Niche Model with Activity and Strata (see text and Supplementary
Materials File S1–S3 for detailed descriptions). Colors indicate model complexity following the scale
depicted by the arrow at the right.

Models Distribution

Traits
Model

ComplexityActivity Period Foraging Strata
Prey Body Mass

Interval Preference

Co-occurrence 1 0 0 0 0

Activity 1 1 0 0 0

Strata 1 0 1 0 0

NM 1 0 0 1 0

RNM 1 0 0 1 1

NMA 1 1 0 1 0

NMAS 1 1 1 1 0

RNMA 1 1 0 1 1

RNMAS 1 1 1 1 1
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To evaluate the performance of the different interaction models, we selected and cal-

culated two metrics describing the properties of predator–prey interaction at the level of 
the predator: the mean prey size (MPS) and the predator–prey ratio (PPR) for each pred-
ator. We chose the MPS, given that, in addition to being a central tendency measure, it is 
one of the easiest measures to obtain and calculate from local studies and has served as a 
basis for several studies and metrics, such as the PPR detailed below [20,22]. The PPR—
the result of dividing the average mass of a predator by its average prey mass—is a meas-
ure that provides information on the metabolic balance of a predator–prey interaction 
[21,22]. We decided to use PPR because it has been proposed as a useful measure for as-
sessing food web dynamics and complexity as it relates to species trophic efficiency, as 
well as food web stability [22]. For instance, in carnivores, it is common for large-sized 
predators (e.g., jaguar, cougar) to prey on species of similar size to them, thus showing a 
PPR close to unity. In contrast, medium- and small-sized predators’ prey on species that 
are usually several times smaller than them [20], showing a PPR larger than 1. Moreover, 
the PPR has a negative correlation with the trophic level, so it can be used as a proxy for 
it [21,22]. 

Both metrics (MPS and PPR) were calculated for each predator at the species level, 
locality level, and cell level for each model, with the first two levels being used to derive 
reference values and the latter level for creating expected/predicted values. At the species 
level, the observed MPS and PPR for each predator species were calculated by considering 
all the prey species reported throughout its geographic range, thus creating a single ref-
erence value per predator for the MPS and PPR across its entire geographic distribution 
(i.e., all occupied grid-cells have the same metric value). Conversely, regarding the inter-
action models using the cell-level dataset (Table 1), each one generated a different pre-
dicted metric value per grid-cell, given that different species compositions influence 
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2.4. Model Performance

To evaluate the performance of the different interaction models, we selected and
calculated two metrics describing the properties of predator–prey interaction at the level of
the predator: the mean prey size (MPS) and the predator–prey ratio (PPR) for each predator.
We chose the MPS, given that, in addition to being a central tendency measure, it is one of
the easiest measures to obtain and calculate from local studies and has served as a basis for
several studies and metrics, such as the PPR detailed below [20,22]. The PPR—the result
of dividing the average mass of a predator by its average prey mass—is a measure that
provides information on the metabolic balance of a predator–prey interaction [21,22]. We
decided to use PPR because it has been proposed as a useful measure for assessing food
web dynamics and complexity as it relates to species trophic efficiency, as well as food web
stability [22]. For instance, in carnivores, it is common for large-sized predators (e.g., jaguar,
cougar) to prey on species of similar size to them, thus showing a PPR close to unity. In
contrast, medium- and small-sized predators’ prey on species that are usually several times
smaller than them [20], showing a PPR larger than 1. Moreover, the PPR has a negative
correlation with the trophic level, so it can be used as a proxy for it [21,22].

Both metrics (MPS and PPR) were calculated for each predator at the species level,
locality level, and cell level for each model, with the first two levels being used to derive
reference values and the latter level for creating expected/predicted values. At the species
level, the observed MPS and PPR for each predator species were calculated by considering
all the prey species reported throughout its geographic range, thus creating a single ref-
erence value per predator for the MPS and PPR across its entire geographic distribution
(i.e., all occupied grid-cells have the same metric value). Conversely, regarding the interac-
tion models using the cell-level dataset (Table 1), each one generated a different predicted
metric value per grid-cell, given that different species compositions influence model pre-
diction. In short, because each interaction model has different conditions for determining
whether or not a species is prey, each model generates a different species composition per
grid-cell, so the values of the metrics vary both between models and between cells.

At the locality level, observed values of MPS and PPR for each predator were calculated
for each of their local studies, considering only the prey species reported in that study (see
supplementary material file S4). Therefore, in contrast to the species-level analysis, at the
locality level, there were as many MPS and PPR values as there were local studies for each
predator. In the same vein, each interaction model generated a predicted metric value only
for those grid-cells occupied by predators that contained local data. Note that interaction
models make the same metric predictions at both species level and locality level, as they
are based on species compositions of grid-cells (i.e., co-occurrence), whereas the observed
metric values differ between levels because they use different data (i.e., the set of different
prey species reported for the same predator in all its localities at the species level, and point
locality data at the locality level).

Following Williams and Martínez [31], we calculated normalized errors (NE) to com-
pare the predictions of the interaction models with the reference values at both species
and locality levels. First, we calculated the difference between the reference and predicted
values, obtaining a “raw error” [RE] for each interaction metric (MPS and PPR). Then, these
REs were divided by the standard deviation of the distribution of metric values across
the considered occupied grid-cells. Such a procedure allowed us to put all predictions
from the different models on a single axis (i.e., performance) based on their distance, in
standard deviations, to the reference value (i.e., empirical observations). Accordingly,
model predictions are better when closer to the reference value (i.e., NE = 0). We considered
a model to be good when 95% or more of its normalized errors fell within the range of
±2 standard deviations [31]; that is, most of the model predictions were similar to the
empirical observations of the predator diet.
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3. Results
Interaction Models vs. Reference Values

According to our results, all interaction models performed better in predicting the
predator–prey ratio (PPR) than for the mean prey size (MPS). In addition, MPS results were
related to the size of the predator, with larger predators showing larger MPS. Conversely,
the PPR values were low and very similar for all predator species. Regarding the levels of
analysis, we observed better performance of the models for the locality level than for the
species level.

At the predator species level for mean prey size (MPS; see supplementary material
Figure S1), we observed that the co-occurrence model (Figure S1a) had predictions closer to
the reference values in small species. For the margay, most of its observations were close
to the reference value (Figure S1a), while models for the other predators underestimated
the reference value and the discrepancy seems to increase as the size of the predator in-
creased. The models that considered the activity period and the foraging strata (Figure S1b)
had predictions closer to the reference values than the co-occurrence models (Figure S1a),
especially for medium and small predators. In the models that consider the body size of
prey (Figure S1c), we observed that the NM predictions for the MPS were lower than the
reference values for all predator species but were closer to the reference values for the
larger species (i.e., jaguar) compared to the co-occurrence model (Figure S1c vs. Figure S1a).
The RNM had predictions closer to the reference values for four of the five predators and
less underestimation than previous models for the largest one (Figure S1c). Regarding the
saturated models (Figure S1d), we found that they had very good approximations to the
MPS reference values in the two largest predators, whereas the rest of the predators had
poor results, with predictions lower than the reference values.

At the locality level for mean prey size (MPS; see supplementary material Figure S2),
the co-occurrence model (Figure S2a) had predictions closer to the reference values for all
predators, except for the smallest, which was overestimated. The models that considered
the activity period and foraging strata (Figure S2b) had predictions closer to the reference
values, except for the Activity model for the margay, which overestimated its MPS. The
models that considered the body size of prey (Figure S2c) had predictions closer to the
reference values for all predator species, except for the RNM of the jaguarundi, which
overestimated its MPS. Regarding the saturated models (Figure S2d), they had predictions
closer to the reference values for the three largest predators but showed overestimated MPS
in several models of the margay and the jaguarundi.

At the predator species level for the predator–prey ratio (PPR; Figure 2), we found
that the co-occurrence model had predictions closer to the reference values for four of
the five predators, except for the largest (Figure 2a). The models that considered the
activity period and the foraging strata had predictions closer to the reference values for all
predator species (Figure 2b), but there were two exceptions where the models overestimated
the reference PPR value: the Activity model of the ocelot and the Strata model of the
jaguar. The models that consider the body size of the prey (Figure 2c) had predictions
closer to the reference values of the PPR for all predator species, except for the smallest
(i.e., the margay). Finally, the four models that considered all the traits and the co-occurrence
(Figure 2d) had predictions closer to the reference values of the PPR for the largest predators
(i.e., cougar and jaguar), while for the rest of the predators, differences were observed
among the four models.
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predator species level for each predator species, where the x-axis shows the different predator species
and models and the y-axis shows the normalized errors for (a) co-occurrence model, (b) spatiotem-
poral models, (c) body size models and (d) saturated models. The upper horizontal dashed line
indicates the reference value plus two standard deviations, while the lower horizontal dashed line
indicates the reference value minus two standard deviations and the continuous horizontal line
indicates the reference value. See Table 1 and the methods for the model definitions. Cat silhouettes
are from PhyloPic (phylopic.org) and represent the evaluated species.

At the locality level for the predator–prey ratio (PPR; Figure 3), we found that the
co-occurrence model (Figure 3a), the models that considered the activity period and the
foraging strata (Figure 3b), and the models that considered body size (Figure 3c) had
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predictions closer to the reference values for all predator species. Finally, the saturated
models (Figure 3d) had predictions closer to the reference values for all models except the
NMA for the Ocelot (overestimated) and the RNMAS for the cougar and jaguar, which
had underestimations.
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models, (c) body size models and (d) saturated models. The upper horizontal dashed line indicates
the reference value plus two standard deviations, while the lower horizontal dashed line indicates
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reference value. See Table 1 and the methods for model definitions.
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4. Discussion

Here, we propose a new approach to infer predator–prey species-level interaction
properties based on combining Eltonian niches and geographic distributions of species. We
evaluated the potential of using morphological and functional traits to filter information
obtained from geographic range maps (co-occurrence) and describe predator–prey interac-
tion properties at the predator level, considering its complete distribution (species level)
and local observations (locality level). We showed that combining such trait information at
broad spatial scales generates good predictions of predator–prey interaction properties that
agree, in general, with those derived from observations of empirical studies at the local
spatial scale. Our results of the different models vary with the body size of predator species,
with the simpler models (e.g., co-occurrence, COC) showing better predictions for medium
and small predators and the more complex models (e.g., co-occurrence with activity and
restricted feeding interval, RNM) showing better predictions of the empirical observations
for larger predators (i.e., cougar and jaguar). Overall, our modeling framework based
on geographic and Eltonian niche information can be a useful tool to generate informa-
tion about predator–prey interactions in places where no local information is available,
providing at the same time a tool for guiding field work.

According to our results, all interaction models had better performance for the
predator–prey ratio (PPR) than for the mean prey size (MPS). Moreover, MPS results
were related to the size of the predator, as expected, according to its metabolic needs [20].
This is because, although all predators evaluated are reported to be opportunistic and
consume any available resource [32,33], larger predators consume larger prey more fre-
quently, as they require larger amounts of meat [20], which makes their MPS higher than
that of smaller predators. On the other hand, PPR values were low and very similar for
all predator species, with larger predators not showing a body size similar to that of their
prey, as expected [22]. The observed PPR values suggest that the predators evaluated,
even the larger ones, frequently consume prey slightly smaller than themselves (PPR > 1),
which is due to their hypercarnivorous diet that favors the consumption of any prey close
to their optimal prey size opportunistically [33,34]. Our results show that the models can
approximate well the descriptors of interactions observed in the literature, even for PPR,
which is a highly informative descriptor, as it is related to the trophic level of species
and energy flows in food webs [21,22]. This good model performance suggests that the
combined use of distribution information and existing data on interactions allows us to fill
knowledge gaps and contribute to the conservation of species and their interactions in the
current context of global change [7], where interactions are lost at a faster rate than species
that produce subsequent extinctions.

Regarding the data levels evaluated, all interaction models showed better performance
at the locality level (considering as many values as localities with enough prey information)
than at the species level (considering only a single value across the predator’s entire
distribution) for both metrics, the MPS and the PPR. However, this result should be taken
with caution since the number of localities was very limited for most predator species,
which, together with the variability of predator diets, can generate observations of similar
MPS or PPR between species of very different sizes, such as the jaguar and the ocelot [35].
Likewise, at the locality level, medium or small predator species showed MPS similar to
those of the larger predators, contrary to metabolic expectations [20] and to the observed
at the species level. These differences between the MPS at the species level and at the
locality level suggest that the diet patterns of these predators are more robust when we
consider the totality of prey known to the predator (species level) because they behave
as expected according to their metabolic needs (i.e., a positive correlation between prey
size and their predators [20]). On the other hand, when analyzing only localities (i.e., diet
fractions), species diets can become very similar due to the generalist behavior of predators
and the limited number of observations for some predator species [33,35]. Regarding PPR,
it was lower and constant between localities for larger predators and more variable for
small predators. This suggests that the similarities between large and small predators
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are due more to variability in the diet of the latter, which is well known for species such
as ocelots and jaguarundi [35]. In summary, our results show that at the locality level
predator diet observations can be very similar due to the great variability observed in
predators’ diets, especially those of medium and small size, which favored that models
such as co-occurrence had predictions closer to the observed values in large species.

Our analysis at the locality level, despite limitations in the number of samples, showed
that local observations of predator–prey interaction properties (i.e., MPS, PPR), are highly
variable as well as differences or biases in sampling among different species [1,35–37]. In
our case, differences in sampling effort may increase bias in local observations most likely
because felines are opportunistic and generalist predators [32,33,35]. Carnivores during
the search for optimal prey tend to consume smaller species as a temporary source of food;
thus, the size of the recorded prey in a particular study may not necessarily reflect the
metabolic needs of the predator [33,35,36]. As such, if the number of samples and prey
reported for a predator is small, smaller preys are more likely to be recorded, which could
generate similar patterns among predators of different sizes. This was observed for our
co-occurrence interaction model, which, despite only considering the species composition
per grid-cell without any additional filtering, performed similarly well for all predators.
The opportunistic nature of predator–prey interactions differs from other more tightly
linked interactions, such as pollination, where the correspondence between the functional
traits of interacting species allows for less intraspecific variation (e.g., [19]). Hence, our
modeling framework could have better results in these kinds of more intimate interactions.

Our results at the species level confirm that functional traits such as body size, activity
period and foraging strata are sufficient to generate accurate predictions of predator–prey
interaction properties such as the mean prey size or de predator–prey ratio for most predator
species. In our case, predators’ body size was a relevant trait for inferring their interaction
properties, given that it influences the selection of prey and is positively correlated with
prey size [20,22,36]. Furthermore, our results also showed that traits that do not require
field observations of interactions and that are available in databases—activity period
and foraging strata—seem to have a similar or better performance than body size in
predicting predator–prey interaction properties at both the species and locality levels, even
in species whose knowledge about their diet is poor, such as the jaguarundi [35]. This is
relevant considering the difficulty of studying predators in the field and that there are large
differences in the sampling effort among species, particularly in felids [1,35,37]. In the case
of co-occurrence models, our results showed good performance in small species of predators
(i.e., margay, jaguarundi and ocelot). This is most likely due to the skewed distribution
toward smaller body sizes in mammals [23], leading to a higher co-occurrence of small
predators with smaller mammals but making imprecise predictions for larger predators in
both levels. Therefore, while traits such as body size, activity period and foraging strata
appear to be very useful in defining interactions, since their performance can be related to
the niche of the species, the usefulness of the co-occurrence in the present study is related to
the Grinnellian niche of species and not to the Eltonian, that is, co-occurrence reflects similar
climatic tolerance of the species but not their functional trait matching. Such usefulness and
better performance of an interaction model based on geographic co-occurrence could be
specific to our considered interaction type and taxon (felids) and not necessarily for other
interaction type/taxa. For instance, in other types of interaction, such as herbivory between
ungulates and plants, the co-occurrence among trophic levels would not be as determinant
for the interaction (beyond being the first condition) as their temporal coexistence and
phenology of plants, which determine the actual possibilities for the interaction to occur
such as the time of year that the plant resource (e.g., foliage) is available for the herbivore.

Considering functional traits in interaction studies has allowed the development of
theoretical frameworks that integrate the climatic and trophic niches of species [3,13] and
predict food web properties, such as trophic level and their spatial variation, when such
information on trophic networks or interactions is limited or absent [10,14,15]. Here, we
took advantage of two complementary characteristics of these theoretical frameworks:
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first, using functional traits allows defining intervals within which an interaction can
occur through trait matching [3,10,14,31], and second, species with a similar Eltonian
niche usually share functional traits and belong to similar trophic levels [13]. These two
characteristics allowed us to use functional traits (morphology and life history) to filter
information based on geographic co-occurrence and obtain properties of predator–prey
interactions from broad-scale data, which were similar to those observed in the literature at
the local scale. This is particularly encouraging under current scenarios of global change that
threaten species and their interactions, allowing us to provide a first description of interactions
before we lose them without having to wait for local studies to be conducted [1,8,13,38].
Note, however, that using single trait values for species (e.g., mean body size, reported
activity period) can be suboptimal given the known intraspecific variation for several (if not
most) traits. For example, it is well known that species body size varies with latitude and
temperature, with smaller individuals at hotter/lower latitudes and larger individuals at
colder/higher latitudes (e.g., Puma concolor [39]), which could modify the species’ feeding
intervals at different locations. Similarly, the species period of activity could vary in
response to climate or the presence of competitors (e.g., the ocelot modifies its activity
period in response to the presence of humans or larger predators [40]).

Finally, our approach shows that by choosing traits that determine local coexistence
and resource importance and combining them with the ranges of these species, it is possi-
ble to generate predictions close to the empirically observed data. This implies that this
method can be used in other trait-mediated interactions, such as pollination, frugivory
or parasitism, as long as data on the geographic distributions and traits of the evalu-
ated species is available. For example, if we want to evaluate frugivory, we would need
to know which plants produce fruits in our area of interest as well as their phenology
(e.g., months when fruits are produced, immature, ripe and so on). We would also need
data on their consumers (i.e., birds, mammals) along with their geographic distributions.
Finally, we would require at least minimal field data (e.g., obtained from the literature) on
the consumers and their diets to refine inferences (i.e., if a bird consumes only ripe fruits
of certain plants even if the plant and bird co-occur in space, they will not interact until
the fruit is ripe). If we wish to replicate this approach with other groups, it is necessary
to consider data uncertainty. For example, if we have a database of functional traits at the
species level, we must use field data at the same resolution to avoid introducing biases
when changing the taxonomic resolution (e.g., recalculating such traits at the genus level
when these may already be average data or imputations). In this sense, we should be aware
of the limitations and simplifications associated with the type of data used (e.g., averages,
imputations), as well as consider whether there is more than one database with the same
trait, in which case it would be necessary to evaluate the consistency of the different sources
before joining them or choosing one. Another advantage of our approach is that, due to its
species-based focus, it is possible to evaluate the variation within the range of the species
evaluated to determine sites with higher resource quality (i.e., those more similar to the
empirical values) or sites with lower resource quality (i.e., sites with lower values than the
empirical values). Due to the simplicity of our method, as well as its applications, it can be
very useful in conservation, either to prioritize conservation areas or to determine the risk
of extinction of species.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/d15010061/s1. File S1: Complementary description of
data manipulation for interaction model generation; File S2: Restricted niche model results; File S3:
Predators species traits; File S4: Predator–prey interaction properties. Figure S1: Normalized error
(NE) of the mean prey size (MPS) for the nine models evaluated at the predator species-level for each
predator species. Figure S2: Normalized error (NE) of the mean prey size (MPS) for the nine models
evaluated at the locality-level for each predator species.
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