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Abstract: Deep-sea environments face increasing pressure from anthropogenic exploitation and
climate change, but remain poorly studied. Hence, there is an urgent need to compile quantitative
baseline data on faunal assemblages, and improve our understanding of the processes that drive
faunal assemblage composition in deep-sea environments. The Southwest Atlantic deep sea is
an undersampled region that hosts unique and globally important faunal assemblages. To date, our
knowledge of these assemblages has been predominantly based on ex situ analysis of scientific trawl
and fisheries bycatch specimens, limiting our ability to characterise faunal assemblages. Incidental
sampling and fisheries bycatch data indicate that the Falkland Islands deep sea hosts a diversity of
fauna, including vulnerable marine ecosystem (VME) indicator taxa. To increase our knowledge
of Southwest Atlantic deep-sea epibenthic megafauna assemblages, benthic imagery, comprising
696 images collected along the upper slope (1070–1880 m) of the Falkland Islands conservation zones
(FCZs) in 2014, was annotated, with epibenthic megafauna and substrata recorded. A suite of terrain
derivatives were also calculated from GEBCO bathymetry and oceanographic variables extracted
from global models. The environmental conditions coincident with annotated image locations were
calculated, and multivariate analysis was undertaken using 288 ‘sample’ images to characterize faunal
assemblages and discern their environmental drivers. Three main faunal assemblages representing
two different sea pen and cup coral assemblages, and an assemblage characterised by sponges and
Stylasteridae, were identified. Subvariants driven by varying dominance of sponges, Stylasteridae,
and the stony coral, Bathelia candida, were also observed. The fauna observed are consistent with
that recorded for the wider southern Patagonian Slope. Several faunal assemblages had attributes of
VMEs. Faunal assemblages appear to be influenced by the interaction between topography and the
Falkland Current, which, in turn, likely influences substrata and food availability. Our quantitative
analyses provide a baseline for the southern Patagonian shelf/slope environment of the FCZs, against
which to compare other assemblages and assess environmental drivers and anthropogenic impacts.

Keywords: vulnerable marine ecosystems; multivariate analysis; cold-water corals; sponges

1. Introduction

Deep-sea environments (water depth > 200 m) are under increasing threat from an-
thropogenic pressure [1–5], including climate change [6–9]. As a result, improving the
management and conservation of deep-sea environments is frequently identified as a prior-
ity action [1,6,10–14]. However, deep-sea environments are poorly understood [10,15,16],
especially in the Southwest Atlantic, despite it being increasingly advocated as a biodiverse
region [17–21] that supports endemic species [22,23] and globally important ecosystems [24].

To date, deep-sea faunal exploration of the Southwest Atlantic has predominately
centred on the Brazilian shelf and slope [21,25–28]. In contrast, the faunal composition of
the southern Atlantic Patagonian deep-sea is largely unknown [18–20,29], and our current
knowledge of the epibenthos is predominately based on ex situ data—fisheries bycatch or

Diversity 2022, 14, 637. https://doi.org/10.3390/d14080637 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d14080637
https://doi.org/10.3390/d14080637
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0003-4213-4464
https://orcid.org/0000-0002-0261-9646
https://doi.org/10.3390/d14080637
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d14080637?type=check_update&version=3


Diversity 2022, 14, 637 2 of 22

scientific trawl/dredge data [17,30–42], with most records from Discovery Expeditions of
the early twentieth century [43]. Only limited inference can be drawn from ex situ data,
because sample bias prevents quantitative characterisation of faunal assemblages [44]. As
a result, our knowledge of the epibenthos is restricted to species inventories, single-species
descriptions [18,19,38,39,45–48], and qualitative/semiquantitative assemblage descriptions
at the level of phyla [17,32,33,37,49]. Underwater imagery offers a non-invasive method to
undertake in situ quantitative characterisation of epibenthic assemblages [44,50–59]. How-
ever, the few studies utilising benthic imagery of Southwest Atlantic deep-sea epibenthos
have remained descriptive [29,42,49,60–68], and the one study that undertook quantitative
analysis did so at the level of phyla, preventing detailed characterisation of assemblages [69].
The lack of quantitative studies leaves a gap in our understanding of whether observed
assemblages are statistically robust entities, preventing comparisons with other deep-sea
localities [70] and limiting our ability to identify environmental drivers of assemblage
composition. This knowledge is necessary if we are to implement efficient management
practices to safeguard deep-sea assemblages from anthropogenic impacts, including climate
change [71,72].

Describing deep-sea epibenthic megafaunal assemblages is especially important be-
cause they predominantly comprise long-lived [73–75], fragile species that exhibit low
resilience to environmental impacts [76,77] and slow recovery rates [77,78]. These attributes
contribute to species and assemblage vulnerability, and therefore, many deep-sea species,
assemblages and habitats are considered components of vulnerable marine ecosystems
(VMEs) [12]. Vulnerable marine ecosystems are internationally recognised as ecologically
important, and legislation to identify and map VMEs to avoid significant adverse impacts
has been developed [11,12].

The Falkland Islands are an archipelago located at the southeast extremity of the
Patagonian shelf in the Southwest Atlantic. The deep sea constitutes approximately 72% of
the marine environment encompassed by the Falkland Islands conservation zones (FCZs;
comprising of the Falklands Interim Conservation and Management Zone and the Falklands
Outer Conservation Zone). However, little is known of the deep-sea faunal assemblages
occurring within the FCZs. The few published studies report species records collected as
part of wider Southwest Atlantic surveys and/or macroinfaunal analysis reported in the
grey literature [60–67]. Published species records indicate that the deep-sea FCZs hosts
diverse fauna, including VME indicator taxa [22,36]. However, to date, no quantitative
analysis of epibenthic megafauna has been published. In light of the proposed Falkland
Islands marine managed areas (MMAs) public consultation in 2022, there is a pressing need
to improve our baseline knowledge of deep-sea assemblages, including VMEs occurring in
the FCZs, so that appropriate management practices to safeguard VMEs can be developed.

To increase our bioecological knowledge of Southwest Atlantic deep-sea epibenthic
megafaunal assemblages, including VMEs, we combined legacy image datasets previously
collected for commercial purposes, with freely available environmental data constituting
bathymetry and oceanography datasets to (1) characterise the composition of epibenthic
megafauna assemblages and (2) investigate the environmental factors that might influence
epibenthic megafauna community structure.

2. Materials and Methods
2.1. Study Area

The Falkland Islands are situated on an area known as the Falkland Plateau, an ex-
tension of the Patagonian shelf, reaching water depths of 2500 m. The Falkland Plateau
is separated to the north from the Argentine Basin by the Falkland Escarpment, and to
the south, the Falkland Trough separates the Falkland Plateau from the Burdwood Bank
(Figure 1).
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front near Uruguay, from where it veers southeast into the deep sea [84]. The Falkland 
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Figure 1. Location map of the Falkland Islands and (A–C) zoomed insets of drop-down camera
locations (indicated as black circles). The Falklands conservation zones encompass the Falklands
Interim Conservation and Management Zone (FICZ) and the Falklands Outer Conservation Zone
(FOCZ). (See Supplementary Table S1 for full station list and locations).

The Falkland Islands are considered part of the cold–temperate Atlantic Magellan
Biogeographic Province [79–81], and the more recently assigned cold–temperate South
American Biogeographic Region [82], within which it is proposed the islands form a sub-
province with Southern Argentina [83]. Circulation in the region is characterised by
a northeastward flow that extends from the tip of Tierra del Fuego to the subtropical shelf
front near Uruguay, from where it veers southeast into the deep sea [84]. The Falkland Cur-
rent extends along the Patagonian shelf break and upper slope until the subtropical shelf
front. In the FCZs, the Falkland Current diverges around the Falkland Islands, forming
an eastern and western stream [84]. The Falkland Current provides a constant influx of
sub-Antarctic waters [84], and has a mean temperature range of 4–11 ◦C, salinity range of
33.8–33.4 psu, and is associated with high primary productivity, which, in turn, supports
important fisheries [85]. The slope waters of the FCZs are characterised by the Antarctic
Intermediate Water (AAIW) at water depths < 1000 m, and the Upper Circumpolar Deep
Water (UCDW) between water depths of 1000–2200 m.

The substrata along the Patagonian shelf mainly consist of mud, muddy sands, sandy
muds, and pebbly muds [42,86,87], with mid-water drifts on the slope composed of
hemipelagic mud and ice-rafted debris [87]. The Falkland Islands are considered regionally
unique in that they did not experience glaciation during the last glacial period, resulting
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in a benthic environment that has been permanently sustained. Still, the influence of
past geological periods is evident in the presence of iceberg plough marks and ice-rafted
debris [88].

2.2. Quantitative Image Analysis

Benthic imagery was obtained from 69 stations (Figure 1), collected during three
environmental baseline surveys conducted by Noble in 2014 (see Supplementary Table S1;
Falkland Islands Government Department of Mineral Resources, unpublished data) that
covered water depths of 1070 m to 1880 m. Imagery data were collected using a “Sea Bug”
drop-down camera system equipped with a standard definition stills camera (G10 Canon,
five megapixels) and a laser scale with parallel beams positioned 30 cm apart. Positional
data were derived from an ultra-short baseline navigation system (USBL) beacon attached
to the cable above the camera frame. At each station, the drop-down camera system was
towed for 100 m at approximately 0.5 knots.

A total of 862 georeferenced benthic still images were reviewed, and images of low
visibility (due to sediment or lighting) or where laser points were not visible, were re-
moved. To ensure overlapping images were not analysed, and to reduce the influence of
spatial autocorrelation, “Sample” images were annotated at 60 s intervals. All epibenthic
megafauna >10 mm were enumerated and identified to the lowest taxonomic level possible,
and assigned to morphospecies (visually distinct taxa) in BIIGLE 2.0 platform [89]. The
assignment of morphospecies when analysing image data is common practice in deep-sea
settings where access to specimens and a good knowledge of taxonomy is absent [90,91].
The area of each image was calculated and used to convert counts to densities per m2. The
area of each image was calculated using the pixel dimension of each image together with
the pixel and actual distance between lasers [92]. The mean image area was 1.14 m2 ± 0.95.

To explore assemblage–environment relationships, a dominant substrata type (based
upon EUNIS 2022 classifications [93] (see Supplementary Figure S1) was assigned to
each annotated image. To capture the influence of geomorphology and oceanography
acting at broad spatial scales, a suite of terrain derivatives were calculated from GEBCO
bathymetry gridded at ~430 m (0.004◦) using ArcGIS extension Benthic Terrain Modeler
v. 3.0 (Table 1). Oceanography variables were extracted from global models and exported as
rasters interpolated to a resolution of ~430 m (0.004◦) by kriging using the Spatial Analyst
toolbox in ArcGIS (Table 1).

Table 1. Environmental variables used in modelling. † Environmental variable retained in final model.

Environmental Variables Description Unit Native Resolution

Seabed terrain

Depth † Bathymetry extracted from GEBCO. https://www.gebco.net/
(accessed on 10 November 2020) m 0.004◦

Terrain derivatives

Slope † A first derivative of bathymetry measuring the change in elevation from
one pixel to its neighbour derived from a neighbourhood size of 3 × 3

◦ 0.004◦

Eastness † A first derivative of bathymetry measuring the easterly orientation of
maximum change along the slope on a continuous scale (−1 to +1) - 0.004◦

Northness † A first derivative of bathymetry measuring the northerly orientation
of maximum change along the slope on a continuous scale (−1 to +1) - 0.004◦

Curvature A second derivative of bathymetry measuring the shape of the slope,
with values indicating whether a slope is convex or concave - 0.004◦

https://www.gebco.net/
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Table 1. Cont.

Environmental Variables Description Unit Native Resolution

Fine bathymetric position index
(FBPI) †

A derived metric of a cell’s position and elevation relative to its
surrounding landscape/cells within a user defined area [94] -

Broad bathymetric position index
(BBPI)

A derived metric of a cell’s position and elevation relative to its
surrounding landscape/cells within a user defined area [94] -

Rugosity A measure of the ratio of the surface area to the planar area calculated
with a neighbourhood size of 3 × 3 pixels [95] -

Oceanography variables

Surface chlorophyll Extracted from GLOBAL_REANALYSIS_BIO_001_029
http://marine.copernicus.eu (accessed on 10 November 2020) mg m−3 0.08◦

Seabed temperature Extracted from GLOBAL_ANALYSIS_FORECAST_PHY_001_024
http://marine.copernicus.eu (accessed on 10 November 2020)

◦C 0.08◦

Mean seabed current velocity U Extracted from GLOBAL_ANALYSIS_FORECAST_PHY_001_024
http://marine.copernicus.eu (accessed on 10 November 2020) m/s 0.08◦

Seabed Ph Extracted from GLOBAL_REANALYSIS_BIO_001_029
http://marine.copernicus.eu (accessed on 10 November 2020) - 0.08◦

Surface Ph Extracted from GLOBAL_REANALYSIS_BIO_001_029
http://marine.copernicus.eu (accessed on 10 November 2020) - 0.08◦

Seabed phosphate Extracted from GLOBAL_REANALYSIS_BIO_001_029
http://marine.copernicus.eu (accessed on 10 November 2020) µmol kg−1 0.08◦

Surface phosphate Extracted from GLOBAL_REANALYSIS_BIO_001_029
http://marine.copernicus.eu (accessed on 10 November 2020) µmol kg−1 0.08◦

Surface dissolved oxygen Extracted from GLOBAL_REANALYSIS_BIO_001_029
http://marine.copernicus.eu (accessed on 10 November 2020) µmol kg−1 0.08◦

Seabed silicate Extracted from GLOBAL_REANALYSIS_BIO_001_029
http://marine.copernicus.eu (accessed on 10 November 2020) µmol kg−1 0.08◦

Aragonite saturation state Extracted from GLODAPv.2.2016b
[96] (accessed on 22 March 2018) µmol kg−1 1◦

Dissolved inorganic carbon Extracted from GLODAPv.2.2016b
[96] (accessed on 22 March 2018) µmol kg−1 1◦

Calcite saturation state Extracted from GLODAPv.2.2016b
[96] (accessed on 22 March 2018) µmol kg−1 1◦

Nitrate Extracted from GLODAPv.2.2016b
[96] (accessed on 22 March 2018) µmol kg−1 1◦

Total alkalinity Extracted from GLODAPv.2.2016b
[96] (accessed on 22 March 2018) µmol kg−1 1◦

Substrata variables

Substrata † Substrate type annotated from imagery based
upon EUNIS 2022 classifications [93]

2.3. Data Analysis

Multivariate analysis was used to identify faunal assemblages and environmental
variables influencing assemblage composition. Prior to multivariate analysis, sample
images with no or fewer than three taxa were removed to reduce the influence of rare
taxa that may reflect sampling artifacts associated with deep-sea sampling rather than
representing the whole community [97]. Of the 694 images annotated, 195 had no visible
fauna and 213 images had less than three taxa, resulting in 288 sample images retained for
multivariate analysis. Environmental data coincident with each sample image location were
extracted from the environmental rasters and combined with the substratum annotation of
that sample.

Epibenthic megafaunal assemblages were assessed by non-metric multidimensional scal-
ing (nMDS) and hierarchal cluster analysis with group-averaged linkage, using a Hellinger
dissimilarity matrix derived from the Hellinger-transformed data matrix. A Hellinger
transformation was used to enable the use of linear ordination methods in the canonical

http://marine.copernicus.eu
http://marine.copernicus.eu
http://marine.copernicus.eu
http://marine.copernicus.eu
http://marine.copernicus.eu
http://marine.copernicus.eu
http://marine.copernicus.eu
http://marine.copernicus.eu
http://marine.copernicus.eu
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redundancy analysis (RDA) [98,99]. The optimal number of interpretable clusters was
determined with fusion level and mean silhouette widths [99]. Characteristic morphos-
pecies contributing to similarity among clusters were identified using similarity percentage
analysis (SIMPER) [100]. To explore the relationships between multivariate morphospecies
data and different environmental variables, RDA was performed [99]. RDA combines the
outputs of multiple regression with ordination. To obtain the most parsimonious model,
forward selection was carried out on the standardised (i.e., transformed to zero mean and
unit variance) environmental variables, and Pearson’s correlation and variance inflation
factor (VIF) scores were used to exclude collinear environmental variables in the model
(correlation coefficients >0.7) [101]. High collinearity in environmental variables during
model selection resulted in a subset of variables being retained (fine bathymetric position
index (FBPI), slope, depth, mean current velocity, and aspect—which was separated into
eastness and northness) (Table 1). Depth per se does not influence fauna, but was retained
as it is correlated with quantified and unquantified environmental variables (water mass
properties, food availability) that have been shown to influence deep-sea faunal assemblage
patterns [102–104].

All statistical analyses were conducted using the open source software R [105] pack-
ages “Packfor” “vegan”, “cluster”, “ape”, “ade4”, “gclus”, “AEM”, “spdep”, and “MASS”.

3. Results

In total, 7398 individuals belonging to 157 morphospecies from eight known phyla
were annotated from the 694 sample images (see Supplementary Table S2). Many morphos-
pecies were rare, being observed from a few images at low abundance, and only 17 morphos-
pecies were observed from more than 10% of sample images (see Supplementary Table S2).
The hydrocoral Stylasteridae sp. was the most abundant and commonly encountered
morphospecies across samples, occurring across 56.2% of samples and representing 15.5%
of total individuals observed (see Supplementary Table S2). Porifera were also commonly
observed, with the morphospecies referred to as Massive Ball Porifera occurring cross 28.1%
of the sample images and representing 4.3% of total individuals, and encrusting Porifera
occurring cross 20.9% of the sample images and representing 3.8% of total individuals (see
Supplementary Table S2).

Soft, muddy, and sandy substrata dominated samples from the slope of the Falkland
Trough from which fields of sea pens, including Anthoptilum grandiflorum and solitary cup
corals of the genus Flabellum, were observed (Figure 2E). The substrata from the Falkland
Plateau were more varied, encompassing muddy and sandy substrata with varying degrees
of pebbles, glacial dropstones, and hard substrata. Sea pens and cup corals also occurred in
these soft substrata (Figure 2D,E). On the other hand, sponges (predominantly belonging
to Hexactinellida and Demospongiae) and Stylasteridae occurred across coarse substrata
(Figure 2C), interspersed with non-reef aggregations of the stony coral, Bathelia candida,
soft corals of the Alcyonacea (including formally Gorgonacea), large Stylasteridae such
as Stylaster densicalus and erect Porifera, including Phakellia sp. that occurred on coarser
substrata and glacial dropstones (Figure 2B). Near escarpments B. candida also formed
reef-like aggregations with their coral framework and rubble, colonised by encrusting
Porifera, Stylasteridae, the soft coral Thouarella viridis, and the squat lobster Munida spinosa
(Figure 2A).
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Figure 2. Example images of fauna and substrata. (A) Bathelia candida reef observed at 1280 m water
depth. (B) Mixed cold-water corals, including Stylaster densicaulis and Primnoidae, Stylasteridae, and
Porifera morphospecies observed at 1280 m water depth. (C) Stylasteridae and Massive Ball Porifera
morphospecies were observed from mixed substratum at 1595 m water depth. (D) Solitary cup corals,
including Flabellum sp. and Scleractinia sp. 5, were observed from coarse substratum at 1406 m water
depth. (E) Anthoptilum grandiflorum and Flabellum sp. observed from sandy mud at 1225 m water
depth. (F) Pennatulacea sp. and Flabellum sp. observed from sandy mud at 1330 m water depth. Scale
bar = 30 cm.
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3.1. Quantitative Analysis of Epibenthic Megafaunal Assemblages

Fusion level and mean silhouette widths identified five clusters as optimal in rep-
resenting faunal assemblages from the 288 sample images used in hierarchal clustering
(see Supplementary Table S2 and Figures S2 and S3). The superimposed groupings from
the hierarchal analysis onto the nMDS plot show a general agreement between the two meth-
ods (Figure 3), with assemblages distributed across the FCZ (Figure 4). On the other hand,
the RDA analysis highlights further differentiation within cluster one (Figure 5). Cluster
one represents the most commonly encountered assemblage type (Figures 3 and 4) charac-
terised by a predominance of Stylasteridae and sponges (Figures 2A–C and 3 and Table 2).
Cluster two and three represent variants of the sea pen and solitary cup coral assemblages.
Cluster two is characterised by Anthoptilum grandiflorum and an attached solitary cup coral,
Scleractinia sp. 5 (Figures2D,E and 3 and Table 2). In contrast, cluster three is characterised
by, Pennatulacea sp. and a predominance of the unattached solitary cup coral, Flabellum sp.
(Figures 2F and 3 and Table 2). Alcyonacea sp. 19 and Hormathiidae sp. 2 characterised
cluster four, and cluster five was characterised by the morphospecies cold-water whip coral
(Figure 3 and Table 2). However, both these clusters were only represented by two sample
images, limiting conclusions that can be drawn, and so are omitted from further discussion.
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Figure 5. Canonical redundancy analysis of a Hellinger distance matrix of transformed morphos-
pecies density data and selected environmental variables. For clarity, the triplot is displayed in
three separate plots with varying axis limits. (A) Environmental variables and sites colour coded by
substratum type. (B) Morphospecies data, only fauna with the strongest effect are labelled. (C) Sites
colour coded to represent hierarchal clustering. The vector arrowheads represent high, the origin
averages, and the tail (when extended through the origin) low values of the selected environmental
variables. Sites are represented by circles. Sites close to one another tend to have similar faunal
composition that those further apart.

Table 2. Clusters identified from multivariate hierarchal clustering analysis with associated envi-
ronmental parameters, number of samples represented by each cluster (N), and SIMPER results
identifying the morphospecies that characterise the clusters (70% accumulative contribution cut-off).

Cluster Characterising Morphospecies Water Depth (m) Substratum N

1 Stylasteridae sp., Massive Ball Porifera 1070–1840 Coarse, biogenic gravel, reef, mixed 197

2 Scleractinia sp. 5,
Anthoptilum grandiflorum 1070–1880 Coarse, mud, sandy mud Sand, muddy sand 78

3 Flabellum sp., Pennatulacea sp. 1120–1327 Mud, sandy mud 9

4 Alcyonacea sp. 19, Hormathiidae sp. 2 1840 Hard 2

5 Cold-water whip coral 1390–1540 Mud, sandy mud, coarse 2
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The RDA analysis shows that the vectors representing species scores (Figure 5) separate
into three main subgroups. The upper right quadrant is characterised by the predominance
of M. spinosa, encrusting Porifera, T. viridis, and B. candida. The lower right quadrant is
represented by a predominance of Stylasteridae and Porifera morphospecies, and the lower
left quadrant is represented by the predominance of A. grandiflorum, Pennatulacea sp.,
Scleractinia sp. 5, and Flabellum sp. morphospecies. Within the lower left quadrant, there
was further differentiation between sea pen and cup coral predominance.

The RDA analysis, hierarchal clustering, and nMDS plot showed similar trends in
that the main clusters separated into two regions, comprised of the same characterising
morphospecies (Figures 3 and 5). Cluster one relates to the right quadrants, and cluster two
and three relate to the lower left quadrant, within which differentiation between cluster
two and three, driven by relative abundance of Scleractinia sp. 5, could be seen (Figure 5).
However, the RDA analysis indicated a further level of differentiation, within cluster one
of the hierarchal clustering, separating the encrusting Porifera, B. candida, T. viridis, and
M. spinosa assemblage from that dominated by Stylasteridae and Massive Ball Porifera
(Figure 5). The inability of the hierarchal clustering to differentiate between these latter
two assemblages likely arises from the commonality of Stylasteridae, which led to cluster
cohesion (Table 2) and the observation that assemblages occur as continuums rather than
distinct entities distributed next to one another, which reduces the discriminatory power of
hierarchal clustering [101].

3.2. Environmental Drivers of Faunal Assemblages

The RDA analysis shows that current velocity, topography (depth, aspect, slope, and
FBPI), and substrata influence faunal assemblages (adjusted R2 13%) (Figure 5 and Table 3).
The first axis of the RDA plot (Figure 5) represents a gradient from sandy muds to coarse,
and then hard (including reef) substrata, with increasing current velocity, and from rel-
atively smooth broad-scale sloping topography to more rugged flatter topography. The
second axis of the RDA plot represents a depth gradient.

Table 3. Results from canonical redundancy analysis (RDA) of Hellinger-transformed species data
and selected environmental variables. Significance of individual terms determined by analysis of
variance (ANOVA) on RDA. *** p ≤ 0.001.

Environmental Variables—Significance of
Individual Terms by ANOVA Adjusted R2 Significance of RDA Plot

by ANOVA

F-Value p-Value

Depth ***, Slope ***, FBPI ***, Substrate ***,
Eastness ***, Northness ***, Current Velocity *** 13 4.51, df = 12,275 0.001

4. Discussion
4.1. Deep-Sea Epibenthic Megafaunal Assemblages of the Falkland Islands

Our multivariate analysis has enabled the first quantitative characterisation of deep-sea
epibenthic megafaunal assemblages within the FCZs, and contributes toward our under-
standing of environmental factors influencing southern Patagonian deep-sea assemblages.

Quantitative analysis identified three main assemblages that are composed of taxa
with southern Patagonian shelf/slope distributions, and are characterised by fragile habitat-
forming taxa considered indicators and/or components of VMEs [12,106].

Although B. candida was not identified as a characteristic species of cluster one, it
was observed forming reef-like structures with an associated fauna of M. spinosa, T. viridis,
and encrusting Porifera (Figure 2A), depicted as species vectors diverging from the rest of
cluster one in the RDA plot (Figure 5). Bathelia candida is a framework-forming Scleractinian
with a Southwest Atlantic distribution, occurring in the offshore waters of southern South
America from Rio Grande to Southern Chile [22,23]. Bathelia candida is reported along
the Patagonian shelf and slope [22–24,29,37], with recent discoveries of reefs described
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from the nearby Perito Moreno Terrase [29,31,40,42,49] and a coral mound province from
Argentina (Northern Argentine Mound Province) [24]. In the FCZs, B. candida was observed
as single discrete colonies and forming continuous framework reef structures (Figure 2A).
Bathelia candida is a less-known framework-forming Scleractinian compared to Lophelia
pertusa (recently synonymised to Desmophyllum pertusum [107]), Madrepora oculata, and
Solenosmilia variabilis [97,108,109]; our observations add to the known distribution of this
species and to our knowledge, also represent the most southerly record of reef habitat for
B. candida in the Southwest Atlantic.

Bathelia candida was observed forming reef-like structures that are of ecological im-
portance in the area. Cold-water coral reefs are generally regarded as long-lived [73],
relatively slow growing [73,77,78], structurally complex [23,31,110,111], and functional
significant habitats that, due to their life history characteristics, exhibit high fragility to
fishing impacts [76], and as such, are recognised as VME habitats. Cold-water coral reefs
increase structural complexity provided by living and dead coral frameworks, which pro-
vide a hard substrate that increases environmental heterogeneity, resulting in increased
biodiversity of associated fauna [109,110]. Cold-water coral reefs are also nursery habitats
for numerous species, including commercially important fish species [97,112–116]. In our
study, corals, sponges and bryozoa were observed growing on B. candida frameworks
and rubble (Figure 2A), while M. spinosa were seen beneath rubble. These observations
are consistent with descriptions and bycatch records from the Patagonian shelf edge and
slope [31,32,37,40,42,49]. Similarly, corals, sponges, and bryozoa have been observed on
D. pertusum reefs [52,117] in the Northeast Atlantic, and Munida squat lobsters have been
observed seeking refuge beneath D. pertusum coral rubble [54,118]. Little is known of the
ecology of B. candida reefs, but our observations of similar faunal associations support
the hypothesis that their functional role is analogous to that of D. pertusum reefs [29], and
therefore, B. candida reefs represent important features within the FCZs.

Bathelia candida was also observed forming non-reef aggregations with Alcyonacea
(including formally Gorgonacea), large Stylasteridae, and erect Porifera. These “hard-
bottomed coral garden” VMEs were commonly observed on coarser substrata and glacial
dropstones (Figure 2B). Coral gardens comprising similar taxa to those observed in our study
have been described from the Patagonian shelf edge and slope [17,29,31,37,38,40,42,49],
including the Burdwood Bank [17,37,38], indicating a continuous southern Patagonian
distribution of this assemblage, for which the Burdwood Bank and FCZs likely act as
source locations connected to northern populations via the northeastward flow of the
Falkland Current.

There were certain areas where some characteristic species of cluster one exhibited
higher dominance and abundances (Table 1 and Figure 5). Stylasteridae and sponges
(predominantly belonging to Hexactinellida and Demospongiae) were observed across
coarse substrata, and, in certain areas, exhibited higher dominance and abundances
(Figure 2C and Table 1), depicted as species vectors diverging from the rest of cluster one
in the RDA plot (Figure 5). Sponge aggregations have been recorded from the Patagonian
shelf [31,37,40,42,49], and are generally a common component of epifaunal assemblages
that often represent the dominant taxa by biomass [37,119,120]. “Deep-sea sponge aggrega-
tions” are considered VMEs [77,121] due to their functional role in benthic–pelagic coupling
via carbon and nutrient cycling [122,123] and their structural complexity, which can en-
hance and create structurally complex habitats [91,124–128]. In turn, these habitats increase
associated biodiversity, and provide nurseries and refuge [51,91,129]. On the other hand,
sponge fragility, longevity [77,130,131], and other life history characteristics hinder their
ability to recover [77], making them vulnerable to anthropogenic impacts. Sponge morphol-
ogy has been shown to influence the composition, diversity, and abundance of associated
fauna [91,126,132]. In our study, the most frequently annotated sponges were Massive Ball
morphotypes, which have relatively low structural complexity. However, it is possible that
at specific densities, these sponges may act together with sparser erect branching sponges
to increase habitat structural complexity [51,91,128,132,133]. Sponge densities exceeding
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the OSPAR threshold for designating sponge aggregations (0.5–24 sponges/m2) [133] were
recorded from the study area (Supplementary Table S2), and often coincided with increased
sponge diversity. However, OSPAR criteria require that sponges represent the dominant
characterising taxa within the assemblage [134], whereas in our study, Stylasteridae, which
co-occurs with sponges, is also a characteristic taxa of the assemblage (Figure 5 and Table 2).
Further research will be required to ascertain the functional significance of this assemblage
in the FCZ, and whether it meets the criteria of a “Deep-sea sponge aggregation” VME.

The sea pen and solitary cup coral assemblages represented by clusters two and three
(Figure 5 and Table 2) were observed from soft substrata (Figure 2D–F). Solitary cup corals
predominantly occupy upper slope environments, and Flabellum-dominated “cup coral
fields” have been recorded along the Patagonian slope [23,32,49], while other cup coral
species exhibit southern Patagonian restricted ranges [23]. Cup coral fields are considered
a type of “soft-bottomed coral garden” VME habitat [31,42,77]. Little is known of the
ecology of Southwest Atlantic cup coral fields. However, it is likely that Southwest Atlantic
“cup coral fields” support similar functional roles as “solitary Scleractinian fields” described
from slope environments of the Northeast Atlantic [135].

In our study, the sea pen Pennatulacea sp. could not be discerned to species level from
imagery, but resembled the genus Balticina (formally Halipteris). Anthoptilum grandiflorum
and Balticina have circumglobal deep-sea distributions, and have been recorded along the
Patagonian shelf and slope, including the northwest slope of the Burdwood Bank [17,39,42].
“Sea pen fields” have previously been described from the FCZs [36], and inferred from trawl
bycatch off of the Argentine slope [32] and northwest slope of the Burdwood Bank [17,39].
Sea pen fields are considered VME habitats [31,42,77] because they are long-lived, slow
growing, fragile taxa, and can form meadows that [136–138] act as nurseries [139] and
increase local biodiversity [136] by providing structural complexity and habitat hetero-
geneity [110]. In the Northwest Atlantic, 14 species of sea pen were associated with
A. grandiflorum and H. finmarchica [39,136], while in the Southwest Atlantic, the anemone
Hormathia pectinata is found growing on A. grandiflorum [39]. Brewin et al., (2020) conducted
a spatial analysis of predicted sea pen distributions in relation to fishing footprints, and
suggested that sea pen assemblages have a restricted distribution within the FCZ, and as
such, are most vulnerable to fishing. Their study modelled sea pen fields as a monospecific
habitat, whereas our study has shown that there is variation between sea pen assemblages
based on the dominant sea pen and cup coral species present (Figures 2–5 and Table 2). The
fact that sea pen fields of the FCZs are not comprised of a monospecific assemblage further
increases their vulnerability, as the spatial extent of each variant is less than predicted when
modelled as a single assemblage; therefore, our findings should be considered in future
fishing impact assessments.

In addition to the main assemblages identified from our analysis, VME indicator
taxa indicative of VMEs, namely “bryozoan patches”, “tube-dwelling anemone patches
comprised of Cerianthidae”, and “chemosynthetic communities”, were also observed (see
Supplementary Table S2). However, these assemblages were not differentiated from the
broader assemblages (Figures 3 and 5), probably because they did not form large aggrega-
tions or patches, and due to the commonality of Stylasteridae and Porifera morphospecies
that maintained cluster similarity (see Supplementary Table S2 and Figure S3).

Our analysis of epibenthic megafauna is based upon the annotation of morphospecies.
Morphospecies enable taxa to be differentiated beyond the level of taxonomic hierarchy
achievable using traditional taxonomic features that cannot be discerned from imagery.
Distinguishing morphologically distinct taxa (which are therefore likely to be taxonomi-
cally distinct) preserves important information on biodiversity [90]. However, there are
limitations with using morphospecies as units because faunal groups with similar gross
morphology, which rely upon microscopic features to distinguish species, can result in mul-
tiple species being annotated as a single morphospecies. In our study, the morphospecies
that are most likely to have been susceptible to this bias are encrusting Porifera and Massive
Ball Porifera because many sponge species have adopted this gross morphology. Despite



Diversity 2022, 14, 637 13 of 22

the potential of “clumping” species together within a single morphospecies, our analysis
discerned differences in megafauna assemblages that are characterised by taxa that differ
at high taxonomic levels, where the chance of misidentification is lower (i.e., Pennatulacea
versus Stylasteridae), and thus, still provides useful insight into megafaunal assemblages
of the FCZ. To support further research, future efforts should look toward collaborative
imagery databases that will enable consistency in annotation of morphospecies [90], and
species identifications from imagery should be verified with specimens when possible.

4.2. Environmental Drivers of Faunal Assemblages

Knowledge of broad-scale environmental drivers of deep-sea faunal assemblages
is relatively well established [103,140–142]. However, our understanding of how these
environmental drivers interact and influence deep-sea faunal assemblages in the Southwest
Atlantic is poorly understood. Our lack of knowledge is, in part, reflective of the scant
available data that limits research. For example, in our study, the low variance explained in
the RDA analysis (Table 3) likely reflects the broad resolution of environmental variables
incorporated into the model, which inadequately discerned the fine-scale environmental
variability influencing faunal assemblages [57] (i.e., patchy distribution of glacial drop-
stones and fine-scale geomorphological features). Despite this, our analysis still provides
useful insight into the broad-scale drivers of deep-sea faunal assemblages on the FCZs
slope, and suggests that topography, substrata, and current velocity interact to influence
deep-sea faunal assemblages of the FCZ slope (Figure 5 and Table 3).

Our analysis also shows a clear distinction between soft- and hard-bottom epibenthic
assemblages (Figure 5), which correlated with topography (captured by the terrain vari-
ables and depth). Topography and the distribution of substrata are intrinsically linked,
and influence faunal distributions [57,102,143] by providing a variety of substratum for
colonisation [144,145]. Soft sediments dominate the slope of the Falkland Trough, and the
relationship between this large geomorphological feature (captured by increased slope) and
the soft-bottom sea pen and cup coral assemblages is shown in the RDA plot as a positive
relationship between slope and mud/sand substrata (Figure 5). The topography and sub-
strata of the upper slope of the Falkland Plateau is more complex, with evidence of contour
aligned escarpments, drifts, and ice-rafted debris [62–67]. The presence of contour-aligned
geomorphology and substrata indicates the influence of contour currents [146]. The Falk-
land Current is associated with depositional contourites and erosive features that follow the
bathymetric contours on the Argentine slope [147]. The Falkland Current also flows along
the slope of the Falkland Plateau [29,84], and it is therefore likely that this area experiences
a similar bottom-current-controlled environment. Coral mound distributions, including
those within the Northern Argentine Mound Province [24] have been directly linked to
the geomorphology and substrata of regional contourite depositional systems [24,148]. In
our study, the coral reef assemblage also appears to be influenced by the geomorphology
and substrata, as reefs were observed from biogenic, coarse, and hard substrate associated
with erosive escarpment features, which was captured in the RDA as a positive relationship
between FBPI and coarser substrata (Figure 5). Filter feeders, including cold-water corals,
are preferential to complex terrain [104,149–154], colonising topographic highs to exploit
local current regimes, and so increase food encounter rates [154,155].

Glacial dropstones also appear to be important structures that can support “hard-
bottomed coral garden” assemblages (Figure 2B). In the Northeast Atlantic, glacial drop-
stones occurring within soft substrata are considered “keystone structures” [57], and in
a study of East Antarctic shelf fauna, dropstones were attributed to increasing diversity by
increasing habitat heterogeneity [156]. In the FCZ, dropstones are distributed independent
of geomorphology, and often provide hard substrata in otherwise soft substratum environ-
ments, enabling epibenthos to exploit these environments and in doing so could also be
considered keystone structures.

The characteristic taxa of the assemblages observed (Porifera, Cnidaria, Hydrozoa,
Alcyonacea, Scleractinia, Pennatulacea, etc.) are predominately suspension/filter feeders.
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Filter feeders consume plankton and particulate organic matter (POM) [157,158], while
some groups, such as sponges and bivalves, are also able to uptake dissolved organic mat-
ter [122,123] and bacteria [159]. Surface-derived POM [113,160] is an important deep-sea
food resource, which in the FCZs is enhanced by the nutrient-rich Falkland Current that
provides a constant influx of nutrient-rich sub-Antarctic waters along the shelf break and
upper slope [29,84]. On the Argentine margin, the Falkland Current is hypothesised to
facilitate cold-water coral reef growth via upwelling at the shelf, and associated surface
primary production that forms an important source of POM for the fauna below [29]. In the
FCZs, the interaction between the Falkland Current and underlying topography generates
mesoscale eddies that facilitate the exchange of heat, momentum, and nutrients between
the deep and surface waters, thus promoting surface productivity [161,162]. In our analysis,
the hard-bottom coral assemblages show a positive correlation, with increased FBPI and
current speed (Figure 5), and occur beneath areas of eddy formation [161], suggesting that
coral assemblages of the FCZ are sustained by topography-generated eddies of the Falkland
Current. This observation further supports the role of the Falkland Current in sustaining
coral assemblages by enhancing food supply along the Patagonian slope [29]. Similar sce-
narios, where cold-water corals flourish beneath topographically modified hydrodynamics
that promote and source POM, have been recorded in the Northeast [102,153,155,163–165]
and Southeast Atlantic [59,165]. Undertaking further research to understand more about the
Falkland Current driven surface–benthic coupling would provide invaluable information
for understanding the ecology of these assemblages.

In addition to hydrodynamics, water mass properties are a key determinant of faunal
composition in the deep sea [26,33,53,69,142,166,167]. Auscavitch and Waller (2017) made
a comparison of faunal assemblages across the Drake Passage, including samples from the
Burdwood Bank, which highlighted the influence of deep Southern Ocean water masses
on assemblage structure. In the Northern Argentine Mound Province, the AAIW has been
linked to coral mound development [24], and the high level of Scleractinian endism (65%
of recorded species) on the Patagonian upper slope (200–1000 m) correlates with cold–
temperate water masses [23]. The fauna observed during our study occur within the AAIW,
and are consistent with records reported elsewhere from the southern Patagonian shelf
break and slope [17,29,32,37,38,49]. This observation further supports the hypothesis of
deep-sea species having a continuous distribution along the southern Patagonian shelf and
slope [37], facilitated by the northeastward flow of the Falkland Current [84] and the AAIW.

5. Conclusions

We have undertaken the first quantitative multivariate analysis of epibenthic megafauna
in the FCZs, and identified several cold-water coral and sponge assemblages, with attributes
of VMEs. Our results further support the argument for a continuous southern Patagonian
deep-sea fauna. We have shown that broad-scale changes in topography, substrata, and
current velocity contribute to assemblage structure, and hypothesise that the Falkland Cur-
rent is a key phenomenon influencing faunal assemblages on the FCZs slope. The Falkland
Current promotes surface productivity and bentho–pelagic coupling, which likely sustains
the observed filter and suspension feeder-dominated assemblages. Over a larger temporal
scale, the Falkland Current has also acted to shape the topography and distribution of
substrata, in turn, influencing faunal assemblages on the slope. To gain a greater under-
standing of fine-scale drivers of faunal assemblage, the collection and incorporation of
higher resolution environmental data is required, and species and habitat distribution maps
should be compiled. Despite the limitations of data resolution, our results still provide
much needed bioecological knowledge to underpin spatial management within the FCZs,
and adds to our knowledge of the biogeography of this region, which will facilitate further
comparative studies of epibenthic megafauna, and support the implementation of fisheries
benthic impact assessments for the Southwest Atlantic deep-sea.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14080637/s1, Figure S1: Example images of substratum type
based on the EUNIS Marine Habitat Classification (https://www.eea.europa.eu/data-and-maps/
data/eunis-habitat-classification-1, accessed on 10 November 2020). (A) Mixed substratum EUNIS
code A6.2 observed from location N-2-GEO-ENV. (B) Hard substratum EUNIS code A6.1 observed
from location N-6-GEO-ENV. (C) Coarse substratum EUNIS code A5.15 observed from location
N-4-ENV-GEO. (D) Biogenic gravel (annotated as a subtype of mixed substratum) EUNIS code A6.2
observed from location N-4-ENV-GEO. (E) Muddy sand EUNIS code A6.4 observed from location
N-3-ENV. (F) Mud EUNIS code A6.5 observed from location T-003-ENV. (G) Biogenic reef (adapted
from EUNIS Communities of deep-sea corals that refers to reefs of Desmophyllum pertusum) code A6.61
observed at location A-1008-ENV; Figure S2. Hierarchal cluster analysis of Hellinger distance matrix
of transformed morphospecies density data. Cluster membership is shown by the coloured rectangles.
Cluster 1 = red, 2 = blue, 3 = green, 4 = orange, 5 = brown; Figure S3. Contribution (percent of total)
toward total abundance of morphospecies belonging to each of the five clusters after hierarchal cluster
analysis; Figure S4. Examples of morphospecies that characterise epibenthic megafaunal assemblages
in the Falkland Islands Conservation Zones. Scale bar = 30 cm. Table S1: Proposed drop-down
camera station in decimal degrees (◦) from three environmental baseline surveys conducted by Nobel
Energy in 2014. (Falkland Islands Government Department of Mineral Resources, unpublished data);
Table S2: Annotated morphopecies belonging to each cluster after hierarchal cluster analysis of
288 sample images. Mean density (m2) of each morphospecies within each cluster, total annotated
and percent occurrence across images is provided for each morphospecies.
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