
Citation: Ragasová, L.; Hakalová, E.;
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Abstract: Symbiotic interaction between plants and microorganisms in the rhizosphere is an im-
portant factor affecting plant growth and fitness. Arbuscular mycorrhiza fungi symbiosis increases
resistance of the plants to stress factors, including pathogens. Tomato brown rugose fruit virus (To-
BRFV) is an important destructive virus damaging tomatoes and peppers with losses that can reach
100%. It is listed on the list of current quarantine organisms in the Czech Republic. The aim of this
study was to evaluate influence of root colonization with Funneliformis mosseae or/and Azospirillum
brasilense on ToBRFV symptoms and viral titre reduction. Plants treated with arbuscular mycorhizal
fungi (AMF) had lower symptom emergence after 14 dpi, however there was no difference in symp-
toms emergence after 21 dpi within all treatments. The highest colonization intensity by Funneliformis
mosseae was detected in ToBRFV negative plants treated with both AMF and Azospirillum (AZO)
and the lowest in ToBRFV positive plants with the same treatment (AMF + AZO). Colonization
intensity of Azospirillum brasilense in all treated variants went from 20% to 41%. Results suggest
that the combination of those two beneficial microorganisms in ToBRFV-infected plants negatively
affected AMF colonization.

Keywords: Funneliformis mosseae; Azospirillum brasilense; ToBRFV; arbuscular mycorrhizal fungi

1. Introduction

Pepper is a worldwide economic important agricultural commodity with a total
production over 38 million tons per year. In the Czech Republic, production reaches over
11 thousand tons per year [1]. Tomato brown rugose fruit virus (ToBRFV), a single stranded
RNA virus belonging to genus Tobamovirus infects tomatoes (Solanum lycopersicum L.)
and peppers (Capsicum spp.). Under controlled laboratory conditions, symptoms were
observed as well on eggplant (Solanum nigrum L.), goosefoot (Chaenopodium quinoa Willd.,
Chaenopodium murale L.) and tobacco (Nicotiana tabacum L.) [2]. Recently, it has been reported
in many countries worldwide; in Jordan [3], Israel [4], Italy [5], Germany [6], Mexico [7],
Palestine [8], the United States [9], China [10], Spain [11], Florida [12] and Saudi Arabia [13].
Symptoms of ToBRFV infection varies from mild foliar symptoms such as chlorosis, mosaic
with dark bulges and mottling and deformation to chlorotic spotting and marbling on
fruits [6,14]. Damaged fruits are not marketable, and the loss of yield can reach 100%. This
serious disease has been detected in 2021 in the Czech Republic as well [2]. The virus is
spread by many ways including infected seeds or seedlings, mechanically on tools and
clothes of workers in production, irrigation systems, soil, plant debris and pollinators
used in greenhouse production. Currently, in the Czech Republic, it is listed on the list
of quarantine organisms and its presence in tomato and pepper production has been
monitored since 2020 [2].
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In agricultural practices, application of arbuscular mycorrhizal fungi (AMF) is well-
known as highly effective in terms of improvement of crop growth, health, yield and general
fitness of plants [15–17]. Plant growth promoting microorganisms beside mycorrhizal fungi
include many bacteria species (e.g., Azotobacter spp., Azospirillum spp.). According to a
study of Fukami et al. [18] Azospirillum brasilense improves the capacity to fix nitrogen,
synthetize phytohormones and plant regulators and increase tolerance to abiotic and
biotic stress.

Symbiotic interactions with arbuscular mycorrhizal fungi (AMF) are able to pro-
mote plant nutrition and prime systemic plant defenses against pathogen attack, so-called
mycorrhiza-induced resistance (MIR) [19]. However, at present, studies on the effect of
AMF on viral infections are limited and the interactions are not fully understood [20].
Several authors reported reduced symptoms and viral titre of various plant viruses (e.g.,
Tomato yellow leaf curl Sardinia virus, Beet curly top virus, Potato virus Y, Tobacco mosaic
virus, Cucumber green mottle mosaic virus) in plants colonized with AMF compared
to non-mycorrhizal plants [21–24]. On the other hand, the detrimental effects on plant
defenses against viruses including increased virus multiplication and/or symptom severity
in infected mycorrhizal plants have been reported as well [25,26].

The aim of this study was to assess beneficial and/or detrimental effects, respec-
tively, of two beneficial microorganisms; Funneliformis mosseae (Fungi: Glomeraceae) and
Azospirillum brasilense (Bacteria: Azospirillaceae) and their combination on ToBRFV-infected
pepper plants.

2. Materials and Methods
2.1. Plant Material and Inoculation by Beneficial Microorganisms

Pepper plants (Capsicum annuum L. cv. Corno di Toro) were seeded to a sterilized peat
substrate and cultivated under temperature 25 ◦C/20 ◦C (day/night). Temperature was
decreased after germination to 22 ◦C/18 ◦C. After four weeks (germination and growth)
seedlings were transplanted to individual pots with sterilized peat substrate that was
inoculated by (a) 15 g/L of Funneliformis mosseae BEG25 inoculum, containing a minimum
of 145 spores/g (Symbiom, Ltd., Lanškroun, Czech Republic), (b) 10 mL per plant of
106 CFU/mL suspension of culture Azospirillum brasilense Tarrand et al. 1979 (CCM 3862)
(Czech Collection of Microorganisms, Masaryk University, Brno, Czech Republic) and (c) a
combination of both in the same amounts with concentration as described above. Non-
inoculated sterilized substrate was used for control plants. Culture of Azospirillum brasilense
was grown on Luria Bertani agar medium (HiMedia Laboratories Pvt. Ltd., Mumbai,
India) for 5 days. Suspension was prepared with sterile 1× phosphate-buffered saline
solution, concentration estimated as optical density (OD) at 600 nm and adjusted to final
concentration 106 CFU/mL according to Pii et al. [27]. Plants were watered according to
actual need approximately twice a week. All treatments including control plants (non-
inoculated) were performed in 20 replicates. From each treatment one half (10 plants) was
used for virus inoculation later.

2.2. Virus Inoculum Preparation, Inoculation on Pepper Plants and Symptoms Evaluation

Virus inoculation was performed four weeks after inoculation by beneficial microor-
ganisms to ensure successful root colonization by arbuscular mycorrhiza and Azospirillum
bacteria as described by Miozzi et al. [20]. Natural isolate of ToBRFV, multiplied on tobacco
plants and collected by CISTA (Central Institute for Supervising and Testing in Agriculture,
Czech Republic) from tomato plants in 2021 (Czech Republic), was provided for this ex-
periment. The virus inoculum was prepared by grinding the symptomatic virus-positive
leaves of tobacco (Nicotiana tabacum) in mortar. A total of 25 mg of ground leaves were
mixed with 0.5 mL 1× phosphate-buffered saline solution (1 × PBS), pH 7.2, mixed with
sterile carborundum powder (400-grit, Polpur, Turnov, Czech Republic) and gently thrust
by hand into the three youngest developed leaves of pepper plants [28]. All treatments
including control (virus-negative) plants were performed in ten replicates.
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Symptoms were observed and evaluated two and three weeks after virus inoculation.
Evaluated symptoms included leaf mosaic and mottling, deformations, stunting, necrotic
spots or shoestring. The six-level scale of evaluation was used (Table 1) [28,29].

Table 1. Symptom severity scale on inoculated pepper plants.

Scale Symptoms

0 No symptoms

1 Mild mosaic or mottling, followed by recovery

2 Mild mosaic or mottling with leaf deformation

3 Moderate mosaic or mottling and leaf deformation, followed by rolling,
necrotic spots and stunting

4 Severe mosaic or mottling and leaf deformity, extended necrotic spots

5 Severe mosaic or mottling, leaf deformity, shoestring
Modified according to Jewehen et al. [29].

2.3. Plant Sampling, Detection of Virus by Real-Time qPCR

For the molecular evaluation of ToBRFV presence, five out of ten plants from each
treatment were randomly selected. In case of negative controls, the pooled leaf samples
were used. The total RNA was isolated by SpectrumTM Plant Total RNA Kit (Sigma-
Aldrich, St. Louis, MO, USA) according to the manufacturer instructions and transcribed to
the cDNA using the protocol of Eichmeier et al. [30]. To evaluate ToBRFV quantity in pepper
tissues, relative quantification by the 2−∆∆CT method [31] was used. The amplification
according to Menzel and Winter [32] was used for ToBRFV detection, whereas the 18S
rRNA gene from the plant [33] was used for a normalization of the ToBRFV titre between
tested samples. All reactions were carried out in triplicate in the final volume of 20 µL on
the qTOWER3 instrument (Analytic Jena, Jena, Germany). For the analyses of the results,
qPCRsoft (Analytic Jena, Jena, Germany) was used.

2.4. Staining of Roots, Fluorescence In Situ Hybridization and Microscopy Detection and
Evaluation of Colonization by AMF and Azospirillum Bacterium

Roots were gently washed from substrate and fixed in a formalin-aceto-alcohol (FAA)
fixative [34]. After fixation, roots were rinsed in distilled water, then cleared in 2% KOH
solution (1 h at 50 ◦C) and afterwards washed in distilled water (4 × 3 min) and neutralized
by 3% HCl solution. Roots were stained in a tube with a staining mixture consisting of
wheat germ agglutinin Alexa Fluor 594 conjugate (WGA AF 594) (InvitrogenTM, Waltham,
Massachusetts, USA) (50 µg·mL−1), concanavalin Alexa Fluor 647 conjugate (ConA AF
647) (InvitrogenTM, Waltham, Massachusetts USA) (50 µg·mL−1) and acid fuchsine (3%) at
a ratio of 1:1:1, for 4–5 h at room temperature. After staining, roots were rinsed in 1 × PBS
(4 × 3 min) and incubated for 12 h in 1 × PBS to remove all excess stains. Before mounting
on the slide, a few drops of Hoechst stain were added to the slides with roots [35].

Roots intended for fluorescence in situ hybridization were, after fixation with FAA,
dehydrated in a graded ethanol series (50, 75, 96% ethanol; 5 min each). Hybridization of
the small pieces of the roots was performed in a tube with hybridization buffer containing
0.9 M sodium chloride, 0.01% sodium dodecyl sulfate (SDS), 10 mM TrisHCl, 50% of
formamide (FA) and 5 ng·µL−1 of specific probe targeting 16S, 440–457 position labeled
at ’5 end by Cy5 (AZO440a+; GTCATCATCGTCGCGTGC) at 46 ◦C for overnight [36].
Post-hybridization treatment was performed after removal of the hybridization buffer
followed by adding washing buffer containing 20 mM TrisHCl, 0.01% SDS, 0.028 mol·L−1

NaCl and 10 µL·mL−1 of 0.5 M EDTA at 48 ◦C for 20 min. Afterwards the roots were rinsed
in sterile distilled water and air dried for 24 h [36,37]. Hybridized samples were placed
on microscopy slides with a drop of Hoechst solution, covered and observed under the
microscope. Colonization of beneficial organisms was observed and evaluated on five
randomly selected roots from three randomly selected plants (15 replicates).
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Confocal microscopy was completed using the LSM800 (Carl Zeiss, Jena, Germany)
microscope at 590/617 nm (excitation max./emission max.) for WGA AF 594, 650/668 nm
for ConA AF 647, 350/461 nm for Hoechst stain and 649/666 for Cy5 labelled FISH probe.
Lens 20×/0.8 NA, and 40×/1.2 NA were used. Processing of pictures was conducted in
Zen Blue 2.6 (Carl Zeiss, Jena, Germany).

The intensity of AM colonization (%M) in each root segment was scored based on the
presence of the fungus in the entire fragment using values from 0 to 5 (Table 2).

Table 2. Values indicating proportion of root colonization [38].

Value Proportion of Root Colonized by Funneliformis mosseae/Azospirillum brasilense

0 Without colonization

1 Colonization trace

2 Less than 10%

3 From 11 to 50%

4 From 51% to 90%

5 More than 90%

The intensity of colonization (M%) was estimated by the following equation:

M% = (95n5 + 70n4 + 30n3 + 5n2 + n1)/N (1)

where n5, n4, n3, n2 and n1 are the numbers of fragment in the respective categories 5, 4, 3,
2 and 1 according to Alarcón and Cuenca [38].

2.5. Statistical Analysis

Data were analyzed by one-way ANOVA with a significance level p ≤ 0.05 followed by
Fisher´s least significant difference (LSD) test to separate means into homogenous groups.
Analyses were performed using software Statistica 13.3 (TIBCO Software Inc., Palo Alto,
CA, USA).

3. Results
3.1. Symptoms Evaluation

Lowest symptom emergence was observed at pepper plants treated with mycorrhizal
fungus (AMF) at 14 days post-inoculation (dpi). No other significant differences were
observed in other treatments and at 21 dpi, including positive control plants. No ToBRFV
symptoms were observed at non-inoculated control plants (Figures 1 and 2).
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Figure 1. Symptoms development after 14 days post inoculation with ToBRFV on (A) positive control
plants (non-treated with AMF or Azospirillum), (B) ToBRFV-infected plants treated with AMF and
Azospirillum and (C) negative control plants (ToBRFV negative) treated with AMF and Azospirillum.
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Figure 2. Means (n = 10) (± SE) of symptom evaluation on ToBRFV inoculated plants at 14 and 21 dpi,
separated into homogenous groups (1a, 1b and 2a) according to Fisher´s LSD test. Explanatory notes:
AMF-arbuscular mycorrhizal fungus (Funneliformis mosseae), AZO-Azospirillum brasilense.

3.2. Results of Real-Time qPCR Assay

Results of qPCR assay confirmed a presence of ToBRFV virus in all inoculated variants.
The mean Ct (cycle threshold) was around 13 to 14 Ct in positive control plants, plants
treated with Funneliformis mosseae (AMF) and plants treated with a combination of both
Azospirillum and AMF (Supplementary Table S1). The mean Ct in plants treated with
Azospirillum was 17.274. However, according to one-way ANOVA and Fisher´s least
significant difference test there was no significant difference in mean Ct between treatments
(Table 3). Results of relative quantification of ToBRFV titre in plant tissues confirmed
positivity in all ToBRFV inoculated treatments and positive control and no significant
differences between them (Supplementary Table S2).

Table 3. Results of Fisher’s LSD test of mean Ct of qPCR assay detecting ToBRFV virus.

LSD Test; Variable Mean Ct (qPCR), Homogenous Groups, Alfa = 0.05000 Error: Mean Sum
of sq. = 9.8032, Degrees of Freedom = 16.000

Treatment Mean Ct (Mean) 1

P AMF 13.33800 ****

Control (positive) 13.39800 ****

P AMF + AZO 14.11600 ****

P AZO 17.27400 ****
Explanatory notes: P AMF-ToBRFV positive plants treated with arbuscular mycorrhizal fungus, P AMF +
AZO-ToBRFV positive plants treated with AMF and Azospirillum, P AZO-ToBRFV positive plants treated with
Azospirillum brasilense, ****—Homogenous group
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3.3. Evaluation of Funneliformis Mosseae and Azospirillum Brasilense Root System Colonization

Highest intensity (41%) of colonization by Azospirillum bacterium was detected at
plants inoculated with ToBRFV virus and treated with both Azospirillum brasilense and
arbuscular mycorrhizal fungus. In rest of treatments the colonization went from 20% to
33%. In the roots system of non-inoculated plants, it was detected only colonization trace of
0.4% (Table 4, Figure 3A). According to one-way ANOVA there was no significant difference
between treatments, except of negative control plants.

Table 4. Intensity of colonization (M) by Azospirillum brasilense (M) and Funneliformis mosseae within
given treatments and non-treated control plants.

Colonization intensity (M) by Azospirillum

Treatment N AZO N AMF + AZO P AZO P AMF + AZO control (negative)

Intensity of colonization (M) 20% 28% 41% 33% 0.4%

Colonization intensity (M) by funneliformis mosseae

Treatment N AMF N AMF + AZO P AMF P AMF + AZO control (negative)

Intensity of colonization (M) 4.5% 19.3% 6.2% 0.2% 0.0%Diversity 2022, 14, x FOR PEER REVIEW 7 of 11 
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or AMF, non-infected with ToBRFV)). Scale bar 20 μm, lens 20×/0.8 NA.; (D) Negative control plants 
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observed at ToBRFV negative plants treated with both AMF and Azospirillum, where the 
intensity reached 19.3%. Colonization intensity at both, ToBRFV negative and positive 
plants treated with AMF only, was 4.5% and 6.2%, respectively. Almost no AMF coloni-
zation was observed at ToBRFV positive plants treated with combination of AMF and 
Azospirillum (Table 4, Figures 3B and 4). 

Figure 3. (A) Colonies of Azospirillum (in red) on root of pepper non-inoculated with ToBRFV, treated
with mycorrhizal fungus and Azospirillum (N AMF + AZO). Scale bar 20 µm, lens 40×/1.2 NA;
(B) Arbuscular mycorrhizal fungal mycelia (in yellow) growing inside the root of plant non-inoculated
with ToBRFV, treated with Funneliformis mosseae fungus (N AMF). Scale bar 20 µm, lens 20×/0.8 NA.
(C) Negative control plants for Azospirillum observation (non-treated with Azospirillum or AMF,
non-infected with ToBRFV)). Scale bar 20 µm, lens 20×/0.8 NA.; (D) Negative control plants for AMF
observation (non treated with AMF or Azospirillum, non-inoculated with ToBRFV). Scale bar 20 µm,
lens 20×/0.8 NA.
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Highest colonization of root system by mycorrhizal fungi (Funneliformis mosseae) was
observed at ToBRFV negative plants treated with both AMF and Azospirillum, where the in-
tensity reached 19.3%. Colonization intensity at both, ToBRFV negative and positive plants
treated with AMF only, was 4.5% and 6.2%, respectively. Almost no AMF colonization was
observed at ToBRFV positive plants treated with combination of AMF and Azospirillum
(Table 4, Figures 3B and 4).
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Figure 4. Means (±SE) of AMF colonization evaluation, separated into homogenous groups (a, b
and c) according to Fisher’s LSD test. Explanatory notes: N AMF-ToBRFV negative plants treated
with arbuscular mycorrhizal fungus, N AMF + AZO-ToBRFV negative plants treated with AMF and
Azospirillum, P AMF-ToBRFV positive plants treated with arbuscular mycorrhizal fungus, P AMF +
AZO-ToBRFV positive plants treated with AMF and Azospirillum, N 0—negative non-treated plants.

4. Discussion
4.1. ToBRFV Symptoms Emergence and Real-Time qPCR Assay Results

Plants treated with AMF (P AMF) had lower symptoms emergence after 14 dpi,
however there was no difference in symptoms emergence after 21 dpi within all treatments.
Lower symptoms emergence after 14 dpi was not observed on plants treated with both
AMF and Azospirillum (P AMF + AZO), what might be explained by very low AMF
colonization of roots in this variant (Figure 4). This state might be explained by previous
findings where temporary lower viral titre (Tomato aucuba mosaic virus) in tomato plant
colonized by Funneliformis macrocarpa detected after 8–12 dpi significantly increased over
time [39]. Similar results were observed in tomatoes and strawberries inoculated with
Potato virus X (PVX) [39]. Maffei et al. [22] reported a significant reduction of Yellow
leaf curl Sardinia virus symptoms of infected tomato plants when colonized with AMF.
Increased uptake of nutrients, especially phosphorus may affect the susceptibility of the
plant to viral infection [40]. According to study of Borrer et al. higher phosphorous content
was associated with increase of barley and cereal yellow dwarf virus [41]. However, better
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nutrient status of plants treated with mycorhizal fungi, especially under nutrient deficient
conditions, leads to vigorous plant growth, which can compensate for viral damage [40] Since
there was no significant difference in mean Ct in results of Real-Time qPCR assay, the viral titre
was similar in all treatments after 21 dpi. Hao et al. [40] suggested that bioprotection efficiency
of AMF might be improved by using AMF with combination with other biological control
agents. In this study there was no significant difference in viral titre or symptoms emergence
after 21 dpi when using AMF with combination with Azospirillum bacterium compared to
use AMF only. According to Lima et al. [42] use of Azospirillum brasilense provided greater
tolerance of lettuce to Tospoviruses. Azospirillum genus is also studied for its potential
as biocontrol agent against BYDV (Barley Yellow Dwarf Virus). Single inoculation of
A. irakense in wheat was not effective, however when Azospirillum was applied before and
after infection, the symptoms of BYDV were reduced [43]. In our study only non-significant
reduction in symptoms emergence and viral titre in plants treated with Azospirillum (AZO)
was detected.

4.2. Funneliformis mosseae and Azospirillum brasilense Root System Colonization

There was no significant difference in root system colonization with Azospirillum
bacterium. Colonization intensity in all treated variants went from 20% to 41%. We assume
that Azospirillum bacterium was not affected by presence or absence of ToBRFV virus in
plant tissues.

By contrast, there were differences in AMF root system colonization. The highest
colonization intensity was detected in ToBRFV negative plants treated with both AMF
and Azospirillum and the lowest in ToBRFV positive plants with the same treatment
(AMF + AZO). Interestingly, there was no significant difference in ToBRFV positive and
negative plants treated with AMF only. These results suggest that use of combination of
those two beneficial microorganisms in ToBRFV-infected plants negatively affected AMF
colonization. Positive interaction between plant growth promoting bacteria (PGPB) and
AMF including production of metabolites increasing root cell permeability and hormone
synthesis have been reported [44]. On the other hand, a study of Zsögön et al. [45] indicated
that ethylene, a plant hormone, can significantly inhibit mycorrhizal colonization, especially
under P-deficient conditions. However, the mechanisms by which bacteria stimulate AM
colonization are still not fully understood [46]. Aseel et al. [47] reported that roots of the
ToMV (Tomato mosaic virus)-infected AMF treated tomato plants showed non-significant
reduction of AMF colonization parameters compared to uninfected AMF treated plants.
According to a study of Stolyarchuk et al. (2009) the intensity of AMF root colonization
was slightly lower on virus infected plats of cucumber and tomato compared to virus-free
plants [23]. However, to support possible effects of plant virus on AMF colonization more
research must be done.

5. Conclusions

This study examined the potential of use of arbuscular mycorrhizal fungi (Funneli-
formis mosseae) and bacterium Azospirillum brasilense to enhance the tolerance of pepper
plants to ToBRFV virus and reduce symptom severity or viral titre. Results of this study,
as well as the results of many other studies focused on AMF effects on plant viruses, are
indeterminate. Reduction of symptoms was observed on first evaluation (14 dpi); however,
one week later there was no statistical difference in symptom emergence or viral titre in
pepper plants. Use of Azospirillum brasilense showed only non-significant reduction in
symptoms emergence and viral titre. Results suggest that use or combination of both AMF
and Azospirillum bacterium is not more effective.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d14080635/s1, Table S1: Complete results from real-time qPCR assay.
Table S2: Results of relative quantifiction of ToBRFV titre in plant samples.
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