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Abstract: (1) Background: environmental gradient strongly affects microbial biodiversity, but which
factors drive the diversity of arbuscular mycorrhizal fungi (AMF) associated with roots at relatively
large spatial scales requires further research; (2) Methods: an experiment on large spatial scales of
Mt. Taibai was conducted to explore the biodiversity and drivers of AMF-associated with roots
using high-throughput sequencing; (3) Results: a total of 287 operational taxonomic units (OTUs)
belong to 62 species representing 4 identified and 1 unclassified order were identified along different
altitudinal gradients. With increasing altitude, AMF colonization could be simulated by a quadratic
function trend, and altitude has a significant impact on colonization. AMF alpha diversity, including
the Sobs and Shannon indexes, tended to be quadratic function trends with increasing altitude. The
highest diversity indices occurred at mid-altitudes, and altitude had a significant effect on them.
AMF communities have different affinities with soil and root nutrient, and Glomus is most affected by
soil and root nutrient factors through the analysis of the heatmap. Glomus are the most dominant,
with an occurrence frequency of 91.67% and a relative abundance of 61.29% and 53.58% at the level of
species and OTU, respectively. Furthermore, AMF diversity were mostly associated with soil and
root nutrients; (4) Conclusions: in general, AMF molecular diversity is abundant in Mt. Taibai, and
altitude and nutrient properties of soil and root are the main influencing factors on AMF diversity
and distribution.

Keywords: arbuscular mycorrhizal fungi (AMF); diversity; community; altitude; mountain

1. Introduction

Mountain ecosystems are rich in species diversity, and the climatic gradients are
obvious within a relatively short distance, so it provides more possibilities for the research
of biodiversity [1]. The diversity and community distribution of plants and animals
are most frequently investigated in mountain ecosystems because of the environmental
gradients and slant characteristics on a small spatial scale [2]. Peters et al. (2016) reported
that the species richness of nearly half of the plant and animal taxa showed a decreasing
trend with increasing altitude while the other half showed hump-shaped or bimodal
distribution patterns in Mt. Kilimanjaro [3]. However, most of the current studies have
focused on plants and animals, ignoring the interaction between soil microorganisms
and plants [4]. In addition, soils are believed to be exceptionally biodiverse parts of
ecosystems [5]. As widespread mutualists, fungi are symbiotic with plant roots and affect
the growth and distribution of plants [6,7], and the effect may be different in different
environment gradients [8], which play an important ecological role in ecosystem functions.

As the most widespread mutualists, arbuscular mycorrhizal (AM) fungi can form
symbionts with 80% of plant species [9–11], which play important ecological functions
in maintaining ecosystem balance in all kinds of ecosystems [11,12]. Research showed
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that AM fungi promote root growth and have positive effects on aboveground plant pro-
ductivity through direct and indirect interactions [2]. Furthermore, AMF diversity was a
key factor in maintaining plant biodiversity and ecosystem function [13–15]. Moreover,
studying AMF biodiversity and distribution is the basis for predicting the evolution and
succession of mountain ecosystems [16]. At present, more and more attention has been
paid to the study of AMF diversity in mountain ecosystems. Yang et al. reported that
elevations had a significant effect on AMF diversity and community distribution in the
Qinghai-Tibet Plateau [17]. Gough et al. suggested that AMF are a ubiquitous group
of soil microorganisms [18]. However, the measurement results of AMF diversity might
be different using different methods in the same region. For example, Shi et al. (2014)
researched AMF diversity and identified 63 AMF belonging to 12 genera by the traditional
morphological identification method in Mt. Taibai [15], while Zhang et al. (2021) found
103 AMF species from soil samples, which belong to 19 genera using molecular identifi-
cation method in Mt. Taibai [19]. It can be suggested that more AMF taxa are identified
by the molecular method. Therefore, in this study, high-throughput sequencing molecular
methods were used to explore AMF diversity and distribution in plant roots and investigate
its influencing factors.

As the intersection of the flora of North China, Central China, and West China, Qinling
Mountain is the natural dividing line between North and South China, with abundant
species and resources. As the main peak of Qinling Mountain, Mt. Taibai is dominated
by forest landscapes, rich in biological species, and is known as a green pearl in Western
China [20]. The plant species is very rich in Mt. Taibai, which is one of the most abundant
plant species in the temperate zone in China. Due to the different climatic gradients and
the particularity of the vertical distribution of vegetation along altitudes, Mt. Taibai has
become a natural place to study biodiversity [21].

Therefore, this study used molecular identification methods to explore the diversity
and distribution mechanism of AMF associated with roots at different altitudes in Mt.
Taibai, aiming to determine the biodiversity and variations of AMF with altitudes in the
mountain ecosystem. It is expected to enrich the ecological theory of AMF by providing
supporting data on different altitudes of mountain ecosystems.

2. Materials and Methods
2.1. Description of Study Region

This study was conducted in Mt. Taibai (23◦49′31′′–34◦08′11′′ N and 107◦41′23′′–
107◦51′40′′ E) of the Qinling Mountain, which lies in the ecological transition zone between
the subtropical zone and the warm temperate zone and is an important east-west mountain
range across the central part in China. As the main peak of the Qinling Mountains, Mt.
Taibai is the first peak in the east of the Qinghai-Tibet Plateau in China, with the highest
altitude of 3771.2 m. The climate zone of Mt. Taibai is obvious, which is divided into a
temperate monsoon climate zone (800–1500 m), a cold temperate monsoon climate zone
(1500–3000 m), a subarctic climate zone (3000–3350 m), and frigid climate zone (>3350 m).
Besides, Mt. Taibai is rich in plant species and has a special geographic location, complex
and diverse climate, and large altitude gradient, as well as one of the most abundant
temperate plant species in China. In addition, the distribution of vegetation in the vertical
zone of Mt. Taibai is also very special, which is of great significance to the study of
the distribution of vegetation in the north and south of China and provides an ideal
environment to conduct scientific research [22]. The plant distribution from the bottom to
the top of Mt. Taibai can be divided into deciduous broad-leaved forest belt, coniferous
forest belt, alpine shrub belt, and meadow belt. The deciduous broad-leaved forest belt is
mainly distributed by Quercus variorum forest, Quercus aliena var. Acuteserrata forest and
Betula albo-sinensis forest. The coniferous forest belt is mainly distributed by Abies fabri
forest and Larix gmelinii forest. The alpine shrub belt and meadow belt are above 3350 m,
mainly distributed dwarf creeping shrub, dwarf meadow, mossy community, and lichen
community (Table S1). Meanwhile, it has always been a hotspot for biodiversity research.
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2.2. Collection of Samples

Twelve different altitudes were selected within the range of 663–3511 m in Mt. Taibai.
At every target altitude, three 20 m × 20 m sample squares were set up, and the distance
between each sample square was at least 50 m. In each sample square, a five-point sampling
method was used to collect 0–30 cm soil, including all the plant roots and soil, and they
were mixed as one sample. Three squares were considered three replicates. Finally, we
separated all the mixed roots from the soil and put the mixed root samples and soil into
different sealed bags, respectively.

Soil samples were used to determine the physical properties and nutrient elements
after air-drying. All plant root samples were divided into the following three parts. The
first part of each plant root sample was immediately stored in a −80 ◦C freezer for DNA
extraction. The second part of each plant root sample was transported to the laboratory
to carry out the determination of AMF colonization. The third part was stored in a 4 ◦C
refrigerator to determine the nutrient elements, such as C, N, P, and C/N.

2.3. Bioinformatics Analysis of Sequence Data

Genomic DNA was extracted from plant root samples using the Fast DNA SPIN
Kit for Soil (MP Biomedicals LLC, Santa Ana, CA, USA) according to the manufac-
turer’s protocols. The extracted DNA was subjected to nested PCR by a thermocycler
PCR system (GeneAmp 9700, ABI, Foster City, CA, USA). PCR amplification was per-
formed with primers AML1F (5′-ATCAACTTTCGATGGTAGG ATAGA-3′) and AML2R
(5′-GAACCCAAACACTTTGGTTTCC-3′) by an ABI GeneAmp® 9700 PCR thermocycler
(ABI, CA, USA).

Purified barcoded amplicons were pooled in equimolar concentrations and paired-end
sequenced on an Illumina MiSeq PE300 platform/NovaSeq PE250 platform (Illumina, San
Diego, CA, USA) according to the standard protocols by Majorbio Bio-Pharm Technology
Co., Ltd. (Shanghai, China). Microbial community sequencing was conducted by Shanghai
Majorbio Bio-pharm Technology using the Illumina-MiSeq sequencing platform. The data
were analyzed on a free online platform (Majorbio I-Sanger Cloud Platform, available
online: http://www.i-sanger.com, accessed on 3 August 2021). Used Uparse (version 7.1)
software platform to perform taxonomic analysis of OTU representative sequences at a 97%
similar level.

2.4. Measurement of AM Colonization and Parameters of Soil and Plant Roots

The colonization of AMF was determined according to the method of Phillips et al. [23].
First, selected fresh fine roots were cleaned and wiped dry, then immersed in a test tube
with a mass fraction of 10% KOH solution, and heated in a water bath at 90 ◦C for 30 min
until the roots became relatively transparent. When the roots were relatively transparent,
the lye on the roots was cleaned and the roots were soaked in a 5% CH3COOH for 5 min.
They were dyed with 5% volume fraction acid acetic ink and heated in a water bath at 90 ◦C
for about 30 min. As the roots were fully dyed by the acetic acid ink, they were cleaned and
then put in lactic acid for color separation for approximately 30 min. Finally, the roots were
cut at about 1 cm and placed on a glass slide (each glass slide has 15 roots). The glass slide
was observed under a Motic BA310 microscope at 100–400 times magnification to survey
the colonization status.

The concentration of total carbon and nitrogen were measured by an elemental ana-
lyzer (GC IsolinkFlash 2000; Thermo Scientific, Waltham, MA, USA) analyzer. The phos-
phorus content in plant roots is determined by the molybdenum-antimony colorimetric
method [24].

http://www.i-sanger.com
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2.5. Calculation of AM Colonization, Relative Abundance, and Occurrence Frequency

The percentage of root length colonized by AM fungal structures was estimated and
calculated according to the grading criteria of Trouvelot et al. [25].

The relative abundance (species/OTU) of AM fungal genus was calculated as the
percentage of the number of species/OTUs in each genus divided by the total number of
species/OTUs in all genera, then take the average of the three samples.

The occurrence frequency of AM fungal genus was defined as the percentage of
the number of samples where this genus was observed to the number of all samples in
this genus.

Shannon–Weiner index: the Pi of AMF species or OTUs was defined as the percentage
of the sequences for each species or OTUs detected to total species or OTUs sequences in
a sample;

H = −∑ [Pilog2 (Pi)]

The Sobs index of AMF species or OTUs was defined as the numbers of species or
OTUs in a sample.

2.6. Statistics and Analysis of Data

The colonization ratio, colonization density, AMF diversity indies including Sobs and
Shannon index, stoichiometric characteristics of plant roots, and edaphic factors were all
statistically analyzed and curved estimated by SPSS 25.0. Then made the scatter charts
through Origin 21.0. AMF relative abundance and occurrence frequency were analyzed
based on genus level by Excel 2019. The heat map was presented to explore the relationships
between the AMF community and environmental variables based on correlation analyses.
And it is conducted on MajorBio Cloud’s bioinformatics analysis cloud platform. Based
on multiple linear regression analysis of the relationship between altitude, environmental
factors, and AMF diversity.

3. Results
3.1. Arbuscular Mycorrhizal Colonization in Plant Roots at Different AltitudesSubsection

The colonization of AM varied from 0 to 100%, with an average of 55.03% from 663 m
to 3511 m (Figure 1a). AM colonization showed a quadratic function trend with R2 was
53.46% and P was less than 0.01. It suggested that altitude has a significant effect on AM
colonization. The highest colonization of AM occurred at 1170 m and 1450 m. Meanwhile,
the highest colonization density also occurred at 1170 m with 41.09% (Figure 1b). And
the colonization density changed from 0 to 41.09%, with an average of 10.39% in Mt.
Taibai. Besides, the colonization density formed the quadratic function with R2 was 34.18%.
Elevation had a significant effect on AM colonization density.
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Figure 1. Change of arbuscular mycorrhizal colonization (a) and colonization density (b) in plant
roots among different altitudes. Note: There are overlapping data points in (a,b).
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3.2. AMF Community Composition and Distribution at Different Altitudes

A total of 287 OTUs belong to 62 species belonging to 8 identified and 1 unclassi-
fied genus representing four identified and one unidentified order (Table S2). Among
them, Glomus was the dominant genus with the largest number of species and OTUs with
39 and 104, respectively. However, only 1 OTU was identified in the genus of Pacispora. In
addition, the maximum number of species and OTU occurred at the altitude of 2190 m,
with 38 and 166, respectively. While the minimum number of species occurred at 3097 m,
and the minimum number of OTU was 25 and occurred at 2828 m.

The highest relative abundance of Glomus was 99.14%, which occurred at 1800 m
(Figure 2). In addition, the relative abundance of Glomus exceeded 90% at the altitudes of
663 m, 1170 m, 1450 m, 1800 m, and 2070 m. At the higher altitudes of 2828 and 3250 m, the
relative abundance of Acaulospora was higher with 49.14% and 56.52%. Besides, the genus
of Pacispora only appeared above 2000 m and the relative abundance was the highest with
17.85% at the highest altitude of 3511 m.
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3.3. Diversity of AMF in Mt. Taibai

AMF alpha diversity is expressed by the Sobs and Shannon indices (Figure 3). Both
Sobs and Shannon indices showed the trends of increased first and then decreased with the
increase of altitude based on the species and OTU level. Whether at species or OTU level,
the highest Sobs and Shannon index both occurred at 2460 m. The highest Sobs index were
26 and 49 on the level of species and OTU, respectively (Figure 3a). At the same time, the
highest Shannon indices were 2.68 and 2.08 at the level of species and OTU (Figure 3b). And
the lowest alpha diversity indices both appeared at higher altitudes. With the increase in
altitude, the changing trend of Sobs and Shannon indices could be simulated with quadratic
function at the species and OTU level. What’s more, elevation had a significant effect on
alpha diversity indices.

AMF beta diversity was revealed by nonmetric multidimensional scaling analysis
(NMDS) (Figure 4). The NMDS ordination resulted in a final stress value of 0.14 and 0.18 on
species and OTU level, respectively. The results indicated that beta diversity also differed
among the altitudes based on species and OTU level in Mt. Taibai.
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3.4. The Relative Abundance and Occurrence Frequency of AMF Genus in Mt. Taibai

It was found that the relative abundance ranged from 0.76% to 61.29% and from
0.24% to 53.58% based on species and OTU levels, respectively (Table 1). The fungi in
the genus of Glomus were the most dominant, with the highest relative abundance of
61.29% and 53.58% based on species and OTU level, which was significantly higher than
other genera. Meanwhile, the occurrence frequency of Glomus also was higher at 91.67%.
Unclassified in Glomeromycetes was found in all altitudes with the highest occurrence fre-
quency of 100%. The second abundant genus is Acaulospora, with a relative abundance of
9.46% and 5.32% at species and OTU levels, and the occurrence frequency was 66.67%. At
the same time, the relative abundance of Pacispora was the same as Ambispora based on
species level with 2.18%. In addition, the occurrence frequency of Pacispora was the same
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as Scutellospora with 33.33%, and the occurrence frequency of Diversispora, Acaulospora, and
Paraglomus were the same with 66.67%.

Table 1. Relative abundance and occurrence frequency of AMF genus in Mt. Taibai.

Genus Relative Abundance
(Species)/%

Relative Abundance
(OTU)/%

Occurrence
Frequency/%

Acaulospora 9.46b 5.32 66.67
Ambispora 2.18 1.09 50.00

Archaeospora 5.72 1.82 41.67
Diversispora 4.36 3.58 66.67

Glomus 61.29 53.58 91.67
Pacispora 2.18 0.72 33.33

Paraglomus 4.96 5.45 66.67
Scutellospora 2.57 0.65 33.33

no rank 0.81 0.34 8.33
unclassified in Diversisporaceae 0.76 0.24 8.33
unclassified in Archaeosporales 2.18 0.85 16.67
unclassified in Diversisporales 1.36 0.37 16.67
unclassified in Glomeromycetes 2.18 25.97 100.00

3.5. The Drive Factors of AMF Community and Diversity

Among different genera, Glomus was most affected by soil and root nutrient factors
(Figure 5). Both soil factors (pH and C/N) and root nutrients (C, N, and C/N) had a
significant effect on Glomus through correlation analysis by heatmap at the genus level
(Figure 5). Unclassified in Diversisporaceae and unclassified in Archaeosporales were both
affected by root nutrient of N (p < 0.01) and ecological stoichiometry of C/N (p < 0.01).
As for unclassified in Glomeromycetes, it was influenced by C/N (p < 0.01) and available
phosphorus (p < 0.05) in soil. And soil and root nutrients had no significant effect on other
AMF genera.
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Elevation had a positive and prominent effect on AMF Shannon diversity (r = 0.493)
based on OTU level (Figure 6). Meanwhile, elevation had a positive effect on soil factors
of pH (r = 0.651) and ecological stoichiometry of C/N (r = 0.605), plant factors, such as C
(r = 0.364), N (r = 0.379) and C/N (r = 0.345). Besides, the AMF diversity index of Shannon
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was greatly affected by soil and root nutrients, while the Sobs index was affected by soil
and root ecological stoichiometry C/N and root N content.
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Figure 6. The relationships among elevation, soil factors (C, N, P, C/N, and pH), plant factors (C,
N, P, and C/N), and AMF diversity indices are based on OTU level. Note: The effect of altitude
on soil and root is expressed as a correlation coefficient, while the effects of soil and root factors on
diversity indices are represented by standard regression coefficients. Blue solid represents significant
positive or negative effects. Blue dashed represent nonsignificant paths. ** means p < 0.01; * means
p < 0.05, respectively.

4. Discussion

The changes and laws of biodiversity along different environmental gradients are
the important topic of biodiversity research [26,27]. Many environmental factors vary
with altitude in mountain systems, so altitude is often used as an integrated factor to
study plant and animal distribution patterns in mountain systems. In recent years, people
have become more and more interested in knowing how microbes respond to the changes
in environmental conditions because of their critical role in ecosystem functions [28–30].
Luo et al. also suggested that understanding the diversity of fungi in ecosystems may have
predictive implications for biodiversity and ecosystem evolution processes [31]. Therefore,
AMF diversity and community distribution along different altitudes were studied to explore
the role of AMF in the mountain ecosystem and the responses to clime change.

In this study, the colonization rate and colonization density of AMF showed a trend
of first increasing, then decreasing trends with the elevation. However, Gai et al. and
Kotilinek et al. believed that AMF colonization showed a downward trend with increasing
altitudes [32,33]. There are even studies that there were no significant differences in AMF
colonization between high-altitude and low-altitude areas in the southeast of the Qinghai-
Tibet Plateau [34]. The different results may be due to the differences in research sites or
environmental factors, such as plant species, soil types, and so on. Liu showed that the
arbuscular abundance of AMF was significantly influenced by altitude gradients [35], which
was consistent with the results of our research. These different results also suggest that
AMF could form a good symbiotic relationship with plant roots in the mountain ecosystem.

In the present study, the 287 OTUs and 62 species of AMF were identified and repre-
sented 8 identified genera, 5 unidentified genera in Mt. Taibai, which supported that AMF
had a wide ecological range and was an important part of the ecosystem. Our research
showed that 39 species belonged to the genus of Glomus, followed by Acaulospora with
5 species. Whether at the species or OTU levels, the relative abundance and the occurrence
frequency of Glomus were the highest, which was consistent with the conclusions of most
previous studies on the molecular diversity of AMF that Glomus was the dominant genus
in the AMF community [19,36,37]. This may be due to its wide ecological range and the
certain resistance in complex environments [38]. Besides, Glomus can usually produce large
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numbers of spores and hypha fragments, which can extensively spread and colonize the
roots of plants [37,39]. In terms of different altitudes, Glomus dominated at lower altitudes,
whereas Acaulospora were more abundant at the higher altitudes of 3250–3511 m. This result
was consistent with Oehl et al., who suggested that the genus of Acaulospora was more
abundant in the highlands than in the lowlands in Switzerland [40]. Moreover, Haug et al.
and Yang et al. also came to similar conclusions [8,41]. The different distribution at low and
high altitudes in AMF explains the correlation of AMF species with altitude and suggests
that there may be potential niche differentiation along the altitudinal gradient.

In addition to different distribution, the diversity of AMF was also different with
the altitude change. It was discovered that AMF diversity indices of Sobs and Shannon
showed the trends of quadratic function increasing first and then decreasing, whether
on the level of species or OTU. However, Guo et al. and Egan et al. studied the AMF
diversity and suggested that the alpha diversity decreased monotonically with the increase
in altitude [21,42]. The reason for this phenomenon may be that this study was conducted
in a large-scale altitude range of 663–3511 m, while Guo et al. and Egan et al. explored
the AMF diversity in a relatively small altitude range. Therefore, in this study, the AMF
diversity varies in different climatic environments. Moreover, some studies have proved
that AMF diversity is closely related to plant richness [43], and plant richness is also
different on different altitude gradients in Mt. Taibai (Table S1). This may also be the reason
why AMF diversity shows different trends with increasing altitude in Mt. Taibai.

In this study, it was also found that the higher Shannon and Sobs indices appeared
at mid-altitudes, whether based on species or OTU level. The highest diversity indices
occurred at 2460 m, and altitude has a significant effect on them. Bonfim et al. showed
that AMF diversity at higher altitudes was higher than at lower altitudes in the Atlantic
forest system [44]. The reason for this phenomenon may be that the mid-altitudes have less
human disturbance than the low altitude region and a less extreme climate environment
than the high altitude region [45]. Therefore, the mid-elevation area is favorable for AMF
sporulation and growth. Gai et al. and Shi et al. supported that altitude has no significant
influence on AMF diversity [32,39]. Because altitude is a comprehensive factor, the effects
of altitude on AMF diversity may be caused by differences in geographic location and
environmental factors [15,46,47]. Besides, previous studies have shown that environmental
factors, especially the geographical environment and soil factors, have an important impact
on AMF diversity. Different ecological factors would affect the growth, development,
colonization, and reproduction of AMF, which would cause differences in AMF diversity in
different ecosystems [48–51]. Therefore, it is necessary to study the environmental factors
of different altitudes further.

Determination of soil and plant nutrients found a significant impact on AMF diversity
indices of Sob and Shannon. Our results were consistent with previous research conclusions
that altitudes and soil variables had a significant impact on AMF diversity and richness [36].
Besides, Montiel-Rozas et al. [52] showed that AMF diversity and richness were only
affected by soil properties, and soil factors were the main driving force for AM fungal
communities. Our research found that whether it was in soil or plant roots, P concentration
significantly affects the AMF Shannon index. This result was consistent with Maitra et al.,
who confirmed that the AMF Shannon diversity index showed a positive response to
P [53]. Ceulemans et al. showed that AMF diversity decreased with the increase in soil P
utilization [54]. Therefore, the change of P concentration is an important predictor of the
response of AMF diversity to soil nutrients [55]. Previous studies have also shown that the
addition of N increased AMF diversity in N-deficient soil [56–58], which was consistent
with our study that N content of plant roots has a significant effect on AMF diversity, but
N content in the soil had no effect on it. This result showed that plant roots had a greater
impact on AMF diversity than soil. This also suggests that AMF tends to be symbiotic
with plants to absorb nutrients, thereby increasing the diversity of mycorrhiza to increase
the plant’s own competitive advantage [59]. In addition, studies have suggested that the
identity of the host plant has been considered to be one of the most important factors in
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shaping AMF community composition [60–62]. It was speculated that the vital effects of
the host plant on the AMF community might be related to the C/N in plant roots.

Moreover, it was found that the AMF community have different affinities with soil and
root nutrient. And glomus is most affected by soil and root nutrient factors through the anal-
ysis of Heatmap. The genus of unclassified in Diversisporales and unclassified in Archaeosporales
were significantly affected by root N concentration and C/N. However, the genus of un-
classified Glomeromycetes were correlated with soil P concentration and C/N. The results
revealed that there were different relationships between soil characteristics and the AMF
genus, which is consistent with Kim et al. [63]. These also suggested that AMF taxa have
different environmental preferences in tropical montane rainforests. Therefore, this also
explained the different distribution of AMF communities at different altitudes. Besides, soil
nutrient concentration also is an important factor in the AMF community. Zhao et al. [37]
confirmed that soil nutrients have an impact on AMF communities, as a lack of nutrients
inhibits spore germination and dissociation. Therefore, soil factors play an important role
in AMF diversity and community in the mountain ecosystem.

5. Conclusions

In this study, the biodiversity and variation of AMF with plant roots at different
altitudes were explored by molecular identification methods in Mt. Taibai. And it was
found that there is abundant AMF diversity in the mountain ecosystem. Altitude has a
significant impact on AMF diversity and community distribution. Whether it is species
level or out level, Sob and Shannon indices show a quadratic equation changing trends
with the increase of altitudes. In addition, whether in soil or plant roots, the ecological
stoichiometry of C/N has a major impact on AMF diversity. Further, Glomus, as a dominant
genus, was most affected by root and soil nutrients. These findings suggest that soil and
root nutrient are important factors affecting AMF diversity and variation among different
altitudes in the mountain forest.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/d14080626/s1, Table S1: Plant species at different alti-
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species aoutOTU among different altitudes.
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