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Abstract: Accelerating climate change is expected to cause range shifts of numerous taxa worldwide.
While climatic projections and predicted consequences typically focus on the future (2050 or later), a
measurable change in climatic conditions has occurred over recent decades. We investigate whether
recent climate change has caused measurable shifts in suitable habitat for six North American species
in the highly threatened genus Cypripedium (Orchidaceae). We constructed species distribution
models using a maximum entropy approach from species occurrence records, 19 bioclimatic variables,
land cover data, and soil data for two decadal time intervals (1980–1989 and 2010–2019). Models
were compared between time intervals to assess shifts in locality, size, fragmentation, and mean
elevation of suitable habitat. For all six congeners, the centroids of suitable habitat shifted between
time intervals, although the directionality varied. There was, however, consistency among species
within geographic regions. Consistent with our expectations, the optimal habitat for most species
shifted to a higher elevation and for western species it shifted northwards. However, the habitat
for one northwestern species shifted southwards and the habitat for eastern species converged on
the Great Lakes region from different directions. This work illustrates the somewhat idiosyncratic
responses of congeneric species to changing climatic conditions and how the geographic region
occupied by a species may be more important for predicting shifts in habitat than is the response of
a closely related taxon.

Keywords: climate change; Cypripedium; habitat shifts; North America; range modification; response
to climate change; species distribution model

1. Introduction

Climate change has been an ongoing and cyclical phenomenon shaped by Milankovitch
cycles, atmospheric perturbations resulting from volcanic activity, and major shifts in pho-
tosynthetic biomass throughout Earth’s history [1–3]. However, recent climate change is
fundamentally different, with anthropogenic activity being a primary driver. Not only has
the rate of climate change in recent decades exceeded that caused by non-anthropogenic
factors, but the rate of change is accelerating [4,5]. Based on the NASA’s Daymet data
set [6] mean annual temperatures in North America increased by 0.919 ◦C between 1980
and 2019, representing an average annual increase of 0.024 ◦C, which is 120-fold higher
than the pre-industrial rate of 0.0002 ◦C per year [4].

Species can respond to shifting climatic conditions in several ways: acclimation or
adaptation, migration and range modification, or extinction. For plants, their phenotypic
plasticity, levels of genetic variation, life history traits, and dispersal capability will shape
which responses are likely. For example, adaptation may be more likely in short-lived
species with short generation times, assuming sufficient genetic variation. Long-lived
species, such as trees, may be unable to adapt to environmental conditions that are changing
more rapidly than their generation times [7–9]. For these species, long-distance seed
dispersal to more hospitable climatic zones and long-distance gene flow are likely to be
more important [10,11]. Predictions are that cold-intolerant taxa that are unable to adapt to
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a warming environment rapidly enough will migrate poleward and/or to higher elevations
as they track favorable climatic conditions, or face extinction [12,13].

Given the pace of environmental change since the industrial revolution, it is unsurpris-
ing that recent occurrence records (e.g., herbarium and citizen science records) for various
taxa are revealing shifts in phenology and range distributions [13–17]. Meta-analyses
have provided valuable insights regarding trends of poleward range shifts, low-latitude
extinctions, and increasing species richness on mountain peaks [13,18]. However, there
are exceptions to these general trends. For instance, Crimmins et al. [19] reported that
64 vascular plant species, representing 17 families, shifted to more mesic habitat at lower
elevations between 1930 and 2005. Elevational shifts are thought to be more common
than latitudinal shifts due to the limited capacity for the long-distance dispersal of many
species (e.g., taxa reliant on barochory) and limited site availability [20]. Unfortunately,
occurrence records can be biased due to the differential ease of access for surveyors, with
an overrepresentation of vehicle-accessible sites and under-sampling of private lands and
more remote landscapes. Species distribution models (SDM) are a valuable approach for
inferring shifts in hospitable habitat over specific time intervals. They are also partic-
ularly useful for understanding the extent of suitable habitat available for rare species
with few occurrence records when using pseudoabsence methods (e.g., maximum entropy
[MAXENT] modeling).

Members of Orchidaceae are long-lived perennials with generation times exceeding
100 years in some cases [21] and are globally distributed. Orchids produce large numbers
of wind-dispersed “dust” seeds per fruit [22] that lack endosperm and constitute little more
than air-filled casings around the embryo [23]. Consequently, orchid seeds can potentially
be dispersed over vast distances [24], though empirical evidence of this has been mixed.
Data indicate that seed dispersal follows a leptokurtic distribution with many seeds settling
and establishing in the natal population, but some seeds occasionally disperse over long
distances [25–32]. While long-distance dispersal may be rare, it may only take a small
number of individuals to effectively found new populations [33]. Thus, our expectation
is that orchids have a higher likelihood of tracking climate change and modifying their
ranges through long-distance dispersal than undergoing local adaptation in response to a
rapid climatic shift.

Our objective is to infer the geographical location and extent of suitable habitat for six
North American species of Cypripedium (Orchidaceae) for two recent decadal time intervals
(1980–1989 and 2010–2019) using SDMs and estimate whether suitable habitat has shifted
between time periods. We hypothesize that suitable habitat for these congeners has shifted
to higher elevations and/or northward. Furthermore, we predict relative consistency
in the patterns and directionality of shifts in habitat for these North American species
of Cypripedium.

2. Materials and Methods

Study taxa—Cypripedium L. (Orchidaceae) occurs throughout the Northern Hemi-
sphere and is the only temperate genus within the subfamily Cypripedioideae. Over half
of the 52 species of Cypripedium are listed as at least endangered by the IUCN red list [34],
with destruction of natural habitat and horticultural collection cited as the primary threats.
Our study encompasses 6 of the 12 species that occur in North America: Cypripedium acaule,
C. arietinum, C. californicum, C. fasciculatum, C. guttatum, and C. parviflorum. Of these six
C. fasciculatum is vulnerable, C. arietinum is near threatened, and C. californicum is en-
dangered [34]. We were unable to include the remaining six North American species in
our analyses because of insufficient occurrence records (see below). All our focal species
are restricted to acidic wetlands and open forest with moist, well-drained soils, except
C. guttatum, which can also occur in tundra and meadows, and C. californicum, which occurs
exclusively within wetlands on serpentine soils [35–37].

All members of the genus are terrestrial and rely on food mimicry and deception to at-
tract generalist pollinators that consist of bees or, for smaller-flowered species, flies [35,38,39].
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Pollinators entering the bowl-shaped flower often become trapped and as they attempt to
escape via a narrow opening at the back of the bowl, they force their way past the stigma
and then the anther, thereby preventing self-fertilization and ensuring attachment of a
pseudo-pollinium to the departing insect. Like other orchids, Cypripedium spp. produce
many (14,000–54,000) small, wind-dispersed seeds that can potentially be dispersed over
long distances [23,24,40]. Germination requires mycorrhizal symbionts, the most important
of which are members of Tulasnellaceae and Ceratobasidiaceae (1–14 mycorrhizal associates
per orchid species) [41], suggesting that recruitment after seed dispersal is not assured
unless appropriate mycorrhizal taxa are present in the substrate [42]. Most, if not all,
terrestrial orchids appear to be capable of long periods of dormancy [43]. Cypripedium spp.
in particular can remain dormant for up to 15 years [44]. It is difficult, however, to know the
true duration of dormancy because of the limitations of conducting long-term demographic
studies. Presumably, orchid persistence is facilitated by the acquisition of fungally derived
nutrients from mycorrhizal associations maintained during dormancy.

Species distribution models—The distribution of suitable habitat of each of the focal
species was modeled using maximum entropy in MAXENT version 3.4.3 [45]. To compile
presence-only data sets, occurrence records for all 12 North American Cypripedium spp.
were obtained from the Global Biodiversity Information Facility (GBIF) [46] for each of
two decadal time intervals: 1980–1989 (early time interval; ETI) and 2010–2019 (late time
interval; LTI). Records with any of the following flags were excluded from the analyses:
fuzzy taxon match, geographic datum invalid, identification date invalid, record date
invalid, identification date unlikely, coordinate projection suspicious, basis of record invalid
and record date mismatch. Coordinates of retained occurrence records were converted to
the Lambert Conformal Conical projection used by the Daymet climatological data set [6].
To avoid overrepresentation of more heavily surveyed Cypripedium spp., North America
was partitioned into a grid of hexagonal cells, each encompassing 10 hectares, using the ‘sp’
package in R [47,48]. For each species with >150 occurrences for a given time interval, one
occurrence record was randomly selected per cell for model training.

Rasters representing annual values of 19 bioclimatic variables (Table S1; see
Supplemental Data with this article) were created through use of the biovars function,
from the R package ‘dismo’ [49], based upon NASA’s Daymet data set. Representative
bioclimatic rasters for the ETI and LTI were created by averaging rasters across years
within the respective time intervals. The dates of the ETI were selected because this is the
earliest 10-year time period where all environmental variables were captured in NASA’s
Daymet data set. The dates of the LTI represent the most recent 10-year period for which
all environmental data were available at the time of analysis. A raster of USDA soil clas-
sification, at the level of order, was obtained from the International Soil Research and
Information Centre’s Soilgrids data set [50]. Because soil classification at this level is shaped
by processes that span hundreds of years (e.g., mineral source, degree of erosion, and time
since biological colonization), this raster was used for both time intervals. Soil data are
valuable for modeling the distribution of orchids due to the strong influence of edaphic
conditions on the distribution of fungal taxa [51], thereby allowing indirect consideration
of mycorrhizal distributions. Yearly land cover rasters, with pixels representing vegetation
type, permafrost, agricultural use, or urbanization, were obtained from the European Space
Association’s Climate Research Data Pack (ESACRDP) [52]. Land cover is valuable for
developing SDMs for ecologically sensitive taxa such as orchids because it serves as a
useful representation of ecological variation across the landscape that might not be fully
captured by climatological data. The ESACRDP only covers 1992 to 2015; however, the
USGS monitoring of the conterminous United States shows negligible differences in median
land cover during the 1980s and 1992. Unlike the ESACRDP, the USGS data failed to cover
Canada, a key region in this study. The created rasters were based on the most frequent
land cover for a given pixel during the respective time interval. All rasters were converted
to the Lambert Conformal Conical projection, with each pixel representing 1 km2.
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SDMs were constructed using 10 cross-validated replicates for each Cypripedium
species in each time interval, with 10% of occurrence records reserved for model test-
ing. Models were built using 10,000 random background points, 500 iterations, and a
convergence threshold of 10−6. Model construction began with a single predictor variable
model for each bioclimatic variable, with the variable that most strongly predicts suit-
able habitat, as quantified by the area under the operator curve (AUC), retained for the
final model. All variables that spatially correlated with the strongest predictor variable
(Pearson’s correlation coefficient ≥ |0.7|) were discarded. This process was repeated for
the second-best predictor, the third-best predictor, etc., resulting in three to six uncorrelated
bioclimatic variables retained per species (Tables S2 and S3). An SDM of suitable habitat
was then constructed using the retained, uncorrelated bioclimatic variables, land cover,
and soil taxonomy. For each retained variable, a model was constructed with the respective
variable removed. Akaike information criterion corrected for small sample size (AICc) was
calculated for the full and alternative models. If an alternative model had a lower AICc, it
was retained, and the process was repeated until AICc was minimized. Once uncorrelated
predictor variables were screened and selected, a model was built for all possible feature
combinations. AICc was calculated for each set of features and the set with the minimum
AICc was retained. The regularization value was tested in 0.25 increments from 0.50 to 4.00
and the value that minimized AICc was used in the final model. Only final models with
AUC ≥ 0.7 were retained [53].

Occurrence records from the LTI greatly outnumbered those from the ETI. To assess
if a sufficient number of records were available for SDM construction during the ETI,
the LTI was subsampled, with replacement, to create 999 data sets with an equivalent
number of records as in the ETI data set. Following the methods described above, an
SDM was built for each of the LTI subsets. Rasters for both the full data SDM and the
subset data SDM were converted to binary calls of suitable/non-suitable habitat based
upon the maximum test sensitivity plus specificity (MSS) threshold. Significance in locality
of inferred suitable habitat between the subset data SDM and the full data SDM was
quantified through a modified t-test for comparison of spatial data, as implemented in the
SpatialPack R package [54–56]. Species where at least 95% of the subset data SDMs for the
LTI were significantly similar to the full data SDM for the LTI at α = 0.05, after Bonferroni
correction, were considered to have a sufficient number of ETI records for SDM creation.
Only six species (C. acaule, C. arietinum, C. californicum, C. fasciculatum, C. guttatum, and
C. parviflorum) had a sufficient number of occurrence records, yielding a total of 293 and
1935 occurrences for the ETI and LTI, respectively (Table 1).

The MSS threshold was used to define suitable habitat when necessary, as suggested
by Liu et al. [57]. The overlap criterion (Ω) of suitable habitat between the ETI and LTI
for each species was calculated by dividing the intersect of suitable habitat between the
two time intervals by their union [58]. An elevation raster was obtained from the NOAA
ETOPO1 global relief model so the average elevation of predicted suitable habitat between
time intervals could be quantified [59]. The total area of predicted suitable habitat was
calculated for both time intervals and compared. The weighted centroids of suitable habitat
in both time intervals were used to infer the directionality and distance of habitat shifts.
The fragmentation of habitat was quantified for all models using Patton’s shape index (SIP),
as implemented in the R package ‘SDMTools’ version 1.1-221 [60,61]. SIP is the edge length
to area ratio of suitable habitat, corrected for the fact that the area and perimeter of an
object do not increase in a 1:1 ratio. Thus, increasing SIP indicates increasing fragmentation
of habitat.
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Table 1. Summary statistics from species distribution models for six North American Cypripedium
species for the early (ETI; 1980 to 1989) and late time intervals (LTI; 2010 to 2019). Measures in-
clude the number of occurrence records included in model construction (N), percent of records
correctly predicted (PCC), overlap criterion (Ω), change in total area of suitable habitat between time
intervals (∆ area), percent change in total area (%∆ area), distance the centroid of suitable habitat
shifted, change in mean elevation of suitable habitat (∆ elevation), percent change in mean elevation
(%∆ elevation), and percent change in Patton’s shape index (%∆ SIP), which is an estimate of change
in degree of habitat fragmentation.

Species N
(ETI)

N
(LTI)

PCC
(ETI)

PCC
(LTI) Ω

∆ Area
(ha)

%∆
Area

Centroid
Shift
(km)

∆
Elevation

(m)

%∆
Elevation %∆ SIP

West
C. californicum 35 78 71.4% 92.3% 47.4% 564 9.1% 67 −139 −14.7% 179.2%
C. fasciculatum 17 53 64.7% 94.3% 4.2% 79,599 2062.2% 501 321 24.8% 40.1%

C. guttatum 12 34 91.7% 82.4% 10.7% 104,193 408.0% 411 84 20.1% −66.0%
Mean 21.3 55.0 75.93% 89.67% 20.77% 61,452.0 826.43% 326.3 88.6 10.07% 51.10%

East
C. acaule 82 4654 81.7% 97.2% 39.7% 41,249 26.0% 466 4 1.1% 93.7%

C. arietinum 11 91 72.7% 93.4% 11.5% 114,714 553.5% 336 88 35.8% −81.7%
C. parviflorum 81 1560 67.9% 92.7% 23.9% 156,983 111.2% 279 106 32.3% 83.8%

Mean 58.0 2101.7 74.10% 94.43% 25.03% 104,315.3 230.23% 360.3 66.0 23.07% 31.93%

Overall mean 39.7 1078.4 75.02% 92.05% 22.90% 82,883.7 528.33% 343.3 77.3 16.57% 41.52%

3. Results

Soil taxonomy was among the strongest predictors of suitable habitat for most
Cypripedium species examined and was retained as a predictor variable for all but the
C. californicum ETI and C. arietinum LTI models (Tables S2 and S3). There was no con-
sistency in bioclimatic variables that correlated with habitat suitability across the six
Cypripedium spp. Soil classification was the only consistent predictor. The AUC of final
models ranged from 0.769 to 0.996 (mean = 0.936). The percentage of observed occurrences
that were correctly classified (PCC) ranged from 64.7% to 97.2% (mean = 83.5%; Table 1).

The centroids of suitable habitat shifted by 343.3 km on average (range = 67 to
501 km) and the mean elevational gain across species was 77.3 m (mean %∆ = 16.6%;
range = −139 m to 321 m) (Table 1; Figure S1). There was little to moderate overlap in the
location of suitable habitat between the two time intervals, with Ω values ranging from
4.2% to 47.4% (mean = 22.9%; Table 1). Models inferred an increase in the total area of
habitat for all six Cypripedium spp. between time intervals, with the gains ranging from
564 ha to 156,983 ha. The highest percent change in total area was (%∆ = 2062.2%), inferred
for C. fasciculatum. The mean increase in suitable habitat was 82,884 ha (mean %∆ = 528.3%;
Table 1). MAXENT models reveal increased fragmentation of suitable habitat in the LTI,
as quantified by SIP, for C. acaule, C. californicum, C. fasciculatum, and C. parviflorum but
reduced fragmentation for C. arietinum and C. guttatum (Table 1).

Model inferred centroids of suitable habitat for C. californicum and C. fasciculatum
shifted northeastward between the ETI and LTI by 67 km and 501 km, respectively
(Figures 1 and S2). While the directionality of habitat shift for these two species was con-
sistent, the change in elevation was not. For C. californium, mean elevation decreased
by 139 m (%∆ = −14.7%), while for C. fasciculatum it increased by 321 m (%∆ = 24.8%;
Table 1; Figure S1). The area of suitable habitat increased for both species, although the
gains differed substantially: C. californicum gained 564 ha (%∆ = 9.1%), while C. fasciculatum
gained 79,599 ha (%∆ = 2062.2%; Table 1; Figures 2 and S2). However, for both species
suitable habitat became more fragmented with %∆SIP = 179.2% for C. californicum and
40.1% for C. fasciculatum (Table 1; Figure 2).
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The centroid of suitable habitat for C. guttatum shifted to the southeast by 411 km
(Figure 1) and mean elevation increased by 84 m (%∆ = 20.1%; Table 1; Figure S1). The
extent of suitable habitat increased between time intervals by 104,193 ha (%∆ = 408.0%;
Table 1; Figure 2) and models indicate that fragmentation of C. guttatum habitat declined
(%∆SIP = −66.0%).

In contrast, the three eastern species did not show a consistent directional response
between the ETI and LTI. Models indicate that habitat for C. acaule and C. parviflorum shifted
southward (centroid shifts of 466 km and 279 km, respectively), while for C. arietinum it
shifted westward (centroid shift of 336 km), with all three species converging on the
Great Lakes region (Table 1; Figures 1, 3 and S3). Mean elevation increased for all three
species: 4 m for C. acaule (%∆ = 1.1%), 88 m for C. arietinum (%∆ = 35.8%), and 106 m
for C. parviflorum (%∆ = 32.3%; Table 1; Figure S1). Suitable habitat also expanded for all
three eastern species by 41,249 ha (C. acaule; %∆ = 26.0%) to 156,983 ha (C. parviflorum;
%∆ = 111.2%). However, habitat fragmentation increased for C. acaule (%∆SIP = 93.7%)
and C. parviflorum (%∆SIP = 83.8%), while it decreased for C. arietinum (%∆SIP = −81.7%;
Table 1).
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4. Discussion

Construction and comparison of SDMs for comparable time intervals in the recent
past is a powerful approach for objectively assessing shifts in suitable habitat, particularly
for rare and/or endangered species. There are also major benefits to including citizen
science occurrence records (iNaturalist, NOAH, etc.), not least of which is the wealth of
data generated since its advent, as evidenced by the mean increase of 173.1 records per
focal Cypripedium species between the ETI, when occurrence data are predominantly from
herbarium records, and the LTI when occurrence data are available from both herbarium
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and citizen science records. A second important advantage is the extensive geographic
area potentially surveyed by nature enthusiasts in a given year. One obvious caveat is that
citizen science records require close scrutiny and stringent criteria for inclusion in SDMs.

Interestingly, the six North American Cypripedium spp. we investigated showed incon-
sistent directional shifts of optimal habitat between the two decadal intervals separated by
20 years. However, within the two regions of North America where multiple species occur,
there was a more consistent response among species. One interpretation is that species
occurring within a region likely have similar environmental requirements. The elevational
response between time intervals showed more consistency, with habitat for five of the
six species shifting to higher elevations (mean = 77.3 m; Table 1). Only for C. californicum,
which requires serpentine soils, did habitat shift to a lower elevation (−139 m). Further-
more, the area of suitable habitat for all six species increased between the ETI and LTI by a
mean of 528.3% but habitat became increasingly fragmented for four of the six species.

Cypripedium fasciculatum matched our expectation of a northward shift and elevational
increase in optimal habitat between the ETI and LTI, allowing this species to track its
climatological niche. While C. californicum also experienced a modest northward shift, it
otherwise displayed a distinctly different response. Cypripedium californicum had the highest
overlap of optimal habitat between time intervals (Ω = 47.4%), smallest change in total
area of suitable habitat (+560 ha), and is the only species with a decline in mean elevation
(−139 m). We hypothesize that this response reflects the fact that C. californicum is restricted
to serpentine soils, a unique substrate, which is characterized by high metal concentrations,
low Ca/Mg ratios, and poor water retention [36,37]. Plants endemic to serpentine soils
are more drought resistant than congeners with similar geographic distributions and prior
work suggests that these species may be more resilient to a warming climate [62–68].
However, a plant species’ tolerance does not ensure its long-term viability if essential biotic
partners (e.g., pollinators, fungal symbionts) are less resilient to shifts in environmental
conditions. While the elevational response of C. californicum appears counter-intuitive,
previous work has shown similar elevational responses of co-occurring plant taxa across the
mountains surrounding the California central valley, with decreases in water availability at
higher elevations in recent decades suggested as the driving mechanism [19].

Cypripedium guttatum experienced a southward shift in suitable habitat and elevational
gains. This is likely the only environmental tracking response available to northern species.
During the ETI, habitat was located near and within the Arctic Circle with limited available
landmass likely hindering a northern shift. Thus, climatic tracking might only be possible
for such species by shifting to higher elevations.

More puzzling responses were seen in the three eastern species, for which optimal
habitat shifted in different directions, all converging on the area around the Great Lakes. A
possible explanation for this is that the moderating influence of large bodies of water to
the climate of adjoining land masses slows the rate of warming in the area, thus allowing
the Great Lakes region to serve as a refugium. While counter-intuitive, the dramatic
southward shift in suitable habitat for C. acaule is not without explanation. Decreasing the
productivity of agricultural lands coupled with increasing timber value since the 1940s has
resulted in land abandonment and anthropogenic afforestation becoming common across
the southeastern United States [69]. Both successional processes and land management
for timber production have resulted in the continuous dominance of coniferous forest in
recent decades. This has led to an expanded area of ecological conditions that are ideal for
C. acaule, which is often restricted to conifer-dominated landscapes.

Suitable habitat for four of the focal Cypripedium species appears to have become more
fragmented between the ETI and LTI (Table 1), which appears to be related to shifts to
higher elevations on separate mountaintop “islands”. Habitat fragmentation may result
in (a) the increased isolation of populations and decreased gene flow among populations,
(b) increased genetic drift within populations, and (c) loss of genetic variation and selective
potential [70–72]. The long-lived habit of Cypripedium spp. may allow for the long-term
maintenance of genetic diversity in the absence of gene flow, due to the slowed action
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of genetic drift, as has been documented for Cypripedium calceolus [30]. Unfortunately,
maintaining genetic variation within one generation will not ensure the long-term main-
tenance of species-wide diversity, nor can it ensure the viability of the plant species if
essential biotic partners are adversely impacted by climatic shifts (e.g., decline in polli-
nators). Fortunately, North American Cypripedium species are typically pollinated by bee
species of various genera, due to generalized food mimicry [35,38,39]. This might allow for
pollinator switching as the composition of the pollinator community changes in response to
climate change.

For the Cypripedium species considered, increased mean elevation of suitable habi-
tat between the ETI and LTI appears to be a more common response than a northward
shift. While the expectation is that northward shifts would allow Cypripedium spp. to
track climatic conditions, spatial variability in edaphic conditions and the slow rate at
which edaphic profiles change could limit range modifications. We found that edaphic
conditions strongly influence the distribution of Cypripedium spp. habitat (mean model
contribution = 19.2%; Tables S1 and S2); thus, the colonization of habitat that falls within
an appropriate climatological envelope may be thwarted by an inhospitable edaphic pro-
file. The distribution of USDA soil orders across North America (Figure S4) indicates
that edaphic conditions within a region, regardless of elevation, tend to be highly similar,
increasing the likelihood that both climatological and edaphic characteristics are hospitable
for Cypripedium spp. at higher elevations nearby. Thus, the colonization of new populations
at higher elevations may often be the prevailing response in landscapes with topographic
heterogeneity because it requires dispersal over shorter distances and edaphic profiles are
more likely to be similar to those of proximate source populations.

The obligate relationship between orchids and their mycorrhizal symbionts may ex-
plain the importance of edaphic conditions in delimiting optimal habitat. Orchids are reliant
on mycorrhizal associations for the germination and acquisition of soil resources through
adulthood [25,42]. It has been shown that edaphic conditions have a stronger influence on
fungal distributions than climatic conditions [51]. If suitable habitat for required fungal
symbionts is strongly restricted by soil conditions, so too is orchid habitat. The finding of
non-climatic environmental variables as strong predictors of suitable habitat suggests that
both climatic and non-climatic variables must be considered for more accurate inference
of suitable habitat in the past, present, and future. If the distribution of suitable habitat
for orchids and their mycorrhizal symbionts becomes decoupled under future climatic
conditions, then orchid populations will be unable to persist. Further, the distribution of
symbionts must be considered for modeling responses to climate change in species that
have an obligate relationship with their symbionts. Unfortunately, studies of the geographic
distribution of mycorrhizal symbionts and fungal responses to climate change are almost
non-existent and future research into this unexplored topic is much needed.

Our study demonstrates the ability of long-lived perennial plants to respond to recent
climatic change through range modification and that responses tend to be regional, sug-
gesting that ecological context may be a better predictor of responses than phylogenetic
relatedness. Edaphic conditions are particularly influential in the distribution of these six
Cypripedium spp., because of their importance for the occurrence of obligate mycorrhizal
symbionts. Thus, range modification of terrestrial orchids in response to a changing climate
may only be possible if multiple co-occurring species can respond similarly. However,
further work is needed to address questions of how biological assemblages, rather than
individual species, might be responding to a changing climate.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d14090694/s1, Figure S1: change in mean elevation of suitable habitat;
Figure S2: binary suitable habitat for C. californicum, C. fasciculatum, and C. guttatum; Figure S3: binary
suitable habitat for C. acaule, C. arietinum, and C. parviflorum; Figure S4: distribution of soil classes
across North America; Table S1: bioclimatic correlates of suitable habitat used for SDM construction;
Table S2: predictor variables for ETI models; Table S3: predictor variables for LTI models.
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