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Abstract: Vessel traffic is one of the major sources of underwater anthropogenic noise. Dolphins can
modify their vocal repertoire, especially whistles, in presence of vessels to facilitate their communica-
tion. Acoustic data were collected (sampling rate 96 kHz) in La Paz Bay, Gulf of California, Mexico.
Whistle rate and parameters of the coastal and oceanic ecotypes of common bottlenose dolphins
(Tursiops truncatus) were measured in absence of vessels and in presence of moving small vessels (size
5–10 m). The peak noise difference was calculated between the two frequency bands dominated by
the whistles (2000–20,000 Hz) and the small vessel (500–2000 Hz). In presence of vessels the oceanic
ecotype decreased whistle frequencies while the coastal ecotype increased them. Both ecotypes raised
whistle frequencies with the decreasing of the peak noise difference. The differences in habitat and
group structure could have driven the two ecotypes to react in a different way to the vessel presence.

Keywords: anthropogenic noise; cetaceans; vocalizations; disturbance; Gulf of California;
marine conservation

1. Introduction

Underwater noise pollution is an increasing threat for the marine environment [1] and
is recognized as a pollutant at a global scale [2]. Commercial shipping, oil and gas activities,
naval operations, fishing, construction, icebreaking or recreational boating are some of the
anthropogenic noise sources in the ocean [3]. Vessel traffic, especially, is one of the main
sources of anthropogenic underwater noise [1,3–5]. Vessels produce noise by the cavitation
created by the propeller and the rotating machinery of the engine [6]. Noise level is related
to size, power, load and vessel speed [3].

Dolphins use a wide variety of sounds to communicate, navigate and feed [7]. The
fast sound propagation in the water and the central role of acoustics in the dolphin ecology,
make them potentially vulnerable to damage or disturbance by underwater anthropogenic
noise [7]. Common bottlenose dolphins (Tursiops truncatus) produce whistles during
intra-specific social interactions, such as mother–calf interactions, group cohesion and
coordinated foraging [8–10]. Whistles are narrow-band, frequency-modulated signals, with
durations up to a few seconds and frequencies typically between 1 and 35 kHz [11–13].
Vessel effects on dolphins have generally been investigated in coastal environments, where
the main source of anthropogenic noise consists of small vessels [1]. Dolphins have been
previously found to respond to vessel noise modifying duration, emission rate, amplitude
and frequencies of whistles to facilitate the transmission of their signals and to avoid
acoustic masking [10,11,14–17]. In dolphins, vessel noise may also induce behavioral
changes [18], reduced foraging [19,20], displacement [14] and stress [21].
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Coastal and oceanic ecotypes of common bottlenose dolphin have been recorded
in many regions, including the Gulf of California [22]. In some regions of the world it
has been recognized that the two ecotypes differ in habitat distribution, social structure,
behavior [23,24], phenotype [25], diet [26], genotype [22,27] and whistle repertoire [28]. In
the Gulf of California, the coastal ecotype individuals are larger, with lighter pigmentation,
shorter rostrum and flippers compared to the oceanic ones [22,26,29]. The ecotypes also
differ in group structure. The oceanic ecotype lives in groups of up to 300 dolphins while
the coastal type is found in groups with an average of less than 20 individuals [29].

Because of living in two distinct habitats, the ecotypes are exposed to a different
variety of threats [30], and thus they could show different reactions to these. In coastal
environments, due to the high vessel traffic, the anthropogenic noise level could be higher
compared to the oceanic habitat [31,32]. The coastal ecotype could be exposed to a high and
repeated vessel traffic that could cause long-term effects on its survival and reproduction
rate [33,34]. Another possibility is that dolphins, facing a constant exposure to vessel traffic,
could become tolerant to it [35,36].

The present study focuses on the coastal and oceanic ecotypes of common bottlenose
dolphins encountered in La Paz Bay, Gulf of California. The research compares the whistle
parameters and rates of the two ecotypes in absence of vessels and in presence of a single
small vessel. The hypothesis is that the anthropogenic noise produced by a small vessel
causes a change in the whistle parameters and rates of the dolphins. Furthermore, the two
ecotypes could have developed different ways to adjust their whistle parameters and rates
in response to an increase of the anthropogenic noise level.

2. Materials and Methods

The study area was La Paz Bay, located in the Baja California peninsula, Mexico, in the
south-western Gulf of California (Figure 1). Surveys were conducted with a 7.3 m research
vessel (fiberglass skiff with Honda 75 HP engine), between October 2020 and September
2021, only under favorable weather conditions (Beaufort scale ≤ 2). Observations were
performed using a continuous scanning method by naked eye and with binoculars [37].
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Figure 1. Location of the common bottlenose dolphin groups recorded (coastal groups, n = 16; oceanic
groups, n = 5) and vessel occurrence. Basemap shapefile provided by Comisión Nacional para el
Conocimiento y Uso de la Biodiversidad (CONABIO).
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To describe the general vessel traffic, the type and location of any vessel not docked
or anchored was recorded, either in movement or not (Table 1). Location was calculated
using the recorded distance (meters from the research vessel estimated by naked eye)
and magnetic bearing (measured with a compass), taken as soon as vessels were visible.
The same trained researcher collected the observational data throughout the study for
consistency purposes, including the estimation of distances to vessels and dolphin groups.
Hence, any bias was consistent throughout fieldwork.

Table 1. Vessel types considered in the study.

Vessel Type Definition Length (m)

Fishing panga Panga * vessel used for fishing activities. 5–10
Touristic panga Panga vessel used for touristic activities. 5–10

Passenger panga Panga vessel used for carrying passengers from the
shore to other vessels or vice versa. 5–10

Ferry Large-sized vessel used for carrying people and
goods as a regular service from one port to another. 150–200

Yacht Vessel used for recreational activities. 10–30
Sailing boat Any vessel propelled entirely or partly by sails. 5–30

Cargo Merchant vessel carrying goods and materials from
one port to another. 150–200

Jet ski Personal watercraft used for recreational activities 2–4

* A panga is a type of small-sized (between 5 and 10 m long) fiberglass vessel, equipped with 75–150 HP outboard
engine, common in the study area.

When a sighting occurred, the research vessel tracked parallel to the course of moving
dolphins, approaching slightly to the rear of the group in a slow and continuous maneuver.
At this point, the engine was turned off, remaining so during all the recording duration, and
the hydrophone carefully deployed (4 m cable length). When the sea depth was less than
4 m, a length of the cable equal to the half of the sea depth was deployed. Sea depth was
measured at the beginning of each recording session using a digital depth gauge HONDEX
(PS-7). In case the dolphins were not visible or audible with the hydrophone, the engine
was turned on and the group was carefully followed to attempt another recording session
(for a maximum of 3 attempts). Acoustic data were collected using a Reson TC4013.1
hydrophone (sensitivity −211 dBRMS ± 3 dB re 1 V/µPa, frequency response 1 Hz to
170 kHz, omnidirectional) connected through a Reson VP2000 Voltage Preamplifier EC6081
(50 dB gain, 500 Hz high-pass filter, 50 kHz low-pass filter) to a Marantz PMD661 recorder
(sampling rate 96 kHz, 24 bits resolution).

For each recording session the ecotype and number of dolphins were noted. Due to the
difficulty of determining which individuals were being recorded, all visible dolphins were
counted and considered as one ‘acoustic’ group. Common bottlenose dolphin ecotypes
were determined by naked eye observations, according to the specific morphological
characteristics previously reported in the study area [22,26,29]. No mixed groups were
encountered. Recordings were conducted as long as dolphins were visible. During the
observation time, on occasion, vessels approached the group of dolphins, so separate
recordings with and without vessels were obtained for the same group. Data were analyzed
assuming that both events were independent and dolphins would have modified whistle
parameters only in presence of vessels. A minimum of 5 min was taken between two
acoustic recordings (with the exception of two consecutive recording without vessels) to
assure independence between the acoustic recordings of the same dolphin group.

Acoustic recordings were divided into two categories: absence of vessels (no other
vessels audible both above by ear or below the surface with the hydrophone, or visible
by naked eye during the recording session) and presence of a moving small vessel (a
single small vessel audible and visible by naked eye during the recording session). The
visibility by naked eye, considering the good weather conditions during the study (cloud
cover < 20%) was estimated at around 3.5 km. The small vessels considered were touristic,
fishing and passenger pangas. Acoustic recordings were first inspected in the spectrogram
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view of Raven Pro (version 1.5 Cornell University, Laboratory of Ornithology, New York) in
the time-frequency domain (512 points fast Fourier transformed [FFT], Hann window, 50%
overlap). Non-overlapping whistles with the complete sound clearly visible in the spectro-
gram were identified and selected for analysis with Luscinia (version 2.16.10.29.01) [38].
In Luscinia the spectrogram was set at 10 ms frame length, 5 ms time step, 48 kHz max-
imum frequency, 1024 spectrograph point and Hann window with a 50% overlap. For
each whistle, the fundamental frequency contour was manually traced with the cursor,
and the standard parameters duration, starting frequency, ending frequency, minimum
frequency, maximum frequency, frequency range and peak frequency were automatically
extracted in Luscinia [11,17]. To avoid the pseudo-replication of stereotyped whistles,
signals with identical time-frequency contours, visually matched by two trained observers,
were considered only once. Whistle rate was calculated as the number of whistles/number
of dolphins/recording duration [39].

For the acoustic recordings in presence of a small vessel, every whistle was sorted ac-
cording to its initial time (time associated to its starting frequency reading). Each recording
was divided into three time intervals, adapted from Buckstaff [40]: during approach (1 min
before and 1 min after the moment the small vessel was closest to the dolphin group);
before approach (over 1 min before the moment the small vessel was closest to the dolphin
group); after approach (over 1 min after the moment the small vessel was closest to the
dolphin group). For the during approach interval, at the moment the small vessel was closest
to the dolphin group, the distance between them (hereafter referred to as distance) was
calculated trigonometrically knowing their respective locations (calculated as previously
explained). Additionally, the level of vessel noise perceived by dolphins was calculated
from the recording amplitudes. For every recording session the relative power spectral den-
sity (PSD) was extracted using the function PAMGuide [41] in MATLAB (version R2015a,
Mathworks) (see Figure S1 for PSD examples). The highest peak of the root-mean-square
(RMS) level was considered on each of the two frequency bands representing the small
vessel and the whistles. The band between 500 and 2000 Hz is the frequency range of most
of the maximum amplitudes of small vessels, according to previous studies [42–45]. On
the other hand, the band 2000–20,000 Hz is the range where most of the whistle energy is
concentrated [12,46–48]. An index of vessel noise perceived by dolphins was estimated
from the difference of the two bands peaks (peak noise in the whistles band minus peak
noise in the vessel band). Negative peak noise difference values mean that vessel noise was
more intense than whistles and vice versa. The frequency with the highest peak in the band
500–2000 Hz was found at 984 ± 552 Hz (mean ± SD), while in the band 2000–20,000 Hz it
was found at 4288 ± 4678 (mean ± SD).

As the hydrophone was located in the research vessel, it was needed to correct PSD
peak of the small vessel to represent the actual noise level received by dolphins. First it
was solved trigonometrically, for every recording session, the distance between the small
vessel and dolphins. Then, the difference of this distance, to the one between the small
vessel and the hydrophone, was used to adjust the peak level of the vessel band, using
formulas for sound absorption and spreading (assumed spherical) [49]. A similar approach
was used to adjust the peak level in the whistles band, in order to standardize for constant
distance between dolphins and the hydrophone for all recording sessions. The standardized
arbitrary distance was 282 m, calculated from the average distance between dolphins and
the research vessel in during the approach intervals.

The normality and homoscedasticity of the data were checked by significance tests
(Shapiro–Wilk and Levene’s test, respectively). As the assumption of normality was
not valid for all the data, non-parametric tests were used. Mann–Whitney U-tests were
applied to compare whistle parameters and rates of the two ecotypes between presence
and absence of vessels. Kruskal–Wallis non-parametric test, followed by Dunn post hoc
test, were performed to compare the whistle parameters and rates between the three time
intervals. Non-parametric Kendall’s tau test was used to evaluate the correlation between
whistle parameters and the peak noise difference. Statistical analyses were performed in
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R software (version 4.0.5, The R Foundation for Statistical Computing, Vienna, Austria,
http://www.rproject.org) with the RStudio interface (version 1.4.1106), using “stats”,
“car” [50] and “dunn.test” [51] packages.

3. Results

A total of 25 surveys were conducted in an effort of 179 h and 12 min, during which
820 other moving vessels were encountered (Figure 1). The most common type of vessel
was the touristic panga (n = 441; 54%), followed by the yacht (n = 161; 20%), the sailing boat
(n = 96; 12%), the fishing panga (n = 57; 7%), the ferry (n = 34; 4%), the passenger panga
(n = 15; 1%), the jet ski (n = 9; 1%) and the cargo (n = 7; 1%).

A total of 375 whistles (oceanic, n = 190; coastal, n = 185) in the absence of vessels and
183 whistles (oceanic, n = 105; coastal, n = 78) in the presence of a single small vessel were
analyzed (Table 2 and Table S1). Descriptive statistics (mean, standard deviation, median)
of the whistle parameters and rates were calculated (Tables 3 and 4).

Table 2. Data collection recap table.

Absence of Vessels Presence of a Single Small Vessel Total

Oceanic ecotype

N◦ groups recorded 5 4 5
N◦ recordings 17 5 22

Recording duration (min) 167 55 222
N◦ whistles 190 105 295

Coastal ecotype

N◦ groups recorded 13 10 16
N◦ recordings 35 11 46

Recording duration (min) 252 83 335
N◦ whistles 185 78 263

Table 3. Descriptive statistics of the whistle parameters and rates of the two bottlenose dolphin
ecotypes in absence of vessels and in presence of a single small vessel.

Oceanic Ecotype Absence of Vessels (n = 190) Presence of a Single Small Vessel (n = 105)

Mean sd Median Mean sd Median

Duration (s) 1.13 0.60 1.08 1.07 0.56 0.92
Starting frequency (kHz) 12.10 5.76 9.95 10.75 4.40 9.46
Ending frequency (kHz) 8.97 3.72 7.82 9.31 4.55 8.29

Minimum frequency (kHz) 7.32 2.14 7.01 7.07 1.96 6.71
Maximum frequency (kHz) * 18.57 4.37 18.53 17.01 3.52 16.96

Frequency range (kHz) * 11.26 4.33 11.12 9.93 3.07 9.79
Peak frequency (kHz) 11.76 3.58 11.13 11.11 2.69 10.80

Whistle rate 0.02 0.01 0.02 0.04 0.04 0.03

Coastal Ecotype Absence of Vessels (n = 185) Presence of a Single Small Vessel (n = 78)

Mean sd Median Mean sd Median

Duration (s) 1.08 0.70 0.99 1.23 0.80 1.12
Starting frequency (kHz) 10.69 4.60 10.18 11.62 3.85 11.00
Ending frequency (kHz) * 9.11 3.31 8.66 10.02 2.97 9.88

Minimum frequency (kHz) * 6.95 2.03 6.65 7.89 2.00 7.95
Maximum frequency (kHz) 15.28 3.90 14.95 16.07 3.32 15.46

Frequency range (kHz) 8.33 3.82 7.86 8.17 3.06 8.17
Peak frequency (kHz) * 10.00 2.75 9.68 10.82 2.63 9.95

Whistle rate 0.05 0.08 0.03 0.04 0.05 0.02

* Significantly different parameters between absence of vessels and presence of a single small vessel (Mann–
Whitney U-tests, p < 0.05).

http://www.rproject.org
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Table 4. Descriptive statistics of the whistle parameters and rates of the two bottlenose dolphin
ecotypes before approach, during approach and after approach of a single small vessel.

Oceanic Ecotype Before Approach (n = 45) During Approach (n = 16) After Approach (n = 44)

Mean sd Median Mean sd Median Mean sd Median

Duration (s) 1.06 0.62 0.81 1.22 0.65 1.05 1.03 0.44 0.96
Starting frequency (kHz) 10.83 4.51 9.74 11.24 3.19 10.39 10.49 4.72 9.05
Ending frequency (kHz) * 10.80 5.73 9.10 9.81 4.28 8.61 7.60 2.17 7.00

Minimum frequency (kHz) * 7.31 2.08 7.11 8.22 1.90 7.97 6.42 1.62 6.29
Maximum frequency (kHz) 16.90 4.29 16.81 18.00 3.33 17.06 16.76 2.61 16.91

Frequency range (kHz) 9.59 3.37 8.69 9.79 3.66 9.68 10.34 2.51 10.71
Peak frequency (kHz) 11.63 2.74 11.34 11.86 2.99 12.11 10.32 2.34 10.27

Whistle rate 0.04 0.04 0.02 0.03 0.04 0.02 0.06 0.08 0.03

Coastal Ecotype Before Approach (n = 23) During Approach (n = 17) After Approach (n = 38)

Mean sd Median Mean sd Median Mean sd Median

Duration (s) 1.07 0.75 0.91 1.51 1.04 1.26 1.20 0.69 1.17
Starting frequency (kHz) 11.17 4.71 10.18 11.90 2.74 11.89 11.76 3.77 10.86
Ending frequency (kHz) 9.99 3.69 10.98 9.93 2.58 9.68 10.08 2.71 9.88

Minimum frequency (kHz) 7.38 2.93 7.01 7.74 1.06 7.90 8.00 1.64 8.27
Maximum frequency (kHz) 16.24 3.85 15.58 15.88 3.03 15.53 16.04 3.17 15.06

Frequency range (kHz) 8.41 3.17 7.91 8.14 3.15 8.92 8.04 3.03 8.17
Peak frequency (kHz) 11.48 3.05 10.69 10.16 2.21 9.40 10.71 2.50 10.35

Whistle rate 0.03 0.04 0.01 0.05 0.05 0.04 0.04 0.05 0.03

* Significantly different parameters between before, during and after approach (Kruskal–Wallis test, p < 0.05).

The whistles of the oceanic ecotype showed lower maximum frequency (W = 12,545,
p < 0.05) and narrower frequency range (W = 11,884, p < 0.05) in presence of a single small
vessel compared to the whistles in absence of vessels. On the contrary, the whistles of
the coastal ecotype showed in presence of a single small vessel higher ending frequency
(W = 5747, p < 0.05), minimum frequency (W = 4947, p < 0.05) and peak frequency (W = 6029,
p < 0.05) (Table 3).

The whistles produced by the oceanic ecotype after approach showed lower ending
frequency compared to the whistles before approach and during approach (χ2 = 13.201, df = 2,
p < 0.05). Furthermore, minimum frequency of the whistles emitted after approach was lower
compared to the whistles during approach (χ2 = 10.218, df = 2, p < 0.05) (Table 4) (Figure 2).
Whistles emitted by coastal ecotype dolphins showed no significant differences between
before approach, during approach and after approach (Table 4).
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The starting frequency of the whistles of the coastal ecotype showed significantly
negative correlation with the peak noise difference (τ = −0.3633924, z = −1.9703, p < 0.05)
(Figure 3). Duration and frequency range of the whistles of the oceanic ecotype showed
significantly positive correlation with the peak noise difference (respectively: τ = 0.4426352,
z = 2.2287, p < 0.05; τ = 0.4233902, z = 2.1318, p < 0.05) . On the contrary minimum and
starting frequency were negatively correlated with the peak noise difference (respectively:
τ = −0.4831425, z = −2.4246, p < 0.05; τ = −0.579771, z = −2.9096, p < 0.05) (Figure 4).
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4. Discussion

This study finds that the common bottlenose dolphins encountered in La Paz Bay
changed the whistle parameters in presence of vessels. The oceanic ecotype produced whis-
tles at lower frequencies in presence of a small vessel while the coastal one increased the
frequency of its whistles. Bottlenose dolphins have been found to both increase [10,11,52]
and decrease [28,47,53] whistle frequencies in noisy environments, avoiding acoustic mask-
ing and improving signal transmission. The whistle rate of both ecotypes seemed to not
be affected by the presence of vessels and showed no changes during the different time
intervals. However, other studies found a whistle rate increase in the presence of a ves-
sel [54] and at the beginning of its approach [40]. Regarding the time interval analyses, in
the oceanic ecotype the whistles showed the lowest frequencies after approach. This result
could be due to the time dolphins needed to adjust their frequency whistles in response to
the vessel noise.

The different reactions displayed by the two ecotypes in presence of vessels could be
due to the different habitats they occupy. In the oceanic environment transmission loss
is predominantly spherical, while in the coastal area it tends to be cylindrical, resulting
in a noisier environment in the shallow waters of the coastal zone [55]. Furthermore, the
underwater ambient noise in the coastal habitat could be higher compared to the oceanic
one, due to the presence of the snapping shrimps that produce sounds in the 5–10 kHz
frequency band along the coastal waters [56]. These sounds could even overlap with the
frequency range of the whistles, causing acoustic masking. Combining these elements with
the higher occurrence of vessels along the coastline, communication between dolphins may
be less effective in this area [40]. The coastal ecotype could thus increase whistle frequencies,
prioritizing the communication with the closest individuals. On the other hand, the oceanic
ecotype, living in big groups [22], may have produced lower-frequency whistles in presence
of vessels to cover longer distances and communicate with the outermost individuals of
the group.

In the during the approach intervals both ecotypes seemed to react in a similar way to the
peak noise difference. Whistles showed negative correlations between starting frequency
and peak noise difference, meaning that when the vessel noise was more intense compared
to the whistle signal, dolphins raised whistle starting frequencies. Moreover, the oceanic
ecotype produced whistles with higher minimum frequency and shorter duration with the
increasing of vessel noise. The correlation between minimum frequency and the peak noise
difference, while maximum frequency remained constant, explains the positive correlation
with the frequency range. The greater number of whistle parameters correlated with the
peak noise difference expressed by the oceanic ecotype resulted in a more drastic shift of
the whistle contour, suggesting a higher impact. On the other hand, the coastal ecotype
was encountered in an area with a higher abundance of vessels compared to the offshore
habitat (Figure 1), and it could hence be more habituated to vessel noise. For both ecotypes,
the limited number of whistles considered to establish the correlations hinders reaching
clear conclusions. More data is needed to validate this finding.

During the monitoring the touristic panga was the most encountered vessel, confirm-
ing that touristic activities regularly take place in La Paz Bay. Such activities mainly occur
along the coast of La Paz and on the western side of the Espiritu Santo Island (Figure 1).
Although sea lions, whale sharks and large whales are the main attractions at La Paz Bay, in
case of a sighting, vessels may follow dolphins as well. While counting all the vessel types
helped to understand their occurrence in the study area, the anthropogenic noise impact
on the dolphins was tested only for pangas. Pangas are the most common vessel in La Paz
Bay and they are the ones commonly used to approach dolphins. Moreover, focusing on
vessels with similar engine powers minimized the variation. However, the duration of the
acoustic impact, the speed of the vessel, could have influenced in different manners each
encountered group [1].

Dolphins could continue to frequent the same localities, even if they are affected by
the vessel presence, because they depend on those areas to maintain their activities [57–59].
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When the cost of benefits of remaining in the favorite habitat exceeds the cost of disturbance,
animals show tolerance instead of site avoidance [60]. The presence of the coastal ecotype in
an area with high occurrence of vessels may indicate the ecological importance of that area
for the dolphins, probably due to high prey availability, and outlines a possible tolerance
to high levels of noise and disturbance. It is possible that the coastal dolphins of La Paz
Bay tolerate high levels of anthropogenic noise rather than avoiding the area. Nevertheless,
the effects of such repeated exposure to noise are unknown. A more focused study on the
common bottlenose dolphin distribution is needed to assess the presence of biologically
important areas (e.g., for resting, nursing and feeding), regarding where to propose noise
mitigation measures.

The vocal plasticity of dolphins is still far from understood. Changes in whistle
parameters may be metabolically expensive [61] and may not be sufficient to compensate
for long-term noise impact [62]. Anthropogenic noise levels and vessel traffic are expected
to rise in the future and it is necessary to increase the mitigation measures to address
underwater noise pollution [1]. Reducing the number and speed of vessels, avoiding
sudden gear-shifts and increasing the distance from the animals may help to reduce the
noise impact during sightings [63].

Supplementary Materials: The following supporting information can be downloaded at: https:
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