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Abstract: In our study the presence of bacteria, yeast, and microscopic fungi was evaluated. Three
forms of corn silage were made including silage without additive, silage with microbial additive
(lactic acid bacteria), and silage with nutritional additive (urea). Silage additives were applied
to the matter within the recommended dosage, then the matter was ensiled into plastic bags and
stored at a constant temperature. After 5.5 months of storage, average samples for microbial and
mycotoxins analysis were taken. From microbiological points, the plate count agar method for
enumeration of total count of bacteria, lactic acid bacteria, enterococci, yeasts, and microscopic fungi
and mass spectrometry for microbiota identification were used. In total, 43 species of bacteria and
yeasts and 6 genera of microscopic fungi were identified from all samples of corn silages. The most
isolated species were Lentilactobacillus buchneri and Kazachstania exigua from bacteria resp. yeasts
and Aspergillus and Penicillium from microscopic fungi. Mycotoxins were determined by HPLC-
MS/MS and divided into two groups as regulated and emerging. In the corn silages only Fusarium
mycotoxins were observed. All corn silages, regardless of the addition of the additive, were the
highest in nivalenol content. Deoxynivalenol and beauvericin with the highest concentrations were
present in silage with urea. Although the mycotoxins content of the variants changed, these changes
were not statistically significant. In general, addition of lactic acid bacteria Lentilactobacillus buchneri
and Lacticaseibacillus casei and urea as silage additives affect the microbial diversity; however, the
hygienic quality of whole crop corn silage was not negatively changed.

Keywords: diversity; microbiota; mycotoxin; microbial additive; urea; corn silage

1. Introduction

The silage microbiota contains beneficial microorganisms such as lactic acid bacteria
(LAB) and spoilage microorganisms such as mold and yeast [1]. Therefore, the abundance
and species of epiphytic bacteria in harvested matter (before silaging) are crucial for the
spontaneous fermentation process and microbial succession in silage production [2]. The
members of the epiphytic microbiota and their variations are a critical factor in determining
whether LAB inoculation was necessary for silage production [3].

The presence of mycotoxins has been confirmed worldwide in a variety of forages of
plant origin, and several mycotoxins may be present in a single forage [4]. As discussed by
Juan et al. [5], mycotoxins pose a serious threat to feed safety due to their negative impact
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on consumer’s health. Additionally, due to climate change, which could affect the degree
of contamination of feedstuffs, concerns about feed safety and health are increasing. The
potential of using preharvest models to predict risk from deoxynivalenol (DON) in wheat,
fumonisin B1 in maize, and aflatoxins in maize in different continents are considered in
the context of potential for adaptation to include climate-change scenarios. In addition,
changes in post-weather conditions may lead to the development and growth of molds that
have not been observed in the area and may become more important as warmer climatic
conditions would be conducive to Penicillium and Aspergillus, respectively [6].

Dzuman et al. [7] argue that feed can be contaminated with a wide range of mycotoxins
and in addition to the classical regulated mycotoxins such as aflatoxins, deoxynivalenol,
ochratoxins, fumonisins, and zearalenone, these can also be emerging mycotoxins (enni-
atins, beauvericin, and moniliformin). Numerous analogues of enniatin, including types
A, A1, B, B1, B2, B3, B4, D, E, F, and G, are known, according to Santini et al. [8]. Of these
modified toxins, enniatins A, A1, B, and B1 are the most found in Europe, specifically in
cereals [9], silages, and inoculated corn [10]. The maximum levels for these mycotoxins are
currently not regulated by any legislation [11], as they are considered to be of minor impor-
tance in terms of their concentration in feed and food, as well as their toxic effect on humans
and animals [12]. Although no limits have yet been set for enniatins, for other mycotoxins
of the genus Fusarium such as deoxynivalenol (DON), T-2 toxinHT-2 toxin, fumonisins
(FUM), and zearalenone (ZEA), the concentrations are regulated by the authorities [13].

Since the formation and development of mycotoxins is influenced by many factors
(temperature, water activity, pH value, fungal strain), researchers are trying to figure out
effective ways to improve the hygienic parameters of silages [14]. Generally, the most
used are biological silage additives (inoculants), which in most cases have been able to
reduce the mycotoxin content, but in some cases also to increase it [15,16]. Fabiszewska
et al. [2] mentioned that mycotoxins such as deoxynivalenol, fumonisins, fusarium toxins,
zearalenone, and ochratoxins can be eliminated by using strains of lactic acid bacteria.
Additionally, mycotoxins content can be reduced by adding chemical additives [17], and
some nutrients such as urea [16,17]. Moreover, during the silage fermentation process,
urea is partially degraded to ammonia (acts as a buffer–alkaline environment), which
has an antifungal effect [18,19]. Urea as a silage additive is mainly used for forages
with carbohydrate character, is effective at inhibiting growth of molds and yeasts [20,21].
Furthermore, the addition of urea affects the nutritional value (by increasing NH3-N, crude
protein), but also the fermentation quality of silages (by boosting acetic, propionic and
butyric acid, and by slowing pH decline) with decreasing nutrient losses and improved
aerobic stability of silages [22].

Another option to decrease yeast and mold populations in silages is addition of
facultatively and obligately heterofermentative bacteria, which are produced in addition
to lactic acid, also acetic acid [18]. Inoculation by L. plantarum and L. buchneri would
mitigate potential negative effects arising from fungal infestation by production of main
fermentation compounds (acetic, propionic, and lactic acid) and bacteriocins [23]. Moreover,
many species of bacteria and some specific fungi have been shown to enzymatically degrade
mycotoxins, which are potentially promising candidates used to detoxify mycotoxins in
feed and foods [24].

The hypothesis is regarding which types of silage additives are more effective against
molds and mycotoxins formation and beneficial for silage microbiota during the fermen-
tation process in whole crop corn silage. The aim of this study was to (a) determine the
presence of microbiota and concentration of different mycotoxins in corn silage and (b) to
determine the effect of silage additives on mycotoxin content for the improvement in silage
hygienic quality and production of safe feeds for animals with the sustainable production
of quality food for the human population
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2. Materials and Methods
2.1. Ensilage of Corn Matter

In cooperation with the University Farm in Oponice, whole corn matter (hybrid FAO
480, dent grain type) was ensiled. The corn matter with a dry matter content of 39% at the
milky-wax stage of the grain was harvested (harvested after 140 days after the sowing)
with a self-propelled forage harvester (CLAAS, Omaha, Nebrasca, USA) and chopped to
2 cm of chopped length. The corn matter was ensiled in 3 variants and 3 repetitions: control
(CONT /CONT1,2,3/, ALAB (additive on the base of lactic acid bacteria)/ALAB1,2,3/ and
NAUR (nutritional additive: urea)/NAUR1,2,3/. The commercial additive in water-soluble
powder on the base of lactic acid bacteria (Lentilactobacillus buchneri LN40177: obligately
heterofermentative, Lacticaseibacillus casei LC32909: facultatively heterofermentative; min.
lactic acid bacteria 1.1 × 1011 CFU/g) was applied using an applicator (Appli Pro Super
Low Volume-Pioneer) directly on the forage harvester in a liquid state (10 mL/t) at a dose
of 1 g/t of ensilaged matter. In the NAUR variant, a nutritional additive, urea, was applied
to the untreated matter at a dose of 5000 g/t of ensilaged matter (applied manually in
a solid state and subsequently homogenized by mixing with the matter). In the CONT
control variant, the matter was ensiled without the addition of additives. The corn matter
in all variants was ensiled into plastic bags (in one bag approx. 1.2 kg of ensilaged matter)
in 3 repetitions using a vacuum packing machine MSW Motor Technics (Expendo Polska,
Zielona Góra, Poland) and subsequently stored in the laboratory at a constant temperature
(22 ± 2 ◦C). The plastic bags were opened, and average samples (n = 3) were taken for
microbiological analysis after 5.5 months of storage. After pre-drying (at 60 ◦C), the dry
matter content of the gravimetric method was determined at 103 ± 2 ◦C in corn silages.
Laboratory samples of corn silages (n = 3) were subjected to mycotoxin analysis.

2.2. Microbiological Analyses

In the primary dilution of silage, 0.87% sterile saline with the quantity of 45 mL was
used, to which 5 g of sample was added. Subsequently, serial dilutions (10–2 to 10–4)
were prepared, and 100 µL of them were applied to Tryptic Soya agar plates (TSA, Sigma-
Aldrich®, St. Louis, USA) to determine the total number of bacteria. The presence of
bacterial colonies was examined in the inoculated plates after the incubation period of
48–72 h at 30 ◦C.

Typical colonies of coliform bacteria were enumerated after 24–48 h (37 ◦C) of incu-
bation on inoculated McConkey agar (MC, Sigma-Aldrich®, St. Louis, MO, USA) plates.
Formation of typical colonies for enterococci was examined with the use of Enterococcus
selective agar (ESA, Sigma-Aldrich®, St. Louis, MO, USA), whereas incubation time and
temperature were the same as for coliform bacteria. Lactic acid bacteria were cultivated
with the use of three different agars, specifically MRS (De Man, Rogosa and Sharpe agar),
MSE (Mayeux, Sandine and Elliker), and APT (All Purpose TWEEN® agar, Sigma-Aldrich®,
St. Louis, MO, USA). Inoculated plates were incubated under the anaerobic conditions
for 72 h at 37 ◦C. For microscopic fungi and yeast identification, malt extract agar (MEA,
Sigma-Aldrich®, St. Louis, MO, USA) and acid base indicator bromocresol green (Sigma-
Aldrich®, St. Louis, MO, USA) (0.020 g/L) were used. The growth on inoculated plates was
evaluated after 5 days of aerobic exposure and an incubation temperature of 25 ◦C. Because
of the macroscopic morphological differences between the growing colonies, recultivation
on TSA (Tryptic Soya agar, Oxoid, Basingstoke, UK) was completed. The cultivation of
inoculated plates took place for 24 h at 30 or 25 ◦C for bacteria and yeasts, respectively.
After the cultivation, the protein extraction was undertaken. One colony of each bacterial
isolate was transferred into an Eppendorf tube and mixed with 300 µL of sterile water. After
addition of ethanol (900 µL), the suspension was mixed and centrifuged (13,000× g, 2 min).
After removal of supernatant, the pellets were dried at room temperature at least for 5 min.
The bacterial pellets were resuspended in 20–50 µL of formic acid (70%) and the same
amount of acetonitrile. After centrifugation (2 min at 13,000× g), 1 µL of supernatant was
spotted onto a sample position of a polished steel MALDI target plate and dried at room
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temperature. Then, 1 µL of MALDI matrix (solution of α-cyano-4-hydroxycinnamic acid
(HCCA) in 50% acetonitrile/2.5% trifluoro-acetic acid) was added to the spot and dried.

The MALDI target plate was introduced into the MALDI-TOF mass spectrometer for
automated measurement and data interpretation. MALDI-TOF profile mass spectra were
imported into the MALDI Biotyper 3.0 software (Bruker Daltonics, Bremen, Germany)
and processed automatically after measurement. The logarithm of the score (log/score)
was displayed as the matching result. The MALDI Biotyper output was a log(score)
between 0 and 3.0, which was calculated from a comparison of the peak list from an
unknown isolate with the reference MSP in the database. A log(score) ≥ 1.7 indicated
identification at the genus level, log(score) ≥ 2.0 was set as the threshold for a match at
the species level. Isolates with ≥2.0 were accepted as a correct identification. Further
confirmation of microorganisms (the colonies from total microbial count, coliform bacteria,
enterococci, lactic acid bacteria, fungi, and yeasts) was performed using MALDI-TOF
MS Biotyper. Identification of selected colonies was examined after aerobic or anaerobic
subculture on TSA agar overnight. The preparation of microbial isolates for MALDI-TOF
MS analysis was previously published by Kačániová et al. [25] and realized according to the
manufacturer´s extraction procedure (Bruker Daltonik, Bremen, Germany). Additionally,
Singh et al. [26] published identification for fungal isolates. Identification was completed
using MALDI-TOF MS Biotyper (Bruker Daltonics, Bremen, Germany) with Flex Control
3.4 software and Biotyper Realtime Classification 3.1 with BC specific software (Bruker
Daltonics, Bremen, Germany).

2.3. Mycotoxin Analysis

Multimycotoxin analysis by HPLC-MS/MS (AT-SOP 31) based on EN 17280 in coop-
eration with the Romer Labs Diagnostic GmbH Austria was used for mycotoxin analysis.
Samples (10 g) for mycotoxin analysis were extracted using 30 mL of extraction solution
(mixture of acetonitrile/water 7:3). The sample was then centrifugated. The aliquot amount
was diluted with eluent A of HPLC by factor 10. Before dilution, an internal standard of
most mycotoxins was added. The diluted sample was injected to an HPLC system (Agilent
-Agilent Technologies, Santa Clara, California, USA - 1260 infinity II binary pump with
integrated degasser, column oven, and multisampler) with a column (Phenomenex Gemini
C18/4.6.0× 150 mm; 5 µm/). Data were acquired using LC-MS/MS at two mass transitions
by using a C18 column and gradient program for eluents. Used eluents were: eluent A:
88.5% water, 10% MeOH, 1% acetic acid, 0.5% 1 m ammonium acetate; eluent B: 1.5% water,
97% MeOH, 1% acetic acid, 0.5% 1 m ammonium acetate. The method of internal standard
for quantification was used. The calibration curve was used as the dependency of the
concentration of analyte to ratio of the relevant analyte and the corresponding internal
standard. The calibration was completed via external solvent calibration standards. The
internal standards were 13C isotopic labeled standards, in which all 12C carbon atoms were
replaced by 13C carbon. The internal standards were added to the injection sample in the
autosampler prior to analysis. Identification followed SANTE 12089/2016 [27] (guidance
document on identification of mycotoxins in food and feed) involving retention time and
two product ions. In each batch, two internal control samples were running; results of the
internal controls are recorded in a control chart.

The mycotoxin content was determined in the dry matter of the laboratory samples
and subsequently converted to 88% dry matter. The mycotoxin content is presented in
µg/kg. The determined mycotoxin profile is shown in Table 1.
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Table 1. Mycotoxin groups and analytes analyzed by HPLC-MS/MS.

Mycotoxin Group Analyte

Aflatoxins Aflatoxin B1, Aflatoxin B2, Aflatoxin G1, Aflatoxin G2

Alternaria Metabolites Alternariol

Aspergillus Metabolites Gliotoxin, Sterigmatocystin

A-Trichothecene Diacetoxyscirpenol, HT-2 Toxin, Neosolaniol, T-2 Toxin,
T-2 Triol, T-2-Tetraol

B-Trichothecene
Deoxynivalenol, Deoxynivalenol-3-Glucoside,
15Acetoxyscirpenol, 15AcetylDeoxynivalenol,

3AcetylDeoxynivalenol, Nivalenol

Enniatins and Beauvericin Beauvericin, Enniatin A, Enniatin A1, Enniatin B,
Enniatin B1

Ergot Alkaloids

Agroclavine, alpha-Ergocryptine, alpha-Ergocryptinine,
Dihydrolysergol, Elymoclavine, Ergine, Ergocornine,

Ergocorninine, Ergocristine, Ergocristinine, Ergometrine,
Ergometrinine, Ergosine, Ergotamine

Fumonisins Fumonisin B1, Fumonisin B2, Fumonisin B3

Fusarium Metabolites Fusarenon X, Moniliformin

Ochratoxins Ochratoxin A, Ochratoxin B

Penicillium Metabolites Mycophenolic Acid, Patulin, Penicillic Acid,
Roquefortine C

Zearalenone + Metabolites alpha-Zearalenol, beta-Zearalenol, Zearalanone

2.4. Statistical Evaluation of Results

The results were statistically evaluated using IBM SPSS 26.0 (Armonk, New York,
NY, USA). The description statistics and differences between the variables were compared
using a one-way ANOVA (Tukey test, p < 0.05). The correlation relationships between the
molds and yeasts and determined mycotoxins were calculated using the Pearson correlation
coefficient (r). The coefficient of determination was recalculated as the powered Pearson
correlation coefficient (r2).

3. Results and Discussion
3.1. Microbiota of Corn Silage

In the control samples, lactic acid bacteria ranged from 2.69 log cfu/g on APT to
5.11 log cfu/g on MRS, the numbers of coliform bacteria and enterococci were under
the detection limit, the total number of microorganisms was 3.54 ± 0.43 log cfu/g and
microscopic filamentous fungi was 2.73 ± 0.33 log cfu/g. In the silage with the additive
on the base of lactic acid bacteria, lactic acid bacteria ranged from 2.83 log cfu/g on MSE
to 5.05 log cfu/g on MRS, the numbers of coliform bacteria and enterococci were under
the detection limit, total counts of microorganisms ranged from 3.23 to 3.51 log cfu/g and
microscopic filamentous fungi ranged from 2.13 to 2.21 log cfu/g. In the silage with the
nutritional addition, urea, lactic acid bacteria ranged from 4.14 to 4.21 log cfu/g, num-
bera of coliform bacteria and enterococci were under the detection limit, total number
of microorganisms was 3.26 ± 0.22 log cfu/g, and microscopic filamentous fungi was
3.38 ± 0.45 log cfu/g (Table 2). Generally, the fermentation quality is largely influenced
by the characteristic of the raw material and the epiphytic microorganisms on its sur-
face [28]. Final feed quality is largely influenced by the species and numbers of dominant
microorganisms in the fermentation process [29].
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Table 2. Number of isolated groups of microorganisms in log cfu/g.

MSE MRS APT MC EA TSA MEA

CONT1 ND 5.11 ND ND ND 3.89 2.84
CONT2 ND 5.08 ND ND ND 3.21 2.58
CONT3 ND 4.22 2.69 ND ND 3.52 2.78
Σ CONT ND 4.81 ± 0.48 a 2.69 ± 0.36 a ND ND 3.54 ± 0.43 2.73 ± 0.33 a

ALAB1 ND 5.05 3.21 ND ND 3.46 2.21
ALAB2 ND 4.11 3.32 ND ND 3.23 2.13
ALAB3 2.83 4.12 3.12 ND ND 3.51 2.15
Σ ALAB / 4.43 ± 0.49 a,b 3.22 ± 0.21 b ND ND 3.40 ± 0.20 2.16 ± 0.16 b

NAUR1 ND 4.21 ND ND ND 3.34 3.83
NAUR2 ND 4.15 ND ND ND 3.25 3.41
NAUR3 ND 4.14 ND ND ND 3.18 2.89
Σ NAUR ND 4.17 ± 0.13 b ND ND ND 3.26 ± 0.22 3.38 ± 0.45 c

Total / 4.47 ± 0.47 3.09 ± 0.34 / / 3.40 ± 0.31 2.76 ± 0.60
p value / 0.010 0.010 / / 0.157 0.000

MSE—Mayeux, Sandine and Elliker; MRS—De Man, Rogosa and Sharpe agar; APT—All Purpose TWEEN®

agar; MC—McConkey agar; ESA—Enterococcus selective agar; TSA—Tryptic Soya agar; MEA—malt extract
agar; ND—not detected; p value—expresses the effect of the additives on microorganism groups; superscripts in
the indexes indicate the significance of the results between the groups (p < 0.05); CONT—control (subsamples
CONT1, CONT2, CONT3); ALAB—additive on the base of lactic acid bacteria (subsamples ALAB1, ALAB2,
ALAB3); NAUR—nutritional additive: urea (subsamples NAUR1, NAUR2, NAUR3); Total—total mean regardless
of additive application.

In our study, a total of 43 species of bacteria and yeast were identified (Table 3). The
17 families included Bacillaceae, Burkholderiaceae, Clostridiaceae, Cryptococcaceae, En-
terobacteriaceae, Lachnospiraceae, Lactobacillaceae, Moraxellaceae, Micrococaceae, Paeni-
bacillaceae, Promicromonosporaceae, Pseudomonadaceae, Rhizobiaceae, Saccharomyc-
etaceae, Shewanellaceae, Sphingomonadaceae, and Staphylococcaceae, and 25 genera
included Acinetobacter, Arthrobacter, Alkalihalobacillus, Priestia, Bacillus, Blastomonas, Cellu-
losimicrobium, Citrobacter, Clostridium, Lacrimispora, Cryptococcus, Kazachstania, Lactobacillus,
Levilactobacillus, Lentilactobacillus, Companilactobacillus, Secundilactobacillus, Lacticaseibacillus,
Paenibacillus, Pseudomonas, Ralstonia, Rhizobium, Shewanella, Sphingomonas, and Staphylo-
coccus that were isolated from all samples of corn silage (Table 4). The most isolated
family from all corn silage was Lactobacillaceae. The most isolated species was Lentilac-
tobacillus buchneri (17%) (Figure 1). Bacteria, yeast, and fungi with detoxification abilities
were isolated from different sources, and LAB are the preferred candidates for eliminating
mycotoxins in silages because they play a critical role in the ensiling fermentation. Lac-
tiplantibacillus plantarum and Lentilactobacillus buchneri are known to enhance lactic acid
(LA) fermentation and acetic acid (ACA) production to improve fermentation quality and
inhibit aerobic spoilage [23].
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Table 3. The number of isolated species of bacteria and yeasts from corn silage.

Species of Bacteria/Sample
CONT ALAB NAUR

Total
1 2 3 1 2 3 1 2 3

Acinetobacter radioresistens 3 3
Arthrobacter crystallopoietes 4 4
Alkalihalobacillus gibsonii 2 3 5

Priestia megaterium 3 4 4 11
Bacillus pumilus 4 5 9
Bacillus safensis 3 3 3 9

Bacillus spp. 2 3 4 9
Blastomonas natatoria 2 2

Cellulosimicrobium cellulans 3 3
Citrobacter freundii 4 5 9

Clostridium cadaveris 2 3 5
Lacrimispora sphenoides 3 3
Cryptococcus neoformans 3 3

Kazachstania exigua 7 5 6 4 5 6 5 38
Kazachstania humilis 5 4 6 15

Lactobacillus amylovorus 5 5
Levilactobacillus brevis 5 5 10

Lentilactobacillus buchneri 5 6 8 10 9 6 9 10 7 70
Lactobacillus delbrueckii subsp. delbruecki 5 5
Lactobacillus delbrueckii subsp. bulgaricus 6 6

Companilactobacillus farciminis 3 4 5 3 6 21
Lactobacillus kalixensis 4 4

Lactobacillus kefiri 3 4 5 12
Secundilactobacillus malefermentas 5 5

Lentilactobacillus parabuchneri 5 5 10
Lacticaseibacillus paracasei subsp. paracasei 5 8 10 7 8 38

Lactiplantibacillus pentosus 4 4
Lactiplantibacillus plantarum 6 6

Lactobacillus sakei 5 4 9
Paenibacillus amylolyticus 5 4 3 4 6 3 25
Paenibacillus illinoisensis 5 5

Pseudomonas agarici 3 3 6
Pseudomonas lutea 3 3

Pseudomonas putida 4 4
Ralstonia pickettii 5 3 2 4 14

Rhizobium radiobacter 2 2
Shewanella fidelis 2 2

Sphingomonas parapaucimobilis 2 3 5
Sphingomonas wittichii 3 3

Sphingomonas yabuuchiae 3 3
Sphingomonas yabuuchiae 3 3
Staphylococcus epidermidis 5 5
Staphylococcus lugdunensis 3 3

Total isolates 63 33 63 47 35 54 42 34 45 416
CONT—control; ALAB—additive on the base of lactic acid bacteria; NAUR—nutritional additive: urea.
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Table 4. Isolated species, genera, and families from corn silage samples.

Species Genera Family %

Acinetobacter radioresistens Acinetobacter Moraxellaceae 0.7
Arthrobacter crystallopoietes Arthrobacter Micrococcaceae 1.0
Alkalihalobacillus gibsonii Alkalihalobacillus Bacillaceae 1.2

Priestia megaterium Priestia Bacillaceae 2.7
Bacillus pumilus Bacillus Bacillaceae 2.2
Bacillus safensis Bacillus Bacillaceae 2.2

Bacillus spp. Bacillus Bacillaceae 2.2
Blastomonas natatoria Blastomonas Sphingomonadaceae 0.4

Cellulosimicrobium cellulans Cellulosimicrobium Promicromonosporaceae 0.7
Citrobacter freundii Citrobacter Enterobacteriaceae 2.2

Clostridium cadaveris Clostridium Clostridiaceae 1.2
Lacrimispora sphenoides Lacrimispora Lachnospiraceae 0.7
Cryptococcus neoformans Cryptococcus Cryptococcaceae 0.7

Kazachstania exigua Kazachstania Saccharomycetaceae 10.0
Kazachstania humilis Kazachstania Saccharomycetaceae 3.7

Lactobacillus amylovorus Lactobacillus Lactobacillaceae 1.2
Levilactobacillus brevis Levilactobacillus Lactobacillaceae 2.4

Lentilactobacillus buchneri Lentilactobacillus Lactobacillaceae 17.0
Lactobacillus delbrueckii subsp. delbruecki Lactobacillus Lactobacillaceae 1.2
Lactobacillus delbrueckii subsp. bulgaricus Lactobacillus Lactobacillaceae 0.4

Companilactobacillus farciminis Companilactobacillus Lactobacillaceae 5.1
Lactobacillus kalixensis Lactobacillus Lactobacillaceae 1.0

Lactobacillus kefiri Lactobacillus Lactobacillaceae 2.9
Secundilactobacillus malefermentas Secundilactobacillus Lactobacillaceae 1.2

Lentilactobacillus parabuchneri Lentilactobacillus Lactobacillaceae 2.4
Lacticaseibacillus paracasei subsp. paracasei Lacticaseibacillus Lactobacillaceae 9.1

Lactiplantibacillus pentosus Lactiplantibacillus Lactobacillaceae 1.0
Lactiplantibacillus plantarum Lactiplantibacillus Lactobacillaceae 1.4

Lactobacillus sakei Lactobacillus Lactobacillaceae 2.2
Paenibacillus amylolyticus Paenibacillus Paenibacillaceae 6.0
Paenibacillus illinoisensis Paenibacillus Paenibacillaceae 1.2

Pseudomonas agarici Pseudomonas Pseudomonadaceae 1.4
Pseudomonas lutea Pseudomonas Pseudomonadaceae 0.7

Pseudomonas putida Pseudomonas Pseudomonadaceae 1.0
Ralstonia pickettii Ralstonia Burkholderiaceae 3.4

Rhizobium radiobacter Rhizobium Rhizobiaceae 0.4
Shewanella fidelis Shewanella Shewanellaceae 0.4

Sphingomonas parapaucimobilis Sphingomonas Sphingomonadaceae 1.2
Sphingomonas wittichii Sphingomonas Sphingomonadaceae 0.7

Sphingomonas yabuuchiae Sphingomonas Sphingomonadaceae 0.7
Sphingomonas yabuuchiae Sphingomonas Sphingomonadaceae 0.7
Staphylococcus epidermidis Staphylococcus Staphylococcaceae 1.2
Staphylococcus lugdunensis Staphylococcus Staphylococcaceae 0.7
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In the study of Wang et al. [30] they examined the effects of lactic acid bacteria (LAB)
Lactiplantibacillus plantarum subsp. ZA3 and Artemisia argyi (AA) on the fermentation char-
acteristics, microbial community, and mycotoxins. The results showed that corn silage has
microbial communities, Acetobacter and Enterobacter, which were inhibited in all AA groups,
while a higher abundance of lactobacilli was maintained; moreover, Candida, Pichia, and
Kazachstania abundances were decreased in both groups. In our study, different results
were found, the most isolated species were from the family Lactobacillaceae and yeast
Kazachastania exigua (10%). Our results did not confirm previous research. We can assume
that the increased number of LAB increases the production of lactic acid, which affects the
growth of yeast. The relatively lower pH values in inoculated silages, combining activities
of acidification and antagonistic activity towards other bacteria, promotes the reduction in
bacterial and fungi diversities, and ultimately improves feed quality. This observation indi-
cated that the fungi community can change when the environment changes from anaerobic
to aerobic. It is possible that acid-tolerant bacteria still dominate the bacterial community
in the early period of aerobic exposure, and the variation in microbial community.

In our study, microscopic fungi in each group of samples were isolated and they
were of the genera Alternaria, Aspergillus, Fusarium, Mucor, Rhizopus, and Penicillium. The
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most isolated genera 25% resp. 25% in control samples were Aspergillus and Penicillium.
Similar results were found in samples treated with the addition of LAB with an incidence
of Aspergillus of 12.5% and Penicillium of 18%, and in samples with nutritional additive urea
with an incidence of Aspergillus of 15% and Penicillium of 20%.

In the study of Krustev and Khristov [31], eight species of microscopic fungi were
demonstrated in the sampled corn silage: Mucor, Penicillium, Aspergillus, Alternaria, and
Trichoderma, similar as in our study. It was established that the number of species in the
surface layer of the ensilaged mass was the highest.

Isolation of novel LAB strains for application in silage has been a common practice
over the years but it is still an activity with current importance around the globe [32–34],
due to the interest in collecting diverse strains for future applications not only as silage
inoculants but also in other plant-based food for animal and human uses [35].

Lentilactobacillus buchneri is presently the gold standard to promote aerobic stability
in corn silage [36,37]. Acetic acid is one of the main organic acids produced by hetero-
fermentative LAB and it has the capacity of promoting aerobic stability when silos are
opened [38].

All isolated species in control samples were 27 species and the most isolated species
was from the family Lactobacillaceae (9 species, Figure 2). The most isolated species
from control samples were Lentilactobacillus buchneri (12%) and Kazachstania exigua (11%),
following with Paenibacillus amylolyticus (8%), Citrobacter freundii, and Ralstonia picketii (6%).
L. buchneri Ls141 and 463 were used as external reference strains. L. buchneri Ls141 had been
isolated from corn silage in a previous study [39]. Candida ethanolica, Saccharomyces bulderi,
Pichia anomala, Kazachstania unispora, and Saccharomyces cerevisiae were the predominant
yeasts. Pichia anomala, Issatchenkia orientalis, S. cerevisiae, and Pichia fermentans were the
prevalent species in high moisture corn [36].

All isolated species in corn samples with the addition of LAB were 19 species and the
most isolated species were from the families Lactibacillaceae (5 species) and Bacillaceae
(4 species, Figure 3). The most isolated species from corn samples with the addition of LAB
were Lentilactobacillus buchneri (18%) and Lacticaseibacillus paracasei subsp. paracasei (16%),
following with Kazachstania exiqua (10%), Paenibacillus amylolyticus (9%), and Priestia mega-
terium (8%). Driehuis et al. [40] observed that strains of Lentilactobacillus buchneri (Lactobacil-
lus buchneri) [41] were able to degrade lactic acid into acetic acid and 1,2-propanediol [42],
which could then be metabolized into propionic acid [43]. Since both acetate and propi-
onate are strong yeast inhibitors [44,45], these modifications positively improve the aerobic
stability of silage. More recently, co-inoculation with L. buchneri NCIMB 40788 and Lentilac-
tobacillus hilgardii CNCM-I-4785 (Lactobacillus hilgardii) was reported to increase the stability
of different silages [46,47]. While microbial dynamics during fermentation were recently
characterized in corn silage inoculated with these two microorganisms [48], little research
has been undertaken to characterize microbial succession and mycotoxin production in
inoculated vs. uninoculated silages during the feed-out phase [49,50]. Kazachstania exiqua
was isolated from corn silage in the study of Santos et al. [36].
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Ruminal microorganisms are capable of transforming nitrogen from NPN compounds
into protein of high nutritional value. However, if the release of ammonia promoted by
NPN exceeds the use capacity by ruminal microbiota, there will be an excretion of this
excess with a consequent loss of energy. If the ammonia concentration extrapolates the
excretion capacity, the intoxication of the animal may occur [51]. Nitrogen from NPN
compounds can be converted by ruminal microbes into protein with a high nutritional
value [52]. However, there will be the expulsion of this surplus and a resulting loss of
energy if the release of ammonia encouraged by NPN exceeds the capacity for utilization
by ruminal bacteria [53].

All isolated species from samples with nutritional additive urea were 16 species and
most isolated species were from the Lactibacillaceae family similar to 7 species (Figure 4).
The most isolated species from the treated samples with nutritional additive urea were
Lentilactobacillus buchneri (22%) and Lacticaseibacillus paracasei subsp. paracasei (12%), follow-
ing with Companilactobacillus farciminis (11%) and Lactobacillus kefiri (8%). Pang et al. [54]
reported that most of the bacterial community in silage belonged to the phylum Firmi-
cutes and the genera Lactobacillus, Pedicoccus, and Weissella. These results showed that the
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dominant phyla in the measured samples were Proteobacteria and Firmicutes. This result
was different from that of other researchers [54,55], who found that most bacteria involved
in lactic acid fermentation of silage belonged to the genera Lactobacillus, Pedicoccus, Weis-
sella, and Leuconostoc. Metagenomic analysis revealed that urea addition in the sheep diet
significantly increased the relative abundance of genera involved in nitrogen metabolism
especially. Increasing nitrogen sources by urea addition may be beneficial to microbial
protein production. This could improve microbial utilization of additional N sources during
ruminal fermentation. Therefore, the synchronization between ruminal ammonia nitrogen
release and carbohydrate availability resulted in greater microbial protein synthesis [56].
The bacterial composition was also altered by lysine supplementation to support energy
metabolism, in which the microbial diversity was unchanged [57].
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3.2. Mycotoxin Composition of Corn Silage

Several mycotoxin species were identified in corn silage samples. Tables 5 and 6
provide an overview on detected mycotoxin concentrations as well as on the level of sig-
nificance. In this study, there were no statistically significant differences between variants
of each mycotoxin species. Penagos-Tabares et al. [58] confirmed the occurrence of the
same mycotoxins as detected in this experiment. When mycotoxins are present, there are
few ways to avoid unwanted problems and therefore prevention is essential. Some silage
additives can reduce growth of fungi and hence mycotoxin formation [14,59]. Whitlow and
Hagler [59] found that these can be additives such as ammonia, propionic acid, sorbic acid,
and bacterial or enzymatic additives. Dong et al. [60] examined the interactions between
the harvest stage and the dose of inoculant in corn silages and found that inoculant lowered
(p > 0.05) concentrations of deoxynivalenol at the milk stage. Furthermore, the inoculant
significantly decreased or increased deoxynivalenol content with its different dosing at
the dough stage [60]. Aflatoxins and ochratoxins were not identified neither in control
variant nor in experimental variants. In contrast, Kalúzová et al. [16] determined these
types of mycotoxins and decreased them with urea and inoculant addition. The effect of
silage additives was manifested in reducing zearalenone content in experimental variants
(Table 5). Corn silage with urea achieved a significantly (p < 0.05) higher concentration
of zearalenone but its concentration after inoculant addition was even higher [16]. An
increased concentration of zearalenone was also reported by Drouin et al. [61] when in-
oculant was added to the corn silage. The application of inoculant to corn silage resulted
in increased fumonisin production, and Bakri [62] registered the same effect in his experi-
ment. Gallo et al. [63] also detected fumonisins and found a greater level of fumonisin B1
(p > 0.05) and fumonisin B2 (p < 0.05) in inoculated corn. Corn silage NAUR resulted in a more
than two times higher mean value of fumonisin B1 compared to CONT. Kalúzová et al. [16]
found a similar result with this nutritional additive but the differences were not significant.
Teller et al. [64] studied the effect of various additives on mycotoxin concentration in corn
silage. A higher content of deoxynivalenol and fumonisin B1 was observed after inoculant
treatment. As for zearalenone, the microbial additive lowered its content in silage sam-
ples [64]. The highest value of all mycotoxins reached nivalenol in both CONT and ALAB
variants. In comparison with the control, a higher content of nivalenol was observed in
variants with inoculant addition. Wang et al. [65] found a significant tendency in differences
in nivalenol content depending on storage temperature and type/use of lactic acid bacteria.
Eckard et al. [66] detected nivalenol in 8 of 19 samples of corn silage between a range
of 190 and 760 µg/kg. A lowering trend (p > 0.05) of this mycotoxin in inoculated corn
silage was noticed by Bakri [62]. Variant NAUR was higher in nivalenol content than
CONT, but lower compared to variant ALAB. Although type A trichothecenes and ergot
alkaloids are present in cereal crops, they were not detected by the HPLC-MS/MS method
in this experiment. Type A trichothecenes include, for instance, mycotoxins such as T-2
toxin and HT-2 toxin, which are quite often found in silage. Some authors [16,65,67] con-
firmed a change in T-2 toxin concentration by using urea and various microbial additives
in corn silages. Contamination by ergot alkaloids is mostly seen in forages such as tall
fescue, sorghum, and ryegrass, but their presence in other forages is not refuted [68,69].
Zhang et al. [69] noted that ergot alkaloids are rarely present in corn silage in China, but
still, they occurred in one of their samples of corn silage at a concentration of 15.3 µg/kg.
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Table 5. The content of regulated mycotoxins in corn silage variants in µg/kg.

Mycotoxin
Species Variant Mean S.D. Minimum Maximum p Value

Deoxynivalenol

CONT 163.46 80.23 117.03 256.10
0.404ALAB 260.85 250.09 116.33 549.62

NAUR 373.33 158.00 215.00 531.00
Total 265.88 178.21 116.33 549.62 /

Aflatoxins

CONT <0.3/1 * / / /

/
ALAB <0.3/1 * / / /
NAUR <0.3/1 * / / /
Total <0.3/1 * / / /

Ochratoxins

CONT <0.5/2 * / / /

/
ALAB <0.5/2 * / / /
NAUR <0.5/2 * / / /
Total <0.5/2 * / / /

Zearalenone

CONT 56.61 43.09 31.52 106.36
0.626ALAB 36.47 6.89 28.57 41.23

NAUR 41.03 8.55 36.00 50.90
Total 44.71 24.04 28.57 106.36 /

Fumonisin
B1

CONT 94.35 42.47 50.75 135.59
0.076ALAB 96.71 54.95 57.02 159.42

NAUR 208.33 67.16 144.00 278.00
Total 133.13 74.27 50.75 278.00 /

Nivalenol

CONT 203.26 108.71 140.44 328.79
0.277ALAB 592.26 454.57 139.52 1048.63

NAUR 331.33 48.21 277.00 369.00
Total 375.62 290.98 139.52 1048.63 /

Type A
trichothecenes

CONT <3/10 * / / /

/
ALAB <3/10 * / / /
NAUR <3/10 * / / /
Total <3/10 * / / /

Ergot
alkaloids

CONT <2/6 * / / /

/
ALAB <2/6 * / / /
NAUR <2/6 * / / /
Total <2/6 * / / /

S.D.—standard deviation; CONT—control; ALAB—additive on the base of lactic acid bacteria; NAUR—nutritional
additive: urea; * < LOD/LOQ—limit of detection/limit of quantification.

Besides free Fusarium mycotoxins (deoxynivalenol, fumonisin B1, nivalenol, and
zearalenone), the presence of some other Fusarium contaminants known as emerging
mycotoxins (beauvericin, enniatins, and moniliformin) were also found. Beauvericin
was detected only in corn silage with the addition of urea. An average concentration of
47 µg/kg of beauvericin by Zachariasova et al. [70] was determined in corn silage samples.
Reisinger et al. [71] found 120 samples of corn silage positive on beauvericin, and this
mycotoxin belonged to five most frequently detected mycotoxins in their study. In corn
silage samples, Sørensen et al. [72] did not detect the presence of enniatin A and A1 but
confirmed the presence of enniatin B and B1. In contrast to Sørensen et al. [72], the mean
value of enniatin B was 28.01 µg/kg lower and that of enniatin B1 was 9.50 µg/kg lower
in our corn silage samples without additive. On the other hand, neither enniatin A nor
B1 were confirmed in the corn silage from Rasmussen et al. [73], but the mean value of
enniatin B (44.00 µg/kg) was lower compared to our study of silage without additive.
Similarly, Storm et al. [74] only reported the occurrence of enniatin B with an average
value higher (53.00 µg/kg) than that reported in Table 6 for the silage without additive. In
whole-plant corn silage, enniatins did not appear in any of the samples or were detected
at very low concentrations [75]. However, Shimshoni et al. [76] detected the occurrence
of enniatin A (0.3 µg/kg), enniatin A1 (0.8 µg/kg), enniatin B (0.2 µg/kg), as well as
enniatin B1 (0.9 µg/kg). Identical to the previous author, McElhinney et al. [77] also found
the presence of these mycotoxins, but in grass silage. Moreover, the presence of enniatin
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B was confirmed by Wambacq et al. [78] in 82 corn silage samples with concentrations
up to 5000 µg/kg. As in the present study, these values were not statistically significant
in studies, which all the authors mentioned. Moniliformin was present in all samples;
however, lower concentrations were obtained in both treated variants. Zhang et al. [69]
reported relatively low concentrations of moniliformin, and the highest concentration of
116 µg/kg was found. On the contrary, Gräfenhan et al. [79] did not detect moniliformin
in red clover silage (control and treated variant), but after addition of soil, moniliformin
concentration jumped up to 222 µg/kg. As Kalúzová et al. [14] mentioned, the effect of
urea on mycotoxin concentrations has not been widely monitored so far and the effect on
chemical composition and fermentation parameters was more closely monitored in this
case. Some studies confirmed a positive suppression effect of silage additives on mycotoxin
concentrations [23,61–63]. However, other studies reveal the increasing mycotoxin content
after the application of silage additives [17,65]. Contradictory results are caused probably
by many factors such as temperature, water activity, and pH value [80–82], which are
affecting the environment of microscopic fungi producing the mycotoxins in stressful
conditions; thus other experiments are necessary in this research field.

Table 6. The content of emerging mycotoxins in corn silage variants in µg/kg.

Mycotoxin
Species Variant Mean S.D. Minimum Maximum p-Value

Beauvericin

CONT <2/6 * / / /

/
ALAB <2/6 * / / /
NAUR 496.67 175.51 355.00 693.00
Total 496.67 175.51 355.00 693.00

Enniatin
A1

CONT 16.36 14.78 5.72 33.24
0.428ALAB 6.67 1.99 5.30 8.95

NAUR 13.17 0.99 12.50 14.30
Total 12.07 8.61 5.30 33.24 /

Enniatin B

CONT 44.99 48.93 16.49 101.49
0.368ALAB 14.55 5.05 9.21 19.25

NAUR 13.53 0.78 12.90 14.40
Total 24.36 29.06 9.21 101.49 /

Enniatin
B1

CONT 30.50 37.58 4.50 73.59
0.463ALAB 7.11 2.42 4.37 8.95

NAUR 16.57 1.46 15.40 18.20
Total 18.06 21.42 4.37 73.59 /

Moniliformin

CONT 42.30 12.32 28.56 52.34
0.323ALAB 24.73 18.64 13.95 46.25

NAUR 35.13 3.55 31.30 38.30
Total 34.06 13.65 13.95 52.34 /

CONT—control; ALAB—additive on the base of lactic acid bacteria; NAUR—nutritional additive: urea;
* <LOD/LOQ—limit of detection/limit of quantification

3.3. Relationship between the Mycotoxin Concentrations and Microscopic Fungi and Yeasts,
Harmful Effects, and Mycotoxin Limits in Feeds

The main correlation characteristics between the mold and yeast populations and
detected mycotoxins in corn silages were not statistically significant; however, the coef-
ficient of determination between the May and FUMB1 (r2) was relatively high (0.79%)
(Table 7). This was also confirmed by Barug et al. [83], where a direct relationship between
the microscopic fungi and yeast and certain mycotoxins in silage was not observed. Simi-
larly, no correlations were found between fungal DNA and mycotoxin concentrations [84].
According to Schenck et al. [85], a correlation between the presence of Fusarium toxins (NIV,
DON, 3-ACDON, HT-2, T-2, BEAU, and ENNB) and the presence of Fusarium culmorum,
F. equiseti, F. graminearum, or F. poae could not be proved. However, there were negative
significant correlations between the nivalenol and enniatin A1 (p < 0.01) and moniliformin
(p < 0.05). On the other side, the positive correlation between the enniatin A1 and monil-
iformin (p < 0.05) was observed. Aspergillus, Fusarium, and Penicillium species comprise
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a well-known group of microscopic filamentous fungi that are infamous for their ability
to make many potent mycotoxins. Mycotoxins play a significant role in the defensive
strategies of mycotoxigenic fungi. The fungal species more frequently identified in this
work have been previously reported in silage [86]. The presence of mycotoxins, which
are produced by Aspergillus and Penicilium species, was not evaluated in corn silages in
this study.

Table 7. Mold and yeast population and mycotoxin Pearson’s correlation relationship.

DON ZEA FUMB1 NIV ENNA1 ENNB ENNB1 MON

MaY 0.567 0.179 0.876 −0.629 0.629 −0.066 0.367 0.558
DON −0.709 0.894 0.283 −0.283 −0.859 −0.558 −0.368
ZEA −0.318 −0.877 0.877 0.970 0.981 0.916
FUM −0.176 0.176 −0.540 −0.128 0.088
NIV −1.000 ** −0.734 −0.954 −0.996 *

ENNA1 0.734 0.954 0.996 *
ENNB 0.904 0.791

ENNB1 0.977

MaY—molds and yeasts; DON—deoxynivalenol; ZEA—zearalenone; FUMB1—fumonisin B1; NIV—nivalenol;
ENNA1—enniatin A1; ENNB—enniatin B; ENNB1—enniatin B1; MON—moniliformin; * p < 0.05; ** p < 0.01.

Aflatoxins are mainly produced by toxigenic strains of Aspergillus molds. In ruminants,
reduced milk production in dairy cows, decreased milk quality and safety due to carry-over
of toxins from contaminated feed, liver malfunctions, decreased feed efficiency and rate of
gain in beef cows, and compromised immune and ruminal functions were observed [86].
The maximum content of aflatoxin B1 for complete foodstuffs for cattle, sheep, and goats is
0.02 mg/kg with the exception of complete foodstuffs for dairy animals (0.005 mg/kg) and
for calves and lambs (0.01 mg/kg). The maximum content of aflatoxin B1 for complemen-
tary foodstuffs for cattle, sheep, and goats is 0.02 mg/kg (except complementary foodstuffs
for dairy animals, calves, and lambs: 0.005 mg/kg) [87].

Ochratoxins are produced by several Penicilium and Aspergillus species, have hepato-
toxic and nephrotoxic effects, causing poor feed conversion and limiting weight gains in
ruminants [88]. The guidance limit of ochratoxin A for feed materials (cereals and cereal
products) is 0.25 mg/kg, and for complementary and complete foodstuffs are limited only
for poultry and pigs [89].

In analyzed corn silages, only fusarium mycotoxins were found. Deoxynivalenol
causes feed refusal and lower weight gains, diarrhea, lower milk production, hepatotoxicity
(in young preruminants), and immune alterations [86,88,90,91]. The regulatory level (guid-
ance value) of deoxynivalenol for complementary and complete foodstuffs for ruminants is
5 mg/kg. For feed materials, guidance values are 8 mg/kg (for cereals and cereal products)
and 12 mg/kg (for maize by-products) [89].

Clinical signs in ruminants caused by fumonisins are decreased feed intake, milk
production, and mild liver diseases [86,92]. The results of Roberts et al. [93] revealed that
exposure to deoxynivalenol and fumonisins was detrimental to the welfare of finishing
steers and may compromise their ability to withstand other stressors such as disease, heat
stress, or other toxins. The regulatory level (guidance value) of fumonisins (B1 + B2) for
complementary and complete foodstuffs for adult ruminants (>4 months) is 50 mg/kg, and
for feed materials (maize and maize products) is 60 mg/kg [89].

Higher zearalenone contamination is linked with a risk of vaginal and rectal prolapses,
infertility, hyperestrogenism, swelling of mammary glands, and milk production reduction
in dairy cows [88,94]. The regulatory level (guidance value) of zearalenone for complemen-
tary and complete foodstuffs for calves, dairy cattle, sheep (including lambs), and goats
(including kids) is 0.5 mg/kg. For feed materials, guidance values are 2 mg/kg (for cereals
and cereal products) and 3 mg/kg (for maize by-products) [89].
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Nivalenol belongs to the B group of trichothecene mycotoxins along with deoxyni-
valenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, and fusarenon-X [95]. Gener-
ally, the toxicity of deoxynivalenol and nivalenol is similar [88,96] and effects of nivalenol
include immunotoxicity and hematotoxicity. With the exception of forage maize (and maize
silage), levels of nivalenol in forages are generally low. For lactating dairy cows and beef
cattle, the estimated lower-bound and upper-bound exposures to nivalenol are between
0.077 and 0.69 µg/kg of live body weight per day, except for maize-silage-based diets (1.9
and 4.6 µg/kg body weight per day) [95]. The concentrations of regulated mycotoxins
in our experiment did not exceed the maximum permitted, guidance, and daily tolerable
intake according to the limits [87,89,95,97].

Animal exposure to enniatins and beauvericin is primarily from feed intake of cereal
grains and cereal by-products [97]. The primary toxic action of beauvericin and enniatins is
related to their ability to form ion channels and transport NH4

+ or K+ ions across the cell
membrane, resulting in disturbance of the ion homeostasis and eventually cell death [98,99].

Enniatins are mutagenic and embryotoxic for animals [100,101]. For the sum of enni-
atins, the calculated lower-bound and upper-bound (UB) chronic exposures for ruminants
ranged from 3.30 to 8.26 µg/kg body weight per day and estimated acute UB exposure is
32.6 µg/kg body weight per day, for ruminants [97].

Moniliformin is mainly detected in cereal grains and cereal-based feed [102]. The main
pathological change observed in sheep was the degeneration of the proximal tubules of
the kidneys after moniliformin intake [103]. No toxicity data suitable for hazard charac-
terization of moniliformin were identified for ruminants, farmed rabbits, horses, farmed
fish, dogs, and cats. Therefore, the EFSA Panel on Contaminants in the Food Chain (CON-
TAM) [104] considered of 0.20 mg moniliformin/kg body weight identified for pigs as an
indicative reference point [102].

4. Conclusions

The number of microbiota varied with the control to nutritional additives. The most
isolated group of bacteria was lactic acid bacteria in all groups of corn silages. The most
isolated species of LAB were similar as bacterial additives added to silages. The application
of additives did not affect the number of lactic acid bacteria, in both groups with additives.
The total numbers of microorganisms in both groups with additives were affected; however,
the number of microscopic filamentous fungi only in the group with the addition of
lactic acid bacteria compared to the control group was lower. In both groups with the
additive treatment, there was a lower diversity of isolated species of microorganisms, and
a higher proportion of main species of lactic acid bacteria compared to the control group.
The following Fusarium mycotoxins have been recorded in corn silages: deoxynivalenol,
zearalenone, fumonisin B1, nivalenol (regulated mycotoxins), beauvericin, enniatin A1, B,
B1, and moniliformin (emerging mycotoxins). Nivalenol reached the highest total mean
value of regulated mycotoxins in silage samples. The highest prevalence of deoxynivalenol
and beauvericin in silage with urea addition was observed. While beauvericin was found
only in silage with urea, other emerging mycotoxins (enniatin A1, B, B1, and moniliformin)
were present in all variants. However, the mycotoxin content after the addition of silage
additives was not statistically significant, hence, their effect in corn silage was not confirmed.
On the other side, it can be stated that monitored mycotoxin did not affect the hygienic
quality and safety of analyzed corn silage. More studies for investigation of the effect of
silage additives on mycotoxin concentration in silages are needed.
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